|  | //===-- X86MCInstLower.cpp - Convert X86 MachineInstr to an MCInst --------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains code to lower X86 MachineInstrs to their corresponding | 
|  | // MCInst records. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "InstPrinter/X86ATTInstPrinter.h" | 
|  | #include "InstPrinter/X86InstComments.h" | 
|  | #include "MCTargetDesc/X86BaseInfo.h" | 
|  | #include "MCTargetDesc/X86TargetStreamer.h" | 
|  | #include "Utils/X86ShuffleDecode.h" | 
|  | #include "X86AsmPrinter.h" | 
|  | #include "X86RegisterInfo.h" | 
|  | #include "X86ShuffleDecodeConstantPool.h" | 
|  | #include "llvm/ADT/Optional.h" | 
|  | #include "llvm/ADT/SmallString.h" | 
|  | #include "llvm/ADT/iterator_range.h" | 
|  | #include "llvm/CodeGen/MachineConstantPool.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineModuleInfoImpls.h" | 
|  | #include "llvm/CodeGen/MachineOperand.h" | 
|  | #include "llvm/CodeGen/StackMaps.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/GlobalValue.h" | 
|  | #include "llvm/IR/Mangler.h" | 
|  | #include "llvm/MC/MCAsmInfo.h" | 
|  | #include "llvm/MC/MCCodeEmitter.h" | 
|  | #include "llvm/MC/MCContext.h" | 
|  | #include "llvm/MC/MCExpr.h" | 
|  | #include "llvm/MC/MCFixup.h" | 
|  | #include "llvm/MC/MCInst.h" | 
|  | #include "llvm/MC/MCInstBuilder.h" | 
|  | #include "llvm/MC/MCSection.h" | 
|  | #include "llvm/MC/MCSectionELF.h" | 
|  | #include "llvm/MC/MCStreamer.h" | 
|  | #include "llvm/MC/MCSymbol.h" | 
|  | #include "llvm/MC/MCSymbolELF.h" | 
|  | #include "llvm/Target/TargetLoweringObjectFile.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// X86MCInstLower - This class is used to lower an MachineInstr into an MCInst. | 
|  | class X86MCInstLower { | 
|  | MCContext &Ctx; | 
|  | const MachineFunction &MF; | 
|  | const TargetMachine &TM; | 
|  | const MCAsmInfo &MAI; | 
|  | X86AsmPrinter &AsmPrinter; | 
|  |  | 
|  | public: | 
|  | X86MCInstLower(const MachineFunction &MF, X86AsmPrinter &asmprinter); | 
|  |  | 
|  | Optional<MCOperand> LowerMachineOperand(const MachineInstr *MI, | 
|  | const MachineOperand &MO) const; | 
|  | void Lower(const MachineInstr *MI, MCInst &OutMI) const; | 
|  |  | 
|  | MCSymbol *GetSymbolFromOperand(const MachineOperand &MO) const; | 
|  | MCOperand LowerSymbolOperand(const MachineOperand &MO, MCSymbol *Sym) const; | 
|  |  | 
|  | private: | 
|  | MachineModuleInfoMachO &getMachOMMI() const; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | // Emit a minimal sequence of nops spanning NumBytes bytes. | 
|  | static void EmitNops(MCStreamer &OS, unsigned NumBytes, bool Is64Bit, | 
|  | const MCSubtargetInfo &STI); | 
|  |  | 
|  | void X86AsmPrinter::StackMapShadowTracker::count(MCInst &Inst, | 
|  | const MCSubtargetInfo &STI, | 
|  | MCCodeEmitter *CodeEmitter) { | 
|  | if (InShadow) { | 
|  | SmallString<256> Code; | 
|  | SmallVector<MCFixup, 4> Fixups; | 
|  | raw_svector_ostream VecOS(Code); | 
|  | CodeEmitter->encodeInstruction(Inst, VecOS, Fixups, STI); | 
|  | CurrentShadowSize += Code.size(); | 
|  | if (CurrentShadowSize >= RequiredShadowSize) | 
|  | InShadow = false; // The shadow is big enough. Stop counting. | 
|  | } | 
|  | } | 
|  |  | 
|  | void X86AsmPrinter::StackMapShadowTracker::emitShadowPadding( | 
|  | MCStreamer &OutStreamer, const MCSubtargetInfo &STI) { | 
|  | if (InShadow && CurrentShadowSize < RequiredShadowSize) { | 
|  | InShadow = false; | 
|  | EmitNops(OutStreamer, RequiredShadowSize - CurrentShadowSize, | 
|  | MF->getSubtarget<X86Subtarget>().is64Bit(), STI); | 
|  | } | 
|  | } | 
|  |  | 
|  | void X86AsmPrinter::EmitAndCountInstruction(MCInst &Inst) { | 
|  | OutStreamer->EmitInstruction(Inst, getSubtargetInfo(), | 
|  | EnablePrintSchedInfo && | 
|  | !(Inst.getFlags() & X86::NO_SCHED_INFO)); | 
|  | SMShadowTracker.count(Inst, getSubtargetInfo(), CodeEmitter.get()); | 
|  | } | 
|  |  | 
|  | X86MCInstLower::X86MCInstLower(const MachineFunction &mf, | 
|  | X86AsmPrinter &asmprinter) | 
|  | : Ctx(mf.getContext()), MF(mf), TM(mf.getTarget()), MAI(*TM.getMCAsmInfo()), | 
|  | AsmPrinter(asmprinter) {} | 
|  |  | 
|  | MachineModuleInfoMachO &X86MCInstLower::getMachOMMI() const { | 
|  | return MF.getMMI().getObjFileInfo<MachineModuleInfoMachO>(); | 
|  | } | 
|  |  | 
|  | /// GetSymbolFromOperand - Lower an MO_GlobalAddress or MO_ExternalSymbol | 
|  | /// operand to an MCSymbol. | 
|  | MCSymbol *X86MCInstLower::GetSymbolFromOperand(const MachineOperand &MO) const { | 
|  | const DataLayout &DL = MF.getDataLayout(); | 
|  | assert((MO.isGlobal() || MO.isSymbol() || MO.isMBB()) && | 
|  | "Isn't a symbol reference"); | 
|  |  | 
|  | MCSymbol *Sym = nullptr; | 
|  | SmallString<128> Name; | 
|  | StringRef Suffix; | 
|  |  | 
|  | switch (MO.getTargetFlags()) { | 
|  | case X86II::MO_DLLIMPORT: | 
|  | // Handle dllimport linkage. | 
|  | Name += "__imp_"; | 
|  | break; | 
|  | case X86II::MO_DARWIN_NONLAZY: | 
|  | case X86II::MO_DARWIN_NONLAZY_PIC_BASE: | 
|  | Suffix = "$non_lazy_ptr"; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!Suffix.empty()) | 
|  | Name += DL.getPrivateGlobalPrefix(); | 
|  |  | 
|  | if (MO.isGlobal()) { | 
|  | const GlobalValue *GV = MO.getGlobal(); | 
|  | AsmPrinter.getNameWithPrefix(Name, GV); | 
|  | } else if (MO.isSymbol()) { | 
|  | Mangler::getNameWithPrefix(Name, MO.getSymbolName(), DL); | 
|  | } else if (MO.isMBB()) { | 
|  | assert(Suffix.empty()); | 
|  | Sym = MO.getMBB()->getSymbol(); | 
|  | } | 
|  |  | 
|  | Name += Suffix; | 
|  | if (!Sym) | 
|  | Sym = Ctx.getOrCreateSymbol(Name); | 
|  |  | 
|  | // If the target flags on the operand changes the name of the symbol, do that | 
|  | // before we return the symbol. | 
|  | switch (MO.getTargetFlags()) { | 
|  | default: | 
|  | break; | 
|  | case X86II::MO_DARWIN_NONLAZY: | 
|  | case X86II::MO_DARWIN_NONLAZY_PIC_BASE: { | 
|  | MachineModuleInfoImpl::StubValueTy &StubSym = | 
|  | getMachOMMI().getGVStubEntry(Sym); | 
|  | if (!StubSym.getPointer()) { | 
|  | assert(MO.isGlobal() && "Extern symbol not handled yet"); | 
|  | StubSym = MachineModuleInfoImpl::StubValueTy( | 
|  | AsmPrinter.getSymbol(MO.getGlobal()), | 
|  | !MO.getGlobal()->hasInternalLinkage()); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Sym; | 
|  | } | 
|  |  | 
|  | MCOperand X86MCInstLower::LowerSymbolOperand(const MachineOperand &MO, | 
|  | MCSymbol *Sym) const { | 
|  | // FIXME: We would like an efficient form for this, so we don't have to do a | 
|  | // lot of extra uniquing. | 
|  | const MCExpr *Expr = nullptr; | 
|  | MCSymbolRefExpr::VariantKind RefKind = MCSymbolRefExpr::VK_None; | 
|  |  | 
|  | switch (MO.getTargetFlags()) { | 
|  | default: | 
|  | llvm_unreachable("Unknown target flag on GV operand"); | 
|  | case X86II::MO_NO_FLAG: // No flag. | 
|  | // These affect the name of the symbol, not any suffix. | 
|  | case X86II::MO_DARWIN_NONLAZY: | 
|  | case X86II::MO_DLLIMPORT: | 
|  | break; | 
|  |  | 
|  | case X86II::MO_TLVP: | 
|  | RefKind = MCSymbolRefExpr::VK_TLVP; | 
|  | break; | 
|  | case X86II::MO_TLVP_PIC_BASE: | 
|  | Expr = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_TLVP, Ctx); | 
|  | // Subtract the pic base. | 
|  | Expr = MCBinaryExpr::createSub( | 
|  | Expr, MCSymbolRefExpr::create(MF.getPICBaseSymbol(), Ctx), Ctx); | 
|  | break; | 
|  | case X86II::MO_SECREL: | 
|  | RefKind = MCSymbolRefExpr::VK_SECREL; | 
|  | break; | 
|  | case X86II::MO_TLSGD: | 
|  | RefKind = MCSymbolRefExpr::VK_TLSGD; | 
|  | break; | 
|  | case X86II::MO_TLSLD: | 
|  | RefKind = MCSymbolRefExpr::VK_TLSLD; | 
|  | break; | 
|  | case X86II::MO_TLSLDM: | 
|  | RefKind = MCSymbolRefExpr::VK_TLSLDM; | 
|  | break; | 
|  | case X86II::MO_GOTTPOFF: | 
|  | RefKind = MCSymbolRefExpr::VK_GOTTPOFF; | 
|  | break; | 
|  | case X86II::MO_INDNTPOFF: | 
|  | RefKind = MCSymbolRefExpr::VK_INDNTPOFF; | 
|  | break; | 
|  | case X86II::MO_TPOFF: | 
|  | RefKind = MCSymbolRefExpr::VK_TPOFF; | 
|  | break; | 
|  | case X86II::MO_DTPOFF: | 
|  | RefKind = MCSymbolRefExpr::VK_DTPOFF; | 
|  | break; | 
|  | case X86II::MO_NTPOFF: | 
|  | RefKind = MCSymbolRefExpr::VK_NTPOFF; | 
|  | break; | 
|  | case X86II::MO_GOTNTPOFF: | 
|  | RefKind = MCSymbolRefExpr::VK_GOTNTPOFF; | 
|  | break; | 
|  | case X86II::MO_GOTPCREL: | 
|  | RefKind = MCSymbolRefExpr::VK_GOTPCREL; | 
|  | break; | 
|  | case X86II::MO_GOT: | 
|  | RefKind = MCSymbolRefExpr::VK_GOT; | 
|  | break; | 
|  | case X86II::MO_GOTOFF: | 
|  | RefKind = MCSymbolRefExpr::VK_GOTOFF; | 
|  | break; | 
|  | case X86II::MO_PLT: | 
|  | RefKind = MCSymbolRefExpr::VK_PLT; | 
|  | break; | 
|  | case X86II::MO_ABS8: | 
|  | RefKind = MCSymbolRefExpr::VK_X86_ABS8; | 
|  | break; | 
|  | case X86II::MO_PIC_BASE_OFFSET: | 
|  | case X86II::MO_DARWIN_NONLAZY_PIC_BASE: | 
|  | Expr = MCSymbolRefExpr::create(Sym, Ctx); | 
|  | // Subtract the pic base. | 
|  | Expr = MCBinaryExpr::createSub( | 
|  | Expr, MCSymbolRefExpr::create(MF.getPICBaseSymbol(), Ctx), Ctx); | 
|  | if (MO.isJTI()) { | 
|  | assert(MAI.doesSetDirectiveSuppressReloc()); | 
|  | // If .set directive is supported, use it to reduce the number of | 
|  | // relocations the assembler will generate for differences between | 
|  | // local labels. This is only safe when the symbols are in the same | 
|  | // section so we are restricting it to jumptable references. | 
|  | MCSymbol *Label = Ctx.createTempSymbol(); | 
|  | AsmPrinter.OutStreamer->EmitAssignment(Label, Expr); | 
|  | Expr = MCSymbolRefExpr::create(Label, Ctx); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!Expr) | 
|  | Expr = MCSymbolRefExpr::create(Sym, RefKind, Ctx); | 
|  |  | 
|  | if (!MO.isJTI() && !MO.isMBB() && MO.getOffset()) | 
|  | Expr = MCBinaryExpr::createAdd( | 
|  | Expr, MCConstantExpr::create(MO.getOffset(), Ctx), Ctx); | 
|  | return MCOperand::createExpr(Expr); | 
|  | } | 
|  |  | 
|  | /// Simplify FOO $imm, %{al,ax,eax,rax} to FOO $imm, for instruction with | 
|  | /// a short fixed-register form. | 
|  | static void SimplifyShortImmForm(MCInst &Inst, unsigned Opcode) { | 
|  | unsigned ImmOp = Inst.getNumOperands() - 1; | 
|  | assert(Inst.getOperand(0).isReg() && | 
|  | (Inst.getOperand(ImmOp).isImm() || Inst.getOperand(ImmOp).isExpr()) && | 
|  | ((Inst.getNumOperands() == 3 && Inst.getOperand(1).isReg() && | 
|  | Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) || | 
|  | Inst.getNumOperands() == 2) && | 
|  | "Unexpected instruction!"); | 
|  |  | 
|  | // Check whether the destination register can be fixed. | 
|  | unsigned Reg = Inst.getOperand(0).getReg(); | 
|  | if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX) | 
|  | return; | 
|  |  | 
|  | // If so, rewrite the instruction. | 
|  | MCOperand Saved = Inst.getOperand(ImmOp); | 
|  | Inst = MCInst(); | 
|  | Inst.setOpcode(Opcode); | 
|  | Inst.addOperand(Saved); | 
|  | } | 
|  |  | 
|  | /// If a movsx instruction has a shorter encoding for the used register | 
|  | /// simplify the instruction to use it instead. | 
|  | static void SimplifyMOVSX(MCInst &Inst) { | 
|  | unsigned NewOpcode = 0; | 
|  | unsigned Op0 = Inst.getOperand(0).getReg(), Op1 = Inst.getOperand(1).getReg(); | 
|  | switch (Inst.getOpcode()) { | 
|  | default: | 
|  | llvm_unreachable("Unexpected instruction!"); | 
|  | case X86::MOVSX16rr8: // movsbw %al, %ax   --> cbtw | 
|  | if (Op0 == X86::AX && Op1 == X86::AL) | 
|  | NewOpcode = X86::CBW; | 
|  | break; | 
|  | case X86::MOVSX32rr16: // movswl %ax, %eax  --> cwtl | 
|  | if (Op0 == X86::EAX && Op1 == X86::AX) | 
|  | NewOpcode = X86::CWDE; | 
|  | break; | 
|  | case X86::MOVSX64rr32: // movslq %eax, %rax --> cltq | 
|  | if (Op0 == X86::RAX && Op1 == X86::EAX) | 
|  | NewOpcode = X86::CDQE; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (NewOpcode != 0) { | 
|  | Inst = MCInst(); | 
|  | Inst.setOpcode(NewOpcode); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Simplify things like MOV32rm to MOV32o32a. | 
|  | static void SimplifyShortMoveForm(X86AsmPrinter &Printer, MCInst &Inst, | 
|  | unsigned Opcode) { | 
|  | // Don't make these simplifications in 64-bit mode; other assemblers don't | 
|  | // perform them because they make the code larger. | 
|  | if (Printer.getSubtarget().is64Bit()) | 
|  | return; | 
|  |  | 
|  | bool IsStore = Inst.getOperand(0).isReg() && Inst.getOperand(1).isReg(); | 
|  | unsigned AddrBase = IsStore; | 
|  | unsigned RegOp = IsStore ? 0 : 5; | 
|  | unsigned AddrOp = AddrBase + 3; | 
|  | assert( | 
|  | Inst.getNumOperands() == 6 && Inst.getOperand(RegOp).isReg() && | 
|  | Inst.getOperand(AddrBase + X86::AddrBaseReg).isReg() && | 
|  | Inst.getOperand(AddrBase + X86::AddrScaleAmt).isImm() && | 
|  | Inst.getOperand(AddrBase + X86::AddrIndexReg).isReg() && | 
|  | Inst.getOperand(AddrBase + X86::AddrSegmentReg).isReg() && | 
|  | (Inst.getOperand(AddrOp).isExpr() || Inst.getOperand(AddrOp).isImm()) && | 
|  | "Unexpected instruction!"); | 
|  |  | 
|  | // Check whether the destination register can be fixed. | 
|  | unsigned Reg = Inst.getOperand(RegOp).getReg(); | 
|  | if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX) | 
|  | return; | 
|  |  | 
|  | // Check whether this is an absolute address. | 
|  | // FIXME: We know TLVP symbol refs aren't, but there should be a better way | 
|  | // to do this here. | 
|  | bool Absolute = true; | 
|  | if (Inst.getOperand(AddrOp).isExpr()) { | 
|  | const MCExpr *MCE = Inst.getOperand(AddrOp).getExpr(); | 
|  | if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(MCE)) | 
|  | if (SRE->getKind() == MCSymbolRefExpr::VK_TLVP) | 
|  | Absolute = false; | 
|  | } | 
|  |  | 
|  | if (Absolute && | 
|  | (Inst.getOperand(AddrBase + X86::AddrBaseReg).getReg() != 0 || | 
|  | Inst.getOperand(AddrBase + X86::AddrScaleAmt).getImm() != 1 || | 
|  | Inst.getOperand(AddrBase + X86::AddrIndexReg).getReg() != 0)) | 
|  | return; | 
|  |  | 
|  | // If so, rewrite the instruction. | 
|  | MCOperand Saved = Inst.getOperand(AddrOp); | 
|  | MCOperand Seg = Inst.getOperand(AddrBase + X86::AddrSegmentReg); | 
|  | Inst = MCInst(); | 
|  | Inst.setOpcode(Opcode); | 
|  | Inst.addOperand(Saved); | 
|  | Inst.addOperand(Seg); | 
|  | } | 
|  |  | 
|  | static unsigned getRetOpcode(const X86Subtarget &Subtarget) { | 
|  | return Subtarget.is64Bit() ? X86::RETQ : X86::RETL; | 
|  | } | 
|  |  | 
|  | Optional<MCOperand> | 
|  | X86MCInstLower::LowerMachineOperand(const MachineInstr *MI, | 
|  | const MachineOperand &MO) const { | 
|  | switch (MO.getType()) { | 
|  | default: | 
|  | MI->print(errs()); | 
|  | llvm_unreachable("unknown operand type"); | 
|  | case MachineOperand::MO_Register: | 
|  | // Ignore all implicit register operands. | 
|  | if (MO.isImplicit()) | 
|  | return None; | 
|  | return MCOperand::createReg(MO.getReg()); | 
|  | case MachineOperand::MO_Immediate: | 
|  | return MCOperand::createImm(MO.getImm()); | 
|  | case MachineOperand::MO_MachineBasicBlock: | 
|  | case MachineOperand::MO_GlobalAddress: | 
|  | case MachineOperand::MO_ExternalSymbol: | 
|  | return LowerSymbolOperand(MO, GetSymbolFromOperand(MO)); | 
|  | case MachineOperand::MO_MCSymbol: | 
|  | return LowerSymbolOperand(MO, MO.getMCSymbol()); | 
|  | case MachineOperand::MO_JumpTableIndex: | 
|  | return LowerSymbolOperand(MO, AsmPrinter.GetJTISymbol(MO.getIndex())); | 
|  | case MachineOperand::MO_ConstantPoolIndex: | 
|  | return LowerSymbolOperand(MO, AsmPrinter.GetCPISymbol(MO.getIndex())); | 
|  | case MachineOperand::MO_BlockAddress: | 
|  | return LowerSymbolOperand( | 
|  | MO, AsmPrinter.GetBlockAddressSymbol(MO.getBlockAddress())); | 
|  | case MachineOperand::MO_RegisterMask: | 
|  | // Ignore call clobbers. | 
|  | return None; | 
|  | } | 
|  | } | 
|  |  | 
|  | void X86MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const { | 
|  | OutMI.setOpcode(MI->getOpcode()); | 
|  |  | 
|  | for (const MachineOperand &MO : MI->operands()) | 
|  | if (auto MaybeMCOp = LowerMachineOperand(MI, MO)) | 
|  | OutMI.addOperand(MaybeMCOp.getValue()); | 
|  |  | 
|  | // Handle a few special cases to eliminate operand modifiers. | 
|  | ReSimplify: | 
|  | switch (OutMI.getOpcode()) { | 
|  | case X86::LEA64_32r: | 
|  | case X86::LEA64r: | 
|  | case X86::LEA16r: | 
|  | case X86::LEA32r: | 
|  | // LEA should have a segment register, but it must be empty. | 
|  | assert(OutMI.getNumOperands() == 1 + X86::AddrNumOperands && | 
|  | "Unexpected # of LEA operands"); | 
|  | assert(OutMI.getOperand(1 + X86::AddrSegmentReg).getReg() == 0 && | 
|  | "LEA has segment specified!"); | 
|  | break; | 
|  |  | 
|  | // Commute operands to get a smaller encoding by using VEX.R instead of VEX.B | 
|  | // if one of the registers is extended, but other isn't. | 
|  | case X86::VMOVZPQILo2PQIrr: | 
|  | case X86::VMOVAPDrr: | 
|  | case X86::VMOVAPDYrr: | 
|  | case X86::VMOVAPSrr: | 
|  | case X86::VMOVAPSYrr: | 
|  | case X86::VMOVDQArr: | 
|  | case X86::VMOVDQAYrr: | 
|  | case X86::VMOVDQUrr: | 
|  | case X86::VMOVDQUYrr: | 
|  | case X86::VMOVUPDrr: | 
|  | case X86::VMOVUPDYrr: | 
|  | case X86::VMOVUPSrr: | 
|  | case X86::VMOVUPSYrr: { | 
|  | if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) && | 
|  | X86II::isX86_64ExtendedReg(OutMI.getOperand(1).getReg())) { | 
|  | unsigned NewOpc; | 
|  | switch (OutMI.getOpcode()) { | 
|  | default: llvm_unreachable("Invalid opcode"); | 
|  | case X86::VMOVZPQILo2PQIrr: NewOpc = X86::VMOVPQI2QIrr;   break; | 
|  | case X86::VMOVAPDrr:        NewOpc = X86::VMOVAPDrr_REV;  break; | 
|  | case X86::VMOVAPDYrr:       NewOpc = X86::VMOVAPDYrr_REV; break; | 
|  | case X86::VMOVAPSrr:        NewOpc = X86::VMOVAPSrr_REV;  break; | 
|  | case X86::VMOVAPSYrr:       NewOpc = X86::VMOVAPSYrr_REV; break; | 
|  | case X86::VMOVDQArr:        NewOpc = X86::VMOVDQArr_REV;  break; | 
|  | case X86::VMOVDQAYrr:       NewOpc = X86::VMOVDQAYrr_REV; break; | 
|  | case X86::VMOVDQUrr:        NewOpc = X86::VMOVDQUrr_REV;  break; | 
|  | case X86::VMOVDQUYrr:       NewOpc = X86::VMOVDQUYrr_REV; break; | 
|  | case X86::VMOVUPDrr:        NewOpc = X86::VMOVUPDrr_REV;  break; | 
|  | case X86::VMOVUPDYrr:       NewOpc = X86::VMOVUPDYrr_REV; break; | 
|  | case X86::VMOVUPSrr:        NewOpc = X86::VMOVUPSrr_REV;  break; | 
|  | case X86::VMOVUPSYrr:       NewOpc = X86::VMOVUPSYrr_REV; break; | 
|  | } | 
|  | OutMI.setOpcode(NewOpc); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case X86::VMOVSDrr: | 
|  | case X86::VMOVSSrr: { | 
|  | if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) && | 
|  | X86II::isX86_64ExtendedReg(OutMI.getOperand(2).getReg())) { | 
|  | unsigned NewOpc; | 
|  | switch (OutMI.getOpcode()) { | 
|  | default: llvm_unreachable("Invalid opcode"); | 
|  | case X86::VMOVSDrr: NewOpc = X86::VMOVSDrr_REV; break; | 
|  | case X86::VMOVSSrr: NewOpc = X86::VMOVSSrr_REV; break; | 
|  | } | 
|  | OutMI.setOpcode(NewOpc); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | // TAILJMPr64, CALL64r, CALL64pcrel32 - These instructions have register | 
|  | // inputs modeled as normal uses instead of implicit uses.  As such, truncate | 
|  | // off all but the first operand (the callee).  FIXME: Change isel. | 
|  | case X86::TAILJMPr64: | 
|  | case X86::TAILJMPr64_REX: | 
|  | case X86::CALL64r: | 
|  | case X86::CALL64pcrel32: { | 
|  | unsigned Opcode = OutMI.getOpcode(); | 
|  | MCOperand Saved = OutMI.getOperand(0); | 
|  | OutMI = MCInst(); | 
|  | OutMI.setOpcode(Opcode); | 
|  | OutMI.addOperand(Saved); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case X86::EH_RETURN: | 
|  | case X86::EH_RETURN64: { | 
|  | OutMI = MCInst(); | 
|  | OutMI.setOpcode(getRetOpcode(AsmPrinter.getSubtarget())); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case X86::CLEANUPRET: { | 
|  | // Replace CATCHRET with the appropriate RET. | 
|  | OutMI = MCInst(); | 
|  | OutMI.setOpcode(getRetOpcode(AsmPrinter.getSubtarget())); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case X86::CATCHRET: { | 
|  | // Replace CATCHRET with the appropriate RET. | 
|  | const X86Subtarget &Subtarget = AsmPrinter.getSubtarget(); | 
|  | unsigned ReturnReg = Subtarget.is64Bit() ? X86::RAX : X86::EAX; | 
|  | OutMI = MCInst(); | 
|  | OutMI.setOpcode(getRetOpcode(Subtarget)); | 
|  | OutMI.addOperand(MCOperand::createReg(ReturnReg)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // TAILJMPd, TAILJMPd64, TailJMPd_cc - Lower to the correct jump | 
|  | // instruction. | 
|  | { | 
|  | unsigned Opcode; | 
|  | case X86::TAILJMPr: | 
|  | Opcode = X86::JMP32r; | 
|  | goto SetTailJmpOpcode; | 
|  | case X86::TAILJMPd: | 
|  | case X86::TAILJMPd64: | 
|  | Opcode = X86::JMP_1; | 
|  | goto SetTailJmpOpcode; | 
|  | case X86::TAILJMPd_CC: | 
|  | case X86::TAILJMPd64_CC: | 
|  | Opcode = X86::GetCondBranchFromCond( | 
|  | static_cast<X86::CondCode>(MI->getOperand(1).getImm())); | 
|  | goto SetTailJmpOpcode; | 
|  |  | 
|  | SetTailJmpOpcode: | 
|  | MCOperand Saved = OutMI.getOperand(0); | 
|  | OutMI = MCInst(); | 
|  | OutMI.setOpcode(Opcode); | 
|  | OutMI.addOperand(Saved); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case X86::DEC16r: | 
|  | case X86::DEC32r: | 
|  | case X86::INC16r: | 
|  | case X86::INC32r: | 
|  | // If we aren't in 64-bit mode we can use the 1-byte inc/dec instructions. | 
|  | if (!AsmPrinter.getSubtarget().is64Bit()) { | 
|  | unsigned Opcode; | 
|  | switch (OutMI.getOpcode()) { | 
|  | default: llvm_unreachable("Invalid opcode"); | 
|  | case X86::DEC16r: Opcode = X86::DEC16r_alt; break; | 
|  | case X86::DEC32r: Opcode = X86::DEC32r_alt; break; | 
|  | case X86::INC16r: Opcode = X86::INC16r_alt; break; | 
|  | case X86::INC32r: Opcode = X86::INC32r_alt; break; | 
|  | } | 
|  | OutMI.setOpcode(Opcode); | 
|  | } | 
|  | break; | 
|  |  | 
|  | // These are pseudo-ops for OR to help with the OR->ADD transformation.  We do | 
|  | // this with an ugly goto in case the resultant OR uses EAX and needs the | 
|  | // short form. | 
|  | case X86::ADD16rr_DB:   OutMI.setOpcode(X86::OR16rr);   goto ReSimplify; | 
|  | case X86::ADD32rr_DB:   OutMI.setOpcode(X86::OR32rr);   goto ReSimplify; | 
|  | case X86::ADD64rr_DB:   OutMI.setOpcode(X86::OR64rr);   goto ReSimplify; | 
|  | case X86::ADD16ri_DB:   OutMI.setOpcode(X86::OR16ri);   goto ReSimplify; | 
|  | case X86::ADD32ri_DB:   OutMI.setOpcode(X86::OR32ri);   goto ReSimplify; | 
|  | case X86::ADD64ri32_DB: OutMI.setOpcode(X86::OR64ri32); goto ReSimplify; | 
|  | case X86::ADD16ri8_DB:  OutMI.setOpcode(X86::OR16ri8);  goto ReSimplify; | 
|  | case X86::ADD32ri8_DB:  OutMI.setOpcode(X86::OR32ri8);  goto ReSimplify; | 
|  | case X86::ADD64ri8_DB:  OutMI.setOpcode(X86::OR64ri8);  goto ReSimplify; | 
|  |  | 
|  | // Atomic load and store require a separate pseudo-inst because Acquire | 
|  | // implies mayStore and Release implies mayLoad; fix these to regular MOV | 
|  | // instructions here | 
|  | case X86::ACQUIRE_MOV8rm:    OutMI.setOpcode(X86::MOV8rm);    goto ReSimplify; | 
|  | case X86::ACQUIRE_MOV16rm:   OutMI.setOpcode(X86::MOV16rm);   goto ReSimplify; | 
|  | case X86::ACQUIRE_MOV32rm:   OutMI.setOpcode(X86::MOV32rm);   goto ReSimplify; | 
|  | case X86::ACQUIRE_MOV64rm:   OutMI.setOpcode(X86::MOV64rm);   goto ReSimplify; | 
|  | case X86::RELEASE_MOV8mr:    OutMI.setOpcode(X86::MOV8mr);    goto ReSimplify; | 
|  | case X86::RELEASE_MOV16mr:   OutMI.setOpcode(X86::MOV16mr);   goto ReSimplify; | 
|  | case X86::RELEASE_MOV32mr:   OutMI.setOpcode(X86::MOV32mr);   goto ReSimplify; | 
|  | case X86::RELEASE_MOV64mr:   OutMI.setOpcode(X86::MOV64mr);   goto ReSimplify; | 
|  | case X86::RELEASE_MOV8mi:    OutMI.setOpcode(X86::MOV8mi);    goto ReSimplify; | 
|  | case X86::RELEASE_MOV16mi:   OutMI.setOpcode(X86::MOV16mi);   goto ReSimplify; | 
|  | case X86::RELEASE_MOV32mi:   OutMI.setOpcode(X86::MOV32mi);   goto ReSimplify; | 
|  | case X86::RELEASE_MOV64mi32: OutMI.setOpcode(X86::MOV64mi32); goto ReSimplify; | 
|  | case X86::RELEASE_ADD8mi:    OutMI.setOpcode(X86::ADD8mi);    goto ReSimplify; | 
|  | case X86::RELEASE_ADD8mr:    OutMI.setOpcode(X86::ADD8mr);    goto ReSimplify; | 
|  | case X86::RELEASE_ADD32mi:   OutMI.setOpcode(X86::ADD32mi);   goto ReSimplify; | 
|  | case X86::RELEASE_ADD32mr:   OutMI.setOpcode(X86::ADD32mr);   goto ReSimplify; | 
|  | case X86::RELEASE_ADD64mi32: OutMI.setOpcode(X86::ADD64mi32); goto ReSimplify; | 
|  | case X86::RELEASE_ADD64mr:   OutMI.setOpcode(X86::ADD64mr);   goto ReSimplify; | 
|  | case X86::RELEASE_AND8mi:    OutMI.setOpcode(X86::AND8mi);    goto ReSimplify; | 
|  | case X86::RELEASE_AND8mr:    OutMI.setOpcode(X86::AND8mr);    goto ReSimplify; | 
|  | case X86::RELEASE_AND32mi:   OutMI.setOpcode(X86::AND32mi);   goto ReSimplify; | 
|  | case X86::RELEASE_AND32mr:   OutMI.setOpcode(X86::AND32mr);   goto ReSimplify; | 
|  | case X86::RELEASE_AND64mi32: OutMI.setOpcode(X86::AND64mi32); goto ReSimplify; | 
|  | case X86::RELEASE_AND64mr:   OutMI.setOpcode(X86::AND64mr);   goto ReSimplify; | 
|  | case X86::RELEASE_OR8mi:     OutMI.setOpcode(X86::OR8mi);     goto ReSimplify; | 
|  | case X86::RELEASE_OR8mr:     OutMI.setOpcode(X86::OR8mr);     goto ReSimplify; | 
|  | case X86::RELEASE_OR32mi:    OutMI.setOpcode(X86::OR32mi);    goto ReSimplify; | 
|  | case X86::RELEASE_OR32mr:    OutMI.setOpcode(X86::OR32mr);    goto ReSimplify; | 
|  | case X86::RELEASE_OR64mi32:  OutMI.setOpcode(X86::OR64mi32);  goto ReSimplify; | 
|  | case X86::RELEASE_OR64mr:    OutMI.setOpcode(X86::OR64mr);    goto ReSimplify; | 
|  | case X86::RELEASE_XOR8mi:    OutMI.setOpcode(X86::XOR8mi);    goto ReSimplify; | 
|  | case X86::RELEASE_XOR8mr:    OutMI.setOpcode(X86::XOR8mr);    goto ReSimplify; | 
|  | case X86::RELEASE_XOR32mi:   OutMI.setOpcode(X86::XOR32mi);   goto ReSimplify; | 
|  | case X86::RELEASE_XOR32mr:   OutMI.setOpcode(X86::XOR32mr);   goto ReSimplify; | 
|  | case X86::RELEASE_XOR64mi32: OutMI.setOpcode(X86::XOR64mi32); goto ReSimplify; | 
|  | case X86::RELEASE_XOR64mr:   OutMI.setOpcode(X86::XOR64mr);   goto ReSimplify; | 
|  | case X86::RELEASE_INC8m:     OutMI.setOpcode(X86::INC8m);     goto ReSimplify; | 
|  | case X86::RELEASE_INC16m:    OutMI.setOpcode(X86::INC16m);    goto ReSimplify; | 
|  | case X86::RELEASE_INC32m:    OutMI.setOpcode(X86::INC32m);    goto ReSimplify; | 
|  | case X86::RELEASE_INC64m:    OutMI.setOpcode(X86::INC64m);    goto ReSimplify; | 
|  | case X86::RELEASE_DEC8m:     OutMI.setOpcode(X86::DEC8m);     goto ReSimplify; | 
|  | case X86::RELEASE_DEC16m:    OutMI.setOpcode(X86::DEC16m);    goto ReSimplify; | 
|  | case X86::RELEASE_DEC32m:    OutMI.setOpcode(X86::DEC32m);    goto ReSimplify; | 
|  | case X86::RELEASE_DEC64m:    OutMI.setOpcode(X86::DEC64m);    goto ReSimplify; | 
|  |  | 
|  | // We don't currently select the correct instruction form for instructions | 
|  | // which have a short %eax, etc. form. Handle this by custom lowering, for | 
|  | // now. | 
|  | // | 
|  | // Note, we are currently not handling the following instructions: | 
|  | // MOV64ao8, MOV64o8a | 
|  | // XCHG16ar, XCHG32ar, XCHG64ar | 
|  | case X86::MOV8mr_NOREX: | 
|  | case X86::MOV8mr: | 
|  | case X86::MOV8rm_NOREX: | 
|  | case X86::MOV8rm: | 
|  | case X86::MOV16mr: | 
|  | case X86::MOV16rm: | 
|  | case X86::MOV32mr: | 
|  | case X86::MOV32rm: { | 
|  | unsigned NewOpc; | 
|  | switch (OutMI.getOpcode()) { | 
|  | default: llvm_unreachable("Invalid opcode"); | 
|  | case X86::MOV8mr_NOREX: | 
|  | case X86::MOV8mr:  NewOpc = X86::MOV8o32a; break; | 
|  | case X86::MOV8rm_NOREX: | 
|  | case X86::MOV8rm:  NewOpc = X86::MOV8ao32; break; | 
|  | case X86::MOV16mr: NewOpc = X86::MOV16o32a; break; | 
|  | case X86::MOV16rm: NewOpc = X86::MOV16ao32; break; | 
|  | case X86::MOV32mr: NewOpc = X86::MOV32o32a; break; | 
|  | case X86::MOV32rm: NewOpc = X86::MOV32ao32; break; | 
|  | } | 
|  | SimplifyShortMoveForm(AsmPrinter, OutMI, NewOpc); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case X86::ADC8ri: case X86::ADC16ri: case X86::ADC32ri: case X86::ADC64ri32: | 
|  | case X86::ADD8ri: case X86::ADD16ri: case X86::ADD32ri: case X86::ADD64ri32: | 
|  | case X86::AND8ri: case X86::AND16ri: case X86::AND32ri: case X86::AND64ri32: | 
|  | case X86::CMP8ri: case X86::CMP16ri: case X86::CMP32ri: case X86::CMP64ri32: | 
|  | case X86::OR8ri:  case X86::OR16ri:  case X86::OR32ri:  case X86::OR64ri32: | 
|  | case X86::SBB8ri: case X86::SBB16ri: case X86::SBB32ri: case X86::SBB64ri32: | 
|  | case X86::SUB8ri: case X86::SUB16ri: case X86::SUB32ri: case X86::SUB64ri32: | 
|  | case X86::TEST8ri:case X86::TEST16ri:case X86::TEST32ri:case X86::TEST64ri32: | 
|  | case X86::XOR8ri: case X86::XOR16ri: case X86::XOR32ri: case X86::XOR64ri32: { | 
|  | unsigned NewOpc; | 
|  | switch (OutMI.getOpcode()) { | 
|  | default: llvm_unreachable("Invalid opcode"); | 
|  | case X86::ADC8ri:     NewOpc = X86::ADC8i8;    break; | 
|  | case X86::ADC16ri:    NewOpc = X86::ADC16i16;  break; | 
|  | case X86::ADC32ri:    NewOpc = X86::ADC32i32;  break; | 
|  | case X86::ADC64ri32:  NewOpc = X86::ADC64i32;  break; | 
|  | case X86::ADD8ri:     NewOpc = X86::ADD8i8;    break; | 
|  | case X86::ADD16ri:    NewOpc = X86::ADD16i16;  break; | 
|  | case X86::ADD32ri:    NewOpc = X86::ADD32i32;  break; | 
|  | case X86::ADD64ri32:  NewOpc = X86::ADD64i32;  break; | 
|  | case X86::AND8ri:     NewOpc = X86::AND8i8;    break; | 
|  | case X86::AND16ri:    NewOpc = X86::AND16i16;  break; | 
|  | case X86::AND32ri:    NewOpc = X86::AND32i32;  break; | 
|  | case X86::AND64ri32:  NewOpc = X86::AND64i32;  break; | 
|  | case X86::CMP8ri:     NewOpc = X86::CMP8i8;    break; | 
|  | case X86::CMP16ri:    NewOpc = X86::CMP16i16;  break; | 
|  | case X86::CMP32ri:    NewOpc = X86::CMP32i32;  break; | 
|  | case X86::CMP64ri32:  NewOpc = X86::CMP64i32;  break; | 
|  | case X86::OR8ri:      NewOpc = X86::OR8i8;     break; | 
|  | case X86::OR16ri:     NewOpc = X86::OR16i16;   break; | 
|  | case X86::OR32ri:     NewOpc = X86::OR32i32;   break; | 
|  | case X86::OR64ri32:   NewOpc = X86::OR64i32;   break; | 
|  | case X86::SBB8ri:     NewOpc = X86::SBB8i8;    break; | 
|  | case X86::SBB16ri:    NewOpc = X86::SBB16i16;  break; | 
|  | case X86::SBB32ri:    NewOpc = X86::SBB32i32;  break; | 
|  | case X86::SBB64ri32:  NewOpc = X86::SBB64i32;  break; | 
|  | case X86::SUB8ri:     NewOpc = X86::SUB8i8;    break; | 
|  | case X86::SUB16ri:    NewOpc = X86::SUB16i16;  break; | 
|  | case X86::SUB32ri:    NewOpc = X86::SUB32i32;  break; | 
|  | case X86::SUB64ri32:  NewOpc = X86::SUB64i32;  break; | 
|  | case X86::TEST8ri:    NewOpc = X86::TEST8i8;   break; | 
|  | case X86::TEST16ri:   NewOpc = X86::TEST16i16; break; | 
|  | case X86::TEST32ri:   NewOpc = X86::TEST32i32; break; | 
|  | case X86::TEST64ri32: NewOpc = X86::TEST64i32; break; | 
|  | case X86::XOR8ri:     NewOpc = X86::XOR8i8;    break; | 
|  | case X86::XOR16ri:    NewOpc = X86::XOR16i16;  break; | 
|  | case X86::XOR32ri:    NewOpc = X86::XOR32i32;  break; | 
|  | case X86::XOR64ri32:  NewOpc = X86::XOR64i32;  break; | 
|  | } | 
|  | SimplifyShortImmForm(OutMI, NewOpc); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Try to shrink some forms of movsx. | 
|  | case X86::MOVSX16rr8: | 
|  | case X86::MOVSX32rr16: | 
|  | case X86::MOVSX64rr32: | 
|  | SimplifyMOVSX(OutMI); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | void X86AsmPrinter::LowerTlsAddr(X86MCInstLower &MCInstLowering, | 
|  | const MachineInstr &MI) { | 
|  |  | 
|  | bool is64Bits = MI.getOpcode() == X86::TLS_addr64 || | 
|  | MI.getOpcode() == X86::TLS_base_addr64; | 
|  |  | 
|  | bool needsPadding = MI.getOpcode() == X86::TLS_addr64; | 
|  |  | 
|  | MCContext &context = OutStreamer->getContext(); | 
|  |  | 
|  | if (needsPadding) | 
|  | EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX)); | 
|  |  | 
|  | MCSymbolRefExpr::VariantKind SRVK; | 
|  | switch (MI.getOpcode()) { | 
|  | case X86::TLS_addr32: | 
|  | case X86::TLS_addr64: | 
|  | SRVK = MCSymbolRefExpr::VK_TLSGD; | 
|  | break; | 
|  | case X86::TLS_base_addr32: | 
|  | SRVK = MCSymbolRefExpr::VK_TLSLDM; | 
|  | break; | 
|  | case X86::TLS_base_addr64: | 
|  | SRVK = MCSymbolRefExpr::VK_TLSLD; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("unexpected opcode"); | 
|  | } | 
|  |  | 
|  | MCSymbol *sym = MCInstLowering.GetSymbolFromOperand(MI.getOperand(3)); | 
|  | const MCSymbolRefExpr *symRef = MCSymbolRefExpr::create(sym, SRVK, context); | 
|  |  | 
|  | MCInst LEA; | 
|  | if (is64Bits) { | 
|  | LEA.setOpcode(X86::LEA64r); | 
|  | LEA.addOperand(MCOperand::createReg(X86::RDI)); // dest | 
|  | LEA.addOperand(MCOperand::createReg(X86::RIP)); // base | 
|  | LEA.addOperand(MCOperand::createImm(1));        // scale | 
|  | LEA.addOperand(MCOperand::createReg(0));        // index | 
|  | LEA.addOperand(MCOperand::createExpr(symRef));  // disp | 
|  | LEA.addOperand(MCOperand::createReg(0));        // seg | 
|  | } else if (SRVK == MCSymbolRefExpr::VK_TLSLDM) { | 
|  | LEA.setOpcode(X86::LEA32r); | 
|  | LEA.addOperand(MCOperand::createReg(X86::EAX)); // dest | 
|  | LEA.addOperand(MCOperand::createReg(X86::EBX)); // base | 
|  | LEA.addOperand(MCOperand::createImm(1));        // scale | 
|  | LEA.addOperand(MCOperand::createReg(0));        // index | 
|  | LEA.addOperand(MCOperand::createExpr(symRef));  // disp | 
|  | LEA.addOperand(MCOperand::createReg(0));        // seg | 
|  | } else { | 
|  | LEA.setOpcode(X86::LEA32r); | 
|  | LEA.addOperand(MCOperand::createReg(X86::EAX)); // dest | 
|  | LEA.addOperand(MCOperand::createReg(0));        // base | 
|  | LEA.addOperand(MCOperand::createImm(1));        // scale | 
|  | LEA.addOperand(MCOperand::createReg(X86::EBX)); // index | 
|  | LEA.addOperand(MCOperand::createExpr(symRef));  // disp | 
|  | LEA.addOperand(MCOperand::createReg(0));        // seg | 
|  | } | 
|  | EmitAndCountInstruction(LEA); | 
|  |  | 
|  | if (needsPadding) { | 
|  | EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX)); | 
|  | EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX)); | 
|  | EmitAndCountInstruction(MCInstBuilder(X86::REX64_PREFIX)); | 
|  | } | 
|  |  | 
|  | StringRef name = is64Bits ? "__tls_get_addr" : "___tls_get_addr"; | 
|  | MCSymbol *tlsGetAddr = context.getOrCreateSymbol(name); | 
|  | const MCSymbolRefExpr *tlsRef = | 
|  | MCSymbolRefExpr::create(tlsGetAddr, MCSymbolRefExpr::VK_PLT, context); | 
|  |  | 
|  | EmitAndCountInstruction( | 
|  | MCInstBuilder(is64Bits ? X86::CALL64pcrel32 : X86::CALLpcrel32) | 
|  | .addExpr(tlsRef)); | 
|  | } | 
|  |  | 
|  | /// Emit the largest nop instruction smaller than or equal to \p NumBytes | 
|  | /// bytes.  Return the size of nop emitted. | 
|  | static unsigned EmitNop(MCStreamer &OS, unsigned NumBytes, bool Is64Bit, | 
|  | const MCSubtargetInfo &STI) { | 
|  | // This works only for 64bit. For 32bit we have to do additional checking if | 
|  | // the CPU supports multi-byte nops. | 
|  | assert(Is64Bit && "EmitNops only supports X86-64"); | 
|  |  | 
|  | unsigned NopSize; | 
|  | unsigned Opc, BaseReg, ScaleVal, IndexReg, Displacement, SegmentReg; | 
|  | Opc = IndexReg = Displacement = SegmentReg = 0; | 
|  | BaseReg = X86::RAX; | 
|  | ScaleVal = 1; | 
|  | switch (NumBytes) { | 
|  | case 0: | 
|  | llvm_unreachable("Zero nops?"); | 
|  | break; | 
|  | case 1: | 
|  | NopSize = 1; | 
|  | Opc = X86::NOOP; | 
|  | break; | 
|  | case 2: | 
|  | NopSize = 2; | 
|  | Opc = X86::XCHG16ar; | 
|  | break; | 
|  | case 3: | 
|  | NopSize = 3; | 
|  | Opc = X86::NOOPL; | 
|  | break; | 
|  | case 4: | 
|  | NopSize = 4; | 
|  | Opc = X86::NOOPL; | 
|  | Displacement = 8; | 
|  | break; | 
|  | case 5: | 
|  | NopSize = 5; | 
|  | Opc = X86::NOOPL; | 
|  | Displacement = 8; | 
|  | IndexReg = X86::RAX; | 
|  | break; | 
|  | case 6: | 
|  | NopSize = 6; | 
|  | Opc = X86::NOOPW; | 
|  | Displacement = 8; | 
|  | IndexReg = X86::RAX; | 
|  | break; | 
|  | case 7: | 
|  | NopSize = 7; | 
|  | Opc = X86::NOOPL; | 
|  | Displacement = 512; | 
|  | break; | 
|  | case 8: | 
|  | NopSize = 8; | 
|  | Opc = X86::NOOPL; | 
|  | Displacement = 512; | 
|  | IndexReg = X86::RAX; | 
|  | break; | 
|  | case 9: | 
|  | NopSize = 9; | 
|  | Opc = X86::NOOPW; | 
|  | Displacement = 512; | 
|  | IndexReg = X86::RAX; | 
|  | break; | 
|  | default: | 
|  | NopSize = 10; | 
|  | Opc = X86::NOOPW; | 
|  | Displacement = 512; | 
|  | IndexReg = X86::RAX; | 
|  | SegmentReg = X86::CS; | 
|  | break; | 
|  | } | 
|  |  | 
|  | unsigned NumPrefixes = std::min(NumBytes - NopSize, 5U); | 
|  | NopSize += NumPrefixes; | 
|  | for (unsigned i = 0; i != NumPrefixes; ++i) | 
|  | OS.EmitBytes("\x66"); | 
|  |  | 
|  | switch (Opc) { | 
|  | default: llvm_unreachable("Unexpected opcode"); | 
|  | case X86::NOOP: | 
|  | OS.EmitInstruction(MCInstBuilder(Opc), STI); | 
|  | break; | 
|  | case X86::XCHG16ar: | 
|  | OS.EmitInstruction(MCInstBuilder(Opc).addReg(X86::AX).addReg(X86::AX), STI); | 
|  | break; | 
|  | case X86::NOOPL: | 
|  | case X86::NOOPW: | 
|  | OS.EmitInstruction(MCInstBuilder(Opc) | 
|  | .addReg(BaseReg) | 
|  | .addImm(ScaleVal) | 
|  | .addReg(IndexReg) | 
|  | .addImm(Displacement) | 
|  | .addReg(SegmentReg), | 
|  | STI); | 
|  | break; | 
|  | } | 
|  | assert(NopSize <= NumBytes && "We overemitted?"); | 
|  | return NopSize; | 
|  | } | 
|  |  | 
|  | /// Emit the optimal amount of multi-byte nops on X86. | 
|  | static void EmitNops(MCStreamer &OS, unsigned NumBytes, bool Is64Bit, | 
|  | const MCSubtargetInfo &STI) { | 
|  | unsigned NopsToEmit = NumBytes; | 
|  | (void)NopsToEmit; | 
|  | while (NumBytes) { | 
|  | NumBytes -= EmitNop(OS, NumBytes, Is64Bit, STI); | 
|  | assert(NopsToEmit >= NumBytes && "Emitted more than I asked for!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | void X86AsmPrinter::LowerSTATEPOINT(const MachineInstr &MI, | 
|  | X86MCInstLower &MCIL) { | 
|  | assert(Subtarget->is64Bit() && "Statepoint currently only supports X86-64"); | 
|  |  | 
|  | StatepointOpers SOpers(&MI); | 
|  | if (unsigned PatchBytes = SOpers.getNumPatchBytes()) { | 
|  | EmitNops(*OutStreamer, PatchBytes, Subtarget->is64Bit(), | 
|  | getSubtargetInfo()); | 
|  | } else { | 
|  | // Lower call target and choose correct opcode | 
|  | const MachineOperand &CallTarget = SOpers.getCallTarget(); | 
|  | MCOperand CallTargetMCOp; | 
|  | unsigned CallOpcode; | 
|  | switch (CallTarget.getType()) { | 
|  | case MachineOperand::MO_GlobalAddress: | 
|  | case MachineOperand::MO_ExternalSymbol: | 
|  | CallTargetMCOp = MCIL.LowerSymbolOperand( | 
|  | CallTarget, MCIL.GetSymbolFromOperand(CallTarget)); | 
|  | CallOpcode = X86::CALL64pcrel32; | 
|  | // Currently, we only support relative addressing with statepoints. | 
|  | // Otherwise, we'll need a scratch register to hold the target | 
|  | // address.  You'll fail asserts during load & relocation if this | 
|  | // symbol is to far away. (TODO: support non-relative addressing) | 
|  | break; | 
|  | case MachineOperand::MO_Immediate: | 
|  | CallTargetMCOp = MCOperand::createImm(CallTarget.getImm()); | 
|  | CallOpcode = X86::CALL64pcrel32; | 
|  | // Currently, we only support relative addressing with statepoints. | 
|  | // Otherwise, we'll need a scratch register to hold the target | 
|  | // immediate.  You'll fail asserts during load & relocation if this | 
|  | // address is to far away. (TODO: support non-relative addressing) | 
|  | break; | 
|  | case MachineOperand::MO_Register: | 
|  | // FIXME: Add retpoline support and remove this. | 
|  | if (Subtarget->useRetpoline()) | 
|  | report_fatal_error("Lowering register statepoints with retpoline not " | 
|  | "yet implemented."); | 
|  | CallTargetMCOp = MCOperand::createReg(CallTarget.getReg()); | 
|  | CallOpcode = X86::CALL64r; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unsupported operand type in statepoint call target"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Emit call | 
|  | MCInst CallInst; | 
|  | CallInst.setOpcode(CallOpcode); | 
|  | CallInst.addOperand(CallTargetMCOp); | 
|  | OutStreamer->EmitInstruction(CallInst, getSubtargetInfo()); | 
|  | } | 
|  |  | 
|  | // Record our statepoint node in the same section used by STACKMAP | 
|  | // and PATCHPOINT | 
|  | SM.recordStatepoint(MI); | 
|  | } | 
|  |  | 
|  | void X86AsmPrinter::LowerFAULTING_OP(const MachineInstr &FaultingMI, | 
|  | X86MCInstLower &MCIL) { | 
|  | // FAULTING_LOAD_OP <def>, <faltinf type>, <MBB handler>, | 
|  | //                  <opcode>, <operands> | 
|  |  | 
|  | unsigned DefRegister = FaultingMI.getOperand(0).getReg(); | 
|  | FaultMaps::FaultKind FK = | 
|  | static_cast<FaultMaps::FaultKind>(FaultingMI.getOperand(1).getImm()); | 
|  | MCSymbol *HandlerLabel = FaultingMI.getOperand(2).getMBB()->getSymbol(); | 
|  | unsigned Opcode = FaultingMI.getOperand(3).getImm(); | 
|  | unsigned OperandsBeginIdx = 4; | 
|  |  | 
|  | assert(FK < FaultMaps::FaultKindMax && "Invalid Faulting Kind!"); | 
|  | FM.recordFaultingOp(FK, HandlerLabel); | 
|  |  | 
|  | MCInst MI; | 
|  | MI.setOpcode(Opcode); | 
|  |  | 
|  | if (DefRegister != X86::NoRegister) | 
|  | MI.addOperand(MCOperand::createReg(DefRegister)); | 
|  |  | 
|  | for (auto I = FaultingMI.operands_begin() + OperandsBeginIdx, | 
|  | E = FaultingMI.operands_end(); | 
|  | I != E; ++I) | 
|  | if (auto MaybeOperand = MCIL.LowerMachineOperand(&FaultingMI, *I)) | 
|  | MI.addOperand(MaybeOperand.getValue()); | 
|  |  | 
|  | OutStreamer->EmitInstruction(MI, getSubtargetInfo()); | 
|  | } | 
|  |  | 
|  | void X86AsmPrinter::LowerFENTRY_CALL(const MachineInstr &MI, | 
|  | X86MCInstLower &MCIL) { | 
|  | bool Is64Bits = Subtarget->is64Bit(); | 
|  | MCContext &Ctx = OutStreamer->getContext(); | 
|  | MCSymbol *fentry = Ctx.getOrCreateSymbol("__fentry__"); | 
|  | const MCSymbolRefExpr *Op = | 
|  | MCSymbolRefExpr::create(fentry, MCSymbolRefExpr::VK_None, Ctx); | 
|  |  | 
|  | EmitAndCountInstruction( | 
|  | MCInstBuilder(Is64Bits ? X86::CALL64pcrel32 : X86::CALLpcrel32) | 
|  | .addExpr(Op)); | 
|  | } | 
|  |  | 
|  | void X86AsmPrinter::LowerPATCHABLE_OP(const MachineInstr &MI, | 
|  | X86MCInstLower &MCIL) { | 
|  | // PATCHABLE_OP minsize, opcode, operands | 
|  |  | 
|  | unsigned MinSize = MI.getOperand(0).getImm(); | 
|  | unsigned Opcode = MI.getOperand(1).getImm(); | 
|  |  | 
|  | MCInst MCI; | 
|  | MCI.setOpcode(Opcode); | 
|  | for (auto &MO : make_range(MI.operands_begin() + 2, MI.operands_end())) | 
|  | if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO)) | 
|  | MCI.addOperand(MaybeOperand.getValue()); | 
|  |  | 
|  | SmallString<256> Code; | 
|  | SmallVector<MCFixup, 4> Fixups; | 
|  | raw_svector_ostream VecOS(Code); | 
|  | CodeEmitter->encodeInstruction(MCI, VecOS, Fixups, getSubtargetInfo()); | 
|  |  | 
|  | if (Code.size() < MinSize) { | 
|  | if (MinSize == 2 && Opcode == X86::PUSH64r) { | 
|  | // This is an optimization that lets us get away without emitting a nop in | 
|  | // many cases. | 
|  | // | 
|  | // NB! In some cases the encoding for PUSH64r (e.g. PUSH64r %r9) takes two | 
|  | // bytes too, so the check on MinSize is important. | 
|  | MCI.setOpcode(X86::PUSH64rmr); | 
|  | } else { | 
|  | unsigned NopSize = EmitNop(*OutStreamer, MinSize, Subtarget->is64Bit(), | 
|  | getSubtargetInfo()); | 
|  | assert(NopSize == MinSize && "Could not implement MinSize!"); | 
|  | (void)NopSize; | 
|  | } | 
|  | } | 
|  |  | 
|  | OutStreamer->EmitInstruction(MCI, getSubtargetInfo()); | 
|  | } | 
|  |  | 
|  | // Lower a stackmap of the form: | 
|  | // <id>, <shadowBytes>, ... | 
|  | void X86AsmPrinter::LowerSTACKMAP(const MachineInstr &MI) { | 
|  | SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo()); | 
|  | SM.recordStackMap(MI); | 
|  | unsigned NumShadowBytes = MI.getOperand(1).getImm(); | 
|  | SMShadowTracker.reset(NumShadowBytes); | 
|  | } | 
|  |  | 
|  | // Lower a patchpoint of the form: | 
|  | // [<def>], <id>, <numBytes>, <target>, <numArgs>, <cc>, ... | 
|  | void X86AsmPrinter::LowerPATCHPOINT(const MachineInstr &MI, | 
|  | X86MCInstLower &MCIL) { | 
|  | assert(Subtarget->is64Bit() && "Patchpoint currently only supports X86-64"); | 
|  |  | 
|  | SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo()); | 
|  |  | 
|  | SM.recordPatchPoint(MI); | 
|  |  | 
|  | PatchPointOpers opers(&MI); | 
|  | unsigned ScratchIdx = opers.getNextScratchIdx(); | 
|  | unsigned EncodedBytes = 0; | 
|  | const MachineOperand &CalleeMO = opers.getCallTarget(); | 
|  |  | 
|  | // Check for null target. If target is non-null (i.e. is non-zero or is | 
|  | // symbolic) then emit a call. | 
|  | if (!(CalleeMO.isImm() && !CalleeMO.getImm())) { | 
|  | MCOperand CalleeMCOp; | 
|  | switch (CalleeMO.getType()) { | 
|  | default: | 
|  | /// FIXME: Add a verifier check for bad callee types. | 
|  | llvm_unreachable("Unrecognized callee operand type."); | 
|  | case MachineOperand::MO_Immediate: | 
|  | if (CalleeMO.getImm()) | 
|  | CalleeMCOp = MCOperand::createImm(CalleeMO.getImm()); | 
|  | break; | 
|  | case MachineOperand::MO_ExternalSymbol: | 
|  | case MachineOperand::MO_GlobalAddress: | 
|  | CalleeMCOp = MCIL.LowerSymbolOperand(CalleeMO, | 
|  | MCIL.GetSymbolFromOperand(CalleeMO)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Emit MOV to materialize the target address and the CALL to target. | 
|  | // This is encoded with 12-13 bytes, depending on which register is used. | 
|  | unsigned ScratchReg = MI.getOperand(ScratchIdx).getReg(); | 
|  | if (X86II::isX86_64ExtendedReg(ScratchReg)) | 
|  | EncodedBytes = 13; | 
|  | else | 
|  | EncodedBytes = 12; | 
|  |  | 
|  | EmitAndCountInstruction( | 
|  | MCInstBuilder(X86::MOV64ri).addReg(ScratchReg).addOperand(CalleeMCOp)); | 
|  | // FIXME: Add retpoline support and remove this. | 
|  | if (Subtarget->useRetpoline()) | 
|  | report_fatal_error( | 
|  | "Lowering patchpoint with retpoline not yet implemented."); | 
|  | EmitAndCountInstruction(MCInstBuilder(X86::CALL64r).addReg(ScratchReg)); | 
|  | } | 
|  |  | 
|  | // Emit padding. | 
|  | unsigned NumBytes = opers.getNumPatchBytes(); | 
|  | assert(NumBytes >= EncodedBytes && | 
|  | "Patchpoint can't request size less than the length of a call."); | 
|  |  | 
|  | EmitNops(*OutStreamer, NumBytes - EncodedBytes, Subtarget->is64Bit(), | 
|  | getSubtargetInfo()); | 
|  | } | 
|  |  | 
|  | void X86AsmPrinter::LowerPATCHABLE_EVENT_CALL(const MachineInstr &MI, | 
|  | X86MCInstLower &MCIL) { | 
|  | assert(Subtarget->is64Bit() && "XRay custom events only supports X86-64"); | 
|  |  | 
|  | // We want to emit the following pattern, which follows the x86 calling | 
|  | // convention to prepare for the trampoline call to be patched in. | 
|  | // | 
|  | //   .p2align 1, ... | 
|  | // .Lxray_event_sled_N: | 
|  | //   jmp +N                        // jump across the instrumentation sled | 
|  | //   ...                           // set up arguments in register | 
|  | //   callq __xray_CustomEvent@plt  // force dependency to symbol | 
|  | //   ... | 
|  | //   <jump here> | 
|  | // | 
|  | // After patching, it would look something like: | 
|  | // | 
|  | //   nopw (2-byte nop) | 
|  | //   ... | 
|  | //   callq __xrayCustomEvent  // already lowered | 
|  | //   ... | 
|  | // | 
|  | // --- | 
|  | // First we emit the label and the jump. | 
|  | auto CurSled = OutContext.createTempSymbol("xray_event_sled_", true); | 
|  | OutStreamer->AddComment("# XRay Custom Event Log"); | 
|  | OutStreamer->EmitCodeAlignment(2); | 
|  | OutStreamer->EmitLabel(CurSled); | 
|  |  | 
|  | // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as | 
|  | // an operand (computed as an offset from the jmp instruction). | 
|  | // FIXME: Find another less hacky way do force the relative jump. | 
|  | OutStreamer->EmitBinaryData("\xeb\x0f"); | 
|  |  | 
|  | // The default C calling convention will place two arguments into %rcx and | 
|  | // %rdx -- so we only work with those. | 
|  | unsigned DestRegs[] = {X86::RDI, X86::RSI}; | 
|  | bool UsedMask[] = {false, false}; | 
|  | // Filled out in loop. | 
|  | unsigned SrcRegs[] = {0, 0}; | 
|  |  | 
|  | // Then we put the operands in the %rdi and %rsi registers. We spill the | 
|  | // values in the register before we clobber them, and mark them as used in | 
|  | // UsedMask. In case the arguments are already in the correct register, we use | 
|  | // emit nops appropriately sized to keep the sled the same size in every | 
|  | // situation. | 
|  | for (unsigned I = 0; I < MI.getNumOperands(); ++I) | 
|  | if (auto Op = MCIL.LowerMachineOperand(&MI, MI.getOperand(I))) { | 
|  | assert(Op->isReg() && "Only support arguments in registers"); | 
|  | SrcRegs[I] = Op->getReg(); | 
|  | if (SrcRegs[I] != DestRegs[I]) { | 
|  | UsedMask[I] = true; | 
|  | EmitAndCountInstruction( | 
|  | MCInstBuilder(X86::PUSH64r).addReg(DestRegs[I])); | 
|  | } else { | 
|  | EmitNops(*OutStreamer, 4, Subtarget->is64Bit(), getSubtargetInfo()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now that the register values are stashed, mov arguments into place. | 
|  | for (unsigned I = 0; I < MI.getNumOperands(); ++I) | 
|  | if (SrcRegs[I] != DestRegs[I]) | 
|  | EmitAndCountInstruction( | 
|  | MCInstBuilder(X86::MOV64rr).addReg(DestRegs[I]).addReg(SrcRegs[I])); | 
|  |  | 
|  | // We emit a hard dependency on the __xray_CustomEvent symbol, which is the | 
|  | // name of the trampoline to be implemented by the XRay runtime. | 
|  | auto TSym = OutContext.getOrCreateSymbol("__xray_CustomEvent"); | 
|  | MachineOperand TOp = MachineOperand::CreateMCSymbol(TSym); | 
|  | if (isPositionIndependent()) | 
|  | TOp.setTargetFlags(X86II::MO_PLT); | 
|  |  | 
|  | // Emit the call instruction. | 
|  | EmitAndCountInstruction(MCInstBuilder(X86::CALL64pcrel32) | 
|  | .addOperand(MCIL.LowerSymbolOperand(TOp, TSym))); | 
|  |  | 
|  | // Restore caller-saved and used registers. | 
|  | for (unsigned I = sizeof UsedMask; I-- > 0;) | 
|  | if (UsedMask[I]) | 
|  | EmitAndCountInstruction(MCInstBuilder(X86::POP64r).addReg(DestRegs[I])); | 
|  | else | 
|  | EmitNops(*OutStreamer, 1, Subtarget->is64Bit(), getSubtargetInfo()); | 
|  |  | 
|  | OutStreamer->AddComment("xray custom event end."); | 
|  |  | 
|  | // Record the sled version. Older versions of this sled were spelled | 
|  | // differently, so we let the runtime handle the different offsets we're | 
|  | // using. | 
|  | recordSled(CurSled, MI, SledKind::CUSTOM_EVENT, 1); | 
|  | } | 
|  |  | 
|  | void X86AsmPrinter::LowerPATCHABLE_TYPED_EVENT_CALL(const MachineInstr &MI, | 
|  | X86MCInstLower &MCIL) { | 
|  | assert(Subtarget->is64Bit() && "XRay typed events only supports X86-64"); | 
|  |  | 
|  | // We want to emit the following pattern, which follows the x86 calling | 
|  | // convention to prepare for the trampoline call to be patched in. | 
|  | // | 
|  | //   .p2align 1, ... | 
|  | // .Lxray_event_sled_N: | 
|  | //   jmp +N                        // jump across the instrumentation sled | 
|  | //   ...                           // set up arguments in register | 
|  | //   callq __xray_TypedEvent@plt  // force dependency to symbol | 
|  | //   ... | 
|  | //   <jump here> | 
|  | // | 
|  | // After patching, it would look something like: | 
|  | // | 
|  | //   nopw (2-byte nop) | 
|  | //   ... | 
|  | //   callq __xrayTypedEvent  // already lowered | 
|  | //   ... | 
|  | // | 
|  | // --- | 
|  | // First we emit the label and the jump. | 
|  | auto CurSled = OutContext.createTempSymbol("xray_typed_event_sled_", true); | 
|  | OutStreamer->AddComment("# XRay Typed Event Log"); | 
|  | OutStreamer->EmitCodeAlignment(2); | 
|  | OutStreamer->EmitLabel(CurSled); | 
|  |  | 
|  | // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as | 
|  | // an operand (computed as an offset from the jmp instruction). | 
|  | // FIXME: Find another less hacky way do force the relative jump. | 
|  | OutStreamer->EmitBinaryData("\xeb\x14"); | 
|  |  | 
|  | // An x86-64 convention may place three arguments into %rcx, %rdx, and R8, | 
|  | // so we'll work with those. Or we may be called via SystemV, in which case | 
|  | // we don't have to do any translation. | 
|  | unsigned DestRegs[] = {X86::RDI, X86::RSI, X86::RDX}; | 
|  | bool UsedMask[] = {false, false, false}; | 
|  |  | 
|  | // Will fill out src regs in the loop. | 
|  | unsigned SrcRegs[] = {0, 0, 0}; | 
|  |  | 
|  | // Then we put the operands in the SystemV registers. We spill the values in | 
|  | // the registers before we clobber them, and mark them as used in UsedMask. | 
|  | // In case the arguments are already in the correct register, we emit nops | 
|  | // appropriately sized to keep the sled the same size in every situation. | 
|  | for (unsigned I = 0; I < MI.getNumOperands(); ++I) | 
|  | if (auto Op = MCIL.LowerMachineOperand(&MI, MI.getOperand(I))) { | 
|  | // TODO: Is register only support adequate? | 
|  | assert(Op->isReg() && "Only supports arguments in registers"); | 
|  | SrcRegs[I] = Op->getReg(); | 
|  | if (SrcRegs[I] != DestRegs[I]) { | 
|  | UsedMask[I] = true; | 
|  | EmitAndCountInstruction( | 
|  | MCInstBuilder(X86::PUSH64r).addReg(DestRegs[I])); | 
|  | } else { | 
|  | EmitNops(*OutStreamer, 4, Subtarget->is64Bit(), getSubtargetInfo()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // In the above loop we only stash all of the destination registers or emit | 
|  | // nops if the arguments are already in the right place. Doing the actually | 
|  | // moving is postponed until after all the registers are stashed so nothing | 
|  | // is clobbers. We've already added nops to account for the size of mov and | 
|  | // push if the register is in the right place, so we only have to worry about | 
|  | // emitting movs. | 
|  | for (unsigned I = 0; I < MI.getNumOperands(); ++I) | 
|  | if (UsedMask[I]) | 
|  | EmitAndCountInstruction( | 
|  | MCInstBuilder(X86::MOV64rr).addReg(DestRegs[I]).addReg(SrcRegs[I])); | 
|  |  | 
|  | // We emit a hard dependency on the __xray_TypedEvent symbol, which is the | 
|  | // name of the trampoline to be implemented by the XRay runtime. | 
|  | auto TSym = OutContext.getOrCreateSymbol("__xray_TypedEvent"); | 
|  | MachineOperand TOp = MachineOperand::CreateMCSymbol(TSym); | 
|  | if (isPositionIndependent()) | 
|  | TOp.setTargetFlags(X86II::MO_PLT); | 
|  |  | 
|  | // Emit the call instruction. | 
|  | EmitAndCountInstruction(MCInstBuilder(X86::CALL64pcrel32) | 
|  | .addOperand(MCIL.LowerSymbolOperand(TOp, TSym))); | 
|  |  | 
|  | // Restore caller-saved and used registers. | 
|  | for (unsigned I = sizeof UsedMask; I-- > 0;) | 
|  | if (UsedMask[I]) | 
|  | EmitAndCountInstruction(MCInstBuilder(X86::POP64r).addReg(DestRegs[I])); | 
|  | else | 
|  | EmitNops(*OutStreamer, 1, Subtarget->is64Bit(), getSubtargetInfo()); | 
|  |  | 
|  | OutStreamer->AddComment("xray typed event end."); | 
|  |  | 
|  | // Record the sled version. | 
|  | recordSled(CurSled, MI, SledKind::TYPED_EVENT, 0); | 
|  | } | 
|  |  | 
|  | void X86AsmPrinter::LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr &MI, | 
|  | X86MCInstLower &MCIL) { | 
|  | // We want to emit the following pattern: | 
|  | // | 
|  | //   .p2align 1, ... | 
|  | // .Lxray_sled_N: | 
|  | //   jmp .tmpN | 
|  | //   # 9 bytes worth of noops | 
|  | // | 
|  | // We need the 9 bytes because at runtime, we'd be patching over the full 11 | 
|  | // bytes with the following pattern: | 
|  | // | 
|  | //   mov %r10, <function id, 32-bit>   // 6 bytes | 
|  | //   call <relative offset, 32-bits>   // 5 bytes | 
|  | // | 
|  | auto CurSled = OutContext.createTempSymbol("xray_sled_", true); | 
|  | OutStreamer->EmitCodeAlignment(2); | 
|  | OutStreamer->EmitLabel(CurSled); | 
|  |  | 
|  | // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as | 
|  | // an operand (computed as an offset from the jmp instruction). | 
|  | // FIXME: Find another less hacky way do force the relative jump. | 
|  | OutStreamer->EmitBytes("\xeb\x09"); | 
|  | EmitNops(*OutStreamer, 9, Subtarget->is64Bit(), getSubtargetInfo()); | 
|  | recordSled(CurSled, MI, SledKind::FUNCTION_ENTER); | 
|  | } | 
|  |  | 
|  | void X86AsmPrinter::LowerPATCHABLE_RET(const MachineInstr &MI, | 
|  | X86MCInstLower &MCIL) { | 
|  | // Since PATCHABLE_RET takes the opcode of the return statement as an | 
|  | // argument, we use that to emit the correct form of the RET that we want. | 
|  | // i.e. when we see this: | 
|  | // | 
|  | //   PATCHABLE_RET X86::RET ... | 
|  | // | 
|  | // We should emit the RET followed by sleds. | 
|  | // | 
|  | //   .p2align 1, ... | 
|  | // .Lxray_sled_N: | 
|  | //   ret  # or equivalent instruction | 
|  | //   # 10 bytes worth of noops | 
|  | // | 
|  | // This just makes sure that the alignment for the next instruction is 2. | 
|  | auto CurSled = OutContext.createTempSymbol("xray_sled_", true); | 
|  | OutStreamer->EmitCodeAlignment(2); | 
|  | OutStreamer->EmitLabel(CurSled); | 
|  | unsigned OpCode = MI.getOperand(0).getImm(); | 
|  | MCInst Ret; | 
|  | Ret.setOpcode(OpCode); | 
|  | for (auto &MO : make_range(MI.operands_begin() + 1, MI.operands_end())) | 
|  | if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO)) | 
|  | Ret.addOperand(MaybeOperand.getValue()); | 
|  | OutStreamer->EmitInstruction(Ret, getSubtargetInfo()); | 
|  | EmitNops(*OutStreamer, 10, Subtarget->is64Bit(), getSubtargetInfo()); | 
|  | recordSled(CurSled, MI, SledKind::FUNCTION_EXIT); | 
|  | } | 
|  |  | 
|  | void X86AsmPrinter::LowerPATCHABLE_TAIL_CALL(const MachineInstr &MI, | 
|  | X86MCInstLower &MCIL) { | 
|  | // Like PATCHABLE_RET, we have the actual instruction in the operands to this | 
|  | // instruction so we lower that particular instruction and its operands. | 
|  | // Unlike PATCHABLE_RET though, we put the sled before the JMP, much like how | 
|  | // we do it for PATCHABLE_FUNCTION_ENTER. The sled should be very similar to | 
|  | // the PATCHABLE_FUNCTION_ENTER case, followed by the lowering of the actual | 
|  | // tail call much like how we have it in PATCHABLE_RET. | 
|  | auto CurSled = OutContext.createTempSymbol("xray_sled_", true); | 
|  | OutStreamer->EmitCodeAlignment(2); | 
|  | OutStreamer->EmitLabel(CurSled); | 
|  | auto Target = OutContext.createTempSymbol(); | 
|  |  | 
|  | // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as | 
|  | // an operand (computed as an offset from the jmp instruction). | 
|  | // FIXME: Find another less hacky way do force the relative jump. | 
|  | OutStreamer->EmitBytes("\xeb\x09"); | 
|  | EmitNops(*OutStreamer, 9, Subtarget->is64Bit(), getSubtargetInfo()); | 
|  | OutStreamer->EmitLabel(Target); | 
|  | recordSled(CurSled, MI, SledKind::TAIL_CALL); | 
|  |  | 
|  | unsigned OpCode = MI.getOperand(0).getImm(); | 
|  | MCInst TC; | 
|  | TC.setOpcode(OpCode); | 
|  |  | 
|  | // Before emitting the instruction, add a comment to indicate that this is | 
|  | // indeed a tail call. | 
|  | OutStreamer->AddComment("TAILCALL"); | 
|  | for (auto &MO : make_range(MI.operands_begin() + 1, MI.operands_end())) | 
|  | if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO)) | 
|  | TC.addOperand(MaybeOperand.getValue()); | 
|  | OutStreamer->EmitInstruction(TC, getSubtargetInfo()); | 
|  | } | 
|  |  | 
|  | // Returns instruction preceding MBBI in MachineFunction. | 
|  | // If MBBI is the first instruction of the first basic block, returns null. | 
|  | static MachineBasicBlock::const_iterator | 
|  | PrevCrossBBInst(MachineBasicBlock::const_iterator MBBI) { | 
|  | const MachineBasicBlock *MBB = MBBI->getParent(); | 
|  | while (MBBI == MBB->begin()) { | 
|  | if (MBB == &MBB->getParent()->front()) | 
|  | return MachineBasicBlock::const_iterator(); | 
|  | MBB = MBB->getPrevNode(); | 
|  | MBBI = MBB->end(); | 
|  | } | 
|  | return --MBBI; | 
|  | } | 
|  |  | 
|  | static const Constant *getConstantFromPool(const MachineInstr &MI, | 
|  | const MachineOperand &Op) { | 
|  | if (!Op.isCPI()) | 
|  | return nullptr; | 
|  |  | 
|  | ArrayRef<MachineConstantPoolEntry> Constants = | 
|  | MI.getParent()->getParent()->getConstantPool()->getConstants(); | 
|  | const MachineConstantPoolEntry &ConstantEntry = Constants[Op.getIndex()]; | 
|  |  | 
|  | // Bail if this is a machine constant pool entry, we won't be able to dig out | 
|  | // anything useful. | 
|  | if (ConstantEntry.isMachineConstantPoolEntry()) | 
|  | return nullptr; | 
|  |  | 
|  | auto *C = dyn_cast<Constant>(ConstantEntry.Val.ConstVal); | 
|  | assert((!C || ConstantEntry.getType() == C->getType()) && | 
|  | "Expected a constant of the same type!"); | 
|  | return C; | 
|  | } | 
|  |  | 
|  | static std::string getShuffleComment(const MachineInstr *MI, unsigned SrcOp1Idx, | 
|  | unsigned SrcOp2Idx, ArrayRef<int> Mask) { | 
|  | std::string Comment; | 
|  |  | 
|  | // Compute the name for a register. This is really goofy because we have | 
|  | // multiple instruction printers that could (in theory) use different | 
|  | // names. Fortunately most people use the ATT style (outside of Windows) | 
|  | // and they actually agree on register naming here. Ultimately, this is | 
|  | // a comment, and so its OK if it isn't perfect. | 
|  | auto GetRegisterName = [](unsigned RegNum) -> StringRef { | 
|  | return X86ATTInstPrinter::getRegisterName(RegNum); | 
|  | }; | 
|  |  | 
|  | const MachineOperand &DstOp = MI->getOperand(0); | 
|  | const MachineOperand &SrcOp1 = MI->getOperand(SrcOp1Idx); | 
|  | const MachineOperand &SrcOp2 = MI->getOperand(SrcOp2Idx); | 
|  |  | 
|  | StringRef DstName = DstOp.isReg() ? GetRegisterName(DstOp.getReg()) : "mem"; | 
|  | StringRef Src1Name = | 
|  | SrcOp1.isReg() ? GetRegisterName(SrcOp1.getReg()) : "mem"; | 
|  | StringRef Src2Name = | 
|  | SrcOp2.isReg() ? GetRegisterName(SrcOp2.getReg()) : "mem"; | 
|  |  | 
|  | // One source operand, fix the mask to print all elements in one span. | 
|  | SmallVector<int, 8> ShuffleMask(Mask.begin(), Mask.end()); | 
|  | if (Src1Name == Src2Name) | 
|  | for (int i = 0, e = ShuffleMask.size(); i != e; ++i) | 
|  | if (ShuffleMask[i] >= e) | 
|  | ShuffleMask[i] -= e; | 
|  |  | 
|  | raw_string_ostream CS(Comment); | 
|  | CS << DstName; | 
|  |  | 
|  | // Handle AVX512 MASK/MASXZ write mask comments. | 
|  | // MASK: zmmX {%kY} | 
|  | // MASKZ: zmmX {%kY} {z} | 
|  | if (SrcOp1Idx > 1) { | 
|  | assert((SrcOp1Idx == 2 || SrcOp1Idx == 3) && "Unexpected writemask"); | 
|  |  | 
|  | const MachineOperand &WriteMaskOp = MI->getOperand(SrcOp1Idx - 1); | 
|  | if (WriteMaskOp.isReg()) { | 
|  | CS << " {%" << GetRegisterName(WriteMaskOp.getReg()) << "}"; | 
|  |  | 
|  | if (SrcOp1Idx == 2) { | 
|  | CS << " {z}"; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | CS << " = "; | 
|  |  | 
|  | for (int i = 0, e = ShuffleMask.size(); i != e; ++i) { | 
|  | if (i != 0) | 
|  | CS << ","; | 
|  | if (ShuffleMask[i] == SM_SentinelZero) { | 
|  | CS << "zero"; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Otherwise, it must come from src1 or src2.  Print the span of elements | 
|  | // that comes from this src. | 
|  | bool isSrc1 = ShuffleMask[i] < (int)e; | 
|  | CS << (isSrc1 ? Src1Name : Src2Name) << '['; | 
|  |  | 
|  | bool IsFirst = true; | 
|  | while (i != e && ShuffleMask[i] != SM_SentinelZero && | 
|  | (ShuffleMask[i] < (int)e) == isSrc1) { | 
|  | if (!IsFirst) | 
|  | CS << ','; | 
|  | else | 
|  | IsFirst = false; | 
|  | if (ShuffleMask[i] == SM_SentinelUndef) | 
|  | CS << "u"; | 
|  | else | 
|  | CS << ShuffleMask[i] % (int)e; | 
|  | ++i; | 
|  | } | 
|  | CS << ']'; | 
|  | --i; // For loop increments element #. | 
|  | } | 
|  | CS.flush(); | 
|  |  | 
|  | return Comment; | 
|  | } | 
|  |  | 
|  | static void printConstant(const Constant *COp, raw_ostream &CS) { | 
|  | if (isa<UndefValue>(COp)) { | 
|  | CS << "u"; | 
|  | } else if (auto *CI = dyn_cast<ConstantInt>(COp)) { | 
|  | if (CI->getBitWidth() <= 64) { | 
|  | CS << CI->getZExtValue(); | 
|  | } else { | 
|  | // print multi-word constant as (w0,w1) | 
|  | const auto &Val = CI->getValue(); | 
|  | CS << "("; | 
|  | for (int i = 0, N = Val.getNumWords(); i < N; ++i) { | 
|  | if (i > 0) | 
|  | CS << ","; | 
|  | CS << Val.getRawData()[i]; | 
|  | } | 
|  | CS << ")"; | 
|  | } | 
|  | } else if (auto *CF = dyn_cast<ConstantFP>(COp)) { | 
|  | SmallString<32> Str; | 
|  | CF->getValueAPF().toString(Str); | 
|  | CS << Str; | 
|  | } else { | 
|  | CS << "?"; | 
|  | } | 
|  | } | 
|  |  | 
|  | void X86AsmPrinter::EmitSEHInstruction(const MachineInstr *MI) { | 
|  | assert(MF->hasWinCFI() && "SEH_ instruction in function without WinCFI?"); | 
|  | assert(getSubtarget().isOSWindows() && "SEH_ instruction Windows only"); | 
|  | const X86RegisterInfo *RI = | 
|  | MF->getSubtarget<X86Subtarget>().getRegisterInfo(); | 
|  |  | 
|  | // Use the .cv_fpo directives if we're emitting CodeView on 32-bit x86. | 
|  | if (EmitFPOData) { | 
|  | X86TargetStreamer *XTS = | 
|  | static_cast<X86TargetStreamer *>(OutStreamer->getTargetStreamer()); | 
|  | switch (MI->getOpcode()) { | 
|  | case X86::SEH_PushReg: | 
|  | XTS->emitFPOPushReg(MI->getOperand(0).getImm()); | 
|  | break; | 
|  | case X86::SEH_StackAlloc: | 
|  | XTS->emitFPOStackAlloc(MI->getOperand(0).getImm()); | 
|  | break; | 
|  | case X86::SEH_SetFrame: | 
|  | assert(MI->getOperand(1).getImm() == 0 && | 
|  | ".cv_fpo_setframe takes no offset"); | 
|  | XTS->emitFPOSetFrame(MI->getOperand(0).getImm()); | 
|  | break; | 
|  | case X86::SEH_EndPrologue: | 
|  | XTS->emitFPOEndPrologue(); | 
|  | break; | 
|  | case X86::SEH_SaveReg: | 
|  | case X86::SEH_SaveXMM: | 
|  | case X86::SEH_PushFrame: | 
|  | llvm_unreachable("SEH_ directive incompatible with FPO"); | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("expected SEH_ instruction"); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise, use the .seh_ directives for all other Windows platforms. | 
|  | switch (MI->getOpcode()) { | 
|  | case X86::SEH_PushReg: | 
|  | OutStreamer->EmitWinCFIPushReg( | 
|  | RI->getSEHRegNum(MI->getOperand(0).getImm())); | 
|  | break; | 
|  |  | 
|  | case X86::SEH_SaveReg: | 
|  | OutStreamer->EmitWinCFISaveReg(RI->getSEHRegNum(MI->getOperand(0).getImm()), | 
|  | MI->getOperand(1).getImm()); | 
|  | break; | 
|  |  | 
|  | case X86::SEH_SaveXMM: | 
|  | OutStreamer->EmitWinCFISaveXMM(RI->getSEHRegNum(MI->getOperand(0).getImm()), | 
|  | MI->getOperand(1).getImm()); | 
|  | break; | 
|  |  | 
|  | case X86::SEH_StackAlloc: | 
|  | OutStreamer->EmitWinCFIAllocStack(MI->getOperand(0).getImm()); | 
|  | break; | 
|  |  | 
|  | case X86::SEH_SetFrame: | 
|  | OutStreamer->EmitWinCFISetFrame( | 
|  | RI->getSEHRegNum(MI->getOperand(0).getImm()), | 
|  | MI->getOperand(1).getImm()); | 
|  | break; | 
|  |  | 
|  | case X86::SEH_PushFrame: | 
|  | OutStreamer->EmitWinCFIPushFrame(MI->getOperand(0).getImm()); | 
|  | break; | 
|  |  | 
|  | case X86::SEH_EndPrologue: | 
|  | OutStreamer->EmitWinCFIEndProlog(); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | llvm_unreachable("expected SEH_ instruction"); | 
|  | } | 
|  | } | 
|  |  | 
|  | void X86AsmPrinter::EmitInstruction(const MachineInstr *MI) { | 
|  | X86MCInstLower MCInstLowering(*MF, *this); | 
|  | const X86RegisterInfo *RI = | 
|  | MF->getSubtarget<X86Subtarget>().getRegisterInfo(); | 
|  |  | 
|  | // Add a comment about EVEX-2-VEX compression for AVX-512 instrs that | 
|  | // are compressed from EVEX encoding to VEX encoding. | 
|  | if (TM.Options.MCOptions.ShowMCEncoding) { | 
|  | if (MI->getAsmPrinterFlags() & X86::AC_EVEX_2_VEX) | 
|  | OutStreamer->AddComment("EVEX TO VEX Compression ", false); | 
|  | } | 
|  |  | 
|  | switch (MI->getOpcode()) { | 
|  | case TargetOpcode::DBG_VALUE: | 
|  | llvm_unreachable("Should be handled target independently"); | 
|  |  | 
|  | // Emit nothing here but a comment if we can. | 
|  | case X86::Int_MemBarrier: | 
|  | OutStreamer->emitRawComment("MEMBARRIER"); | 
|  | return; | 
|  |  | 
|  | case X86::EH_RETURN: | 
|  | case X86::EH_RETURN64: { | 
|  | // Lower these as normal, but add some comments. | 
|  | unsigned Reg = MI->getOperand(0).getReg(); | 
|  | OutStreamer->AddComment(StringRef("eh_return, addr: %") + | 
|  | X86ATTInstPrinter::getRegisterName(Reg)); | 
|  | break; | 
|  | } | 
|  | case X86::CLEANUPRET: { | 
|  | // Lower these as normal, but add some comments. | 
|  | OutStreamer->AddComment("CLEANUPRET"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case X86::CATCHRET: { | 
|  | // Lower these as normal, but add some comments. | 
|  | OutStreamer->AddComment("CATCHRET"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case X86::TAILJMPr: | 
|  | case X86::TAILJMPm: | 
|  | case X86::TAILJMPd: | 
|  | case X86::TAILJMPd_CC: | 
|  | case X86::TAILJMPr64: | 
|  | case X86::TAILJMPm64: | 
|  | case X86::TAILJMPd64: | 
|  | case X86::TAILJMPd64_CC: | 
|  | case X86::TAILJMPr64_REX: | 
|  | case X86::TAILJMPm64_REX: | 
|  | // Lower these as normal, but add some comments. | 
|  | OutStreamer->AddComment("TAILCALL"); | 
|  | break; | 
|  |  | 
|  | case X86::TLS_addr32: | 
|  | case X86::TLS_addr64: | 
|  | case X86::TLS_base_addr32: | 
|  | case X86::TLS_base_addr64: | 
|  | return LowerTlsAddr(MCInstLowering, *MI); | 
|  |  | 
|  | case X86::MOVPC32r: { | 
|  | // This is a pseudo op for a two instruction sequence with a label, which | 
|  | // looks like: | 
|  | //     call "L1$pb" | 
|  | // "L1$pb": | 
|  | //     popl %esi | 
|  |  | 
|  | // Emit the call. | 
|  | MCSymbol *PICBase = MF->getPICBaseSymbol(); | 
|  | // FIXME: We would like an efficient form for this, so we don't have to do a | 
|  | // lot of extra uniquing. | 
|  | EmitAndCountInstruction( | 
|  | MCInstBuilder(X86::CALLpcrel32) | 
|  | .addExpr(MCSymbolRefExpr::create(PICBase, OutContext))); | 
|  |  | 
|  | const X86FrameLowering *FrameLowering = | 
|  | MF->getSubtarget<X86Subtarget>().getFrameLowering(); | 
|  | bool hasFP = FrameLowering->hasFP(*MF); | 
|  |  | 
|  | // TODO: This is needed only if we require precise CFA. | 
|  | bool HasActiveDwarfFrame = OutStreamer->getNumFrameInfos() && | 
|  | !OutStreamer->getDwarfFrameInfos().back().End; | 
|  |  | 
|  | int stackGrowth = -RI->getSlotSize(); | 
|  |  | 
|  | if (HasActiveDwarfFrame && !hasFP) { | 
|  | OutStreamer->EmitCFIAdjustCfaOffset(-stackGrowth); | 
|  | } | 
|  |  | 
|  | // Emit the label. | 
|  | OutStreamer->EmitLabel(PICBase); | 
|  |  | 
|  | // popl $reg | 
|  | EmitAndCountInstruction( | 
|  | MCInstBuilder(X86::POP32r).addReg(MI->getOperand(0).getReg())); | 
|  |  | 
|  | if (HasActiveDwarfFrame && !hasFP) { | 
|  | OutStreamer->EmitCFIAdjustCfaOffset(stackGrowth); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | case X86::MOVGOT64r: { | 
|  | // Materializes the GOT for the 64-bit large code model. | 
|  | MCSymbol *DotSym = OutContext.createTempSymbol(); | 
|  | OutStreamer->EmitLabel(DotSym); | 
|  |  | 
|  | unsigned DstReg = MI->getOperand(0).getReg(); | 
|  | unsigned ScratchReg = MI->getOperand(1).getReg(); | 
|  | MCSymbol *GOTSym = MCInstLowering.GetSymbolFromOperand(MI->getOperand(2)); | 
|  |  | 
|  | // .LtmpN: leaq .LtmpN(%rip), %dst | 
|  | const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext); | 
|  | EmitAndCountInstruction(MCInstBuilder(X86::LEA64r) | 
|  | .addReg(DstReg)   // dest | 
|  | .addReg(X86::RIP) // base | 
|  | .addImm(1)        // scale | 
|  | .addReg(0)        // index | 
|  | .addExpr(DotExpr) // disp | 
|  | .addReg(0));      // seg | 
|  |  | 
|  | // movq $_GLOBAL_OFFSET_TABLE_ - .LtmpN, %scratch | 
|  | const MCExpr *GOTSymExpr = MCSymbolRefExpr::create(GOTSym, OutContext); | 
|  | const MCExpr *GOTDiffExpr = | 
|  | MCBinaryExpr::createSub(GOTSymExpr, DotExpr, OutContext); | 
|  | EmitAndCountInstruction(MCInstBuilder(X86::MOV64ri) | 
|  | .addReg(ScratchReg)     // dest | 
|  | .addExpr(GOTDiffExpr)); // disp | 
|  |  | 
|  | // addq %scratch, %dst | 
|  | EmitAndCountInstruction(MCInstBuilder(X86::ADD64rr) | 
|  | .addReg(DstReg)       // dest | 
|  | .addReg(DstReg)       // dest | 
|  | .addReg(ScratchReg)); // src | 
|  | return; | 
|  | } | 
|  |  | 
|  | case X86::ADD32ri: { | 
|  | // Lower the MO_GOT_ABSOLUTE_ADDRESS form of ADD32ri. | 
|  | if (MI->getOperand(2).getTargetFlags() != X86II::MO_GOT_ABSOLUTE_ADDRESS) | 
|  | break; | 
|  |  | 
|  | // Okay, we have something like: | 
|  | //  EAX = ADD32ri EAX, MO_GOT_ABSOLUTE_ADDRESS(@MYGLOBAL) | 
|  |  | 
|  | // For this, we want to print something like: | 
|  | //   MYGLOBAL + (. - PICBASE) | 
|  | // However, we can't generate a ".", so just emit a new label here and refer | 
|  | // to it. | 
|  | MCSymbol *DotSym = OutContext.createTempSymbol(); | 
|  | OutStreamer->EmitLabel(DotSym); | 
|  |  | 
|  | // Now that we have emitted the label, lower the complex operand expression. | 
|  | MCSymbol *OpSym = MCInstLowering.GetSymbolFromOperand(MI->getOperand(2)); | 
|  |  | 
|  | const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext); | 
|  | const MCExpr *PICBase = | 
|  | MCSymbolRefExpr::create(MF->getPICBaseSymbol(), OutContext); | 
|  | DotExpr = MCBinaryExpr::createSub(DotExpr, PICBase, OutContext); | 
|  |  | 
|  | DotExpr = MCBinaryExpr::createAdd( | 
|  | MCSymbolRefExpr::create(OpSym, OutContext), DotExpr, OutContext); | 
|  |  | 
|  | EmitAndCountInstruction(MCInstBuilder(X86::ADD32ri) | 
|  | .addReg(MI->getOperand(0).getReg()) | 
|  | .addReg(MI->getOperand(1).getReg()) | 
|  | .addExpr(DotExpr)); | 
|  | return; | 
|  | } | 
|  | case TargetOpcode::STATEPOINT: | 
|  | return LowerSTATEPOINT(*MI, MCInstLowering); | 
|  |  | 
|  | case TargetOpcode::FAULTING_OP: | 
|  | return LowerFAULTING_OP(*MI, MCInstLowering); | 
|  |  | 
|  | case TargetOpcode::FENTRY_CALL: | 
|  | return LowerFENTRY_CALL(*MI, MCInstLowering); | 
|  |  | 
|  | case TargetOpcode::PATCHABLE_OP: | 
|  | return LowerPATCHABLE_OP(*MI, MCInstLowering); | 
|  |  | 
|  | case TargetOpcode::STACKMAP: | 
|  | return LowerSTACKMAP(*MI); | 
|  |  | 
|  | case TargetOpcode::PATCHPOINT: | 
|  | return LowerPATCHPOINT(*MI, MCInstLowering); | 
|  |  | 
|  | case TargetOpcode::PATCHABLE_FUNCTION_ENTER: | 
|  | return LowerPATCHABLE_FUNCTION_ENTER(*MI, MCInstLowering); | 
|  |  | 
|  | case TargetOpcode::PATCHABLE_RET: | 
|  | return LowerPATCHABLE_RET(*MI, MCInstLowering); | 
|  |  | 
|  | case TargetOpcode::PATCHABLE_TAIL_CALL: | 
|  | return LowerPATCHABLE_TAIL_CALL(*MI, MCInstLowering); | 
|  |  | 
|  | case TargetOpcode::PATCHABLE_EVENT_CALL: | 
|  | return LowerPATCHABLE_EVENT_CALL(*MI, MCInstLowering); | 
|  |  | 
|  | case TargetOpcode::PATCHABLE_TYPED_EVENT_CALL: | 
|  | return LowerPATCHABLE_TYPED_EVENT_CALL(*MI, MCInstLowering); | 
|  |  | 
|  | case X86::MORESTACK_RET: | 
|  | EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget))); | 
|  | return; | 
|  |  | 
|  | case X86::MORESTACK_RET_RESTORE_R10: | 
|  | // Return, then restore R10. | 
|  | EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget))); | 
|  | EmitAndCountInstruction( | 
|  | MCInstBuilder(X86::MOV64rr).addReg(X86::R10).addReg(X86::RAX)); | 
|  | return; | 
|  |  | 
|  | case X86::SEH_PushReg: | 
|  | case X86::SEH_SaveReg: | 
|  | case X86::SEH_SaveXMM: | 
|  | case X86::SEH_StackAlloc: | 
|  | case X86::SEH_SetFrame: | 
|  | case X86::SEH_PushFrame: | 
|  | case X86::SEH_EndPrologue: | 
|  | EmitSEHInstruction(MI); | 
|  | return; | 
|  |  | 
|  | case X86::SEH_Epilogue: { | 
|  | assert(MF->hasWinCFI() && "SEH_ instruction in function without WinCFI?"); | 
|  | MachineBasicBlock::const_iterator MBBI(MI); | 
|  | // Check if preceded by a call and emit nop if so. | 
|  | for (MBBI = PrevCrossBBInst(MBBI); | 
|  | MBBI != MachineBasicBlock::const_iterator(); | 
|  | MBBI = PrevCrossBBInst(MBBI)) { | 
|  | // Conservatively assume that pseudo instructions don't emit code and keep | 
|  | // looking for a call. We may emit an unnecessary nop in some cases. | 
|  | if (!MBBI->isPseudo()) { | 
|  | if (MBBI->isCall()) | 
|  | EmitAndCountInstruction(MCInstBuilder(X86::NOOP)); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Lower PSHUFB and VPERMILP normally but add a comment if we can find | 
|  | // a constant shuffle mask. We won't be able to do this at the MC layer | 
|  | // because the mask isn't an immediate. | 
|  | case X86::PSHUFBrm: | 
|  | case X86::VPSHUFBrm: | 
|  | case X86::VPSHUFBYrm: | 
|  | case X86::VPSHUFBZ128rm: | 
|  | case X86::VPSHUFBZ128rmk: | 
|  | case X86::VPSHUFBZ128rmkz: | 
|  | case X86::VPSHUFBZ256rm: | 
|  | case X86::VPSHUFBZ256rmk: | 
|  | case X86::VPSHUFBZ256rmkz: | 
|  | case X86::VPSHUFBZrm: | 
|  | case X86::VPSHUFBZrmk: | 
|  | case X86::VPSHUFBZrmkz: { | 
|  | if (!OutStreamer->isVerboseAsm()) | 
|  | break; | 
|  | unsigned SrcIdx, MaskIdx; | 
|  | switch (MI->getOpcode()) { | 
|  | default: llvm_unreachable("Invalid opcode"); | 
|  | case X86::PSHUFBrm: | 
|  | case X86::VPSHUFBrm: | 
|  | case X86::VPSHUFBYrm: | 
|  | case X86::VPSHUFBZ128rm: | 
|  | case X86::VPSHUFBZ256rm: | 
|  | case X86::VPSHUFBZrm: | 
|  | SrcIdx = 1; MaskIdx = 5; break; | 
|  | case X86::VPSHUFBZ128rmkz: | 
|  | case X86::VPSHUFBZ256rmkz: | 
|  | case X86::VPSHUFBZrmkz: | 
|  | SrcIdx = 2; MaskIdx = 6; break; | 
|  | case X86::VPSHUFBZ128rmk: | 
|  | case X86::VPSHUFBZ256rmk: | 
|  | case X86::VPSHUFBZrmk: | 
|  | SrcIdx = 3; MaskIdx = 7; break; | 
|  | } | 
|  |  | 
|  | assert(MI->getNumOperands() >= 6 && | 
|  | "We should always have at least 6 operands!"); | 
|  |  | 
|  | const MachineOperand &MaskOp = MI->getOperand(MaskIdx); | 
|  | if (auto *C = getConstantFromPool(*MI, MaskOp)) { | 
|  | SmallVector<int, 64> Mask; | 
|  | DecodePSHUFBMask(C, Mask); | 
|  | if (!Mask.empty()) | 
|  | OutStreamer->AddComment(getShuffleComment(MI, SrcIdx, SrcIdx, Mask), | 
|  | !EnablePrintSchedInfo); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case X86::VPERMILPSrm: | 
|  | case X86::VPERMILPSYrm: | 
|  | case X86::VPERMILPSZ128rm: | 
|  | case X86::VPERMILPSZ128rmk: | 
|  | case X86::VPERMILPSZ128rmkz: | 
|  | case X86::VPERMILPSZ256rm: | 
|  | case X86::VPERMILPSZ256rmk: | 
|  | case X86::VPERMILPSZ256rmkz: | 
|  | case X86::VPERMILPSZrm: | 
|  | case X86::VPERMILPSZrmk: | 
|  | case X86::VPERMILPSZrmkz: | 
|  | case X86::VPERMILPDrm: | 
|  | case X86::VPERMILPDYrm: | 
|  | case X86::VPERMILPDZ128rm: | 
|  | case X86::VPERMILPDZ128rmk: | 
|  | case X86::VPERMILPDZ128rmkz: | 
|  | case X86::VPERMILPDZ256rm: | 
|  | case X86::VPERMILPDZ256rmk: | 
|  | case X86::VPERMILPDZ256rmkz: | 
|  | case X86::VPERMILPDZrm: | 
|  | case X86::VPERMILPDZrmk: | 
|  | case X86::VPERMILPDZrmkz: { | 
|  | if (!OutStreamer->isVerboseAsm()) | 
|  | break; | 
|  | unsigned SrcIdx, MaskIdx; | 
|  | unsigned ElSize; | 
|  | switch (MI->getOpcode()) { | 
|  | default: llvm_unreachable("Invalid opcode"); | 
|  | case X86::VPERMILPSrm: | 
|  | case X86::VPERMILPSYrm: | 
|  | case X86::VPERMILPSZ128rm: | 
|  | case X86::VPERMILPSZ256rm: | 
|  | case X86::VPERMILPSZrm: | 
|  | SrcIdx = 1; MaskIdx = 5; ElSize = 32; break; | 
|  | case X86::VPERMILPSZ128rmkz: | 
|  | case X86::VPERMILPSZ256rmkz: | 
|  | case X86::VPERMILPSZrmkz: | 
|  | SrcIdx = 2; MaskIdx = 6; ElSize = 32; break; | 
|  | case X86::VPERMILPSZ128rmk: | 
|  | case X86::VPERMILPSZ256rmk: | 
|  | case X86::VPERMILPSZrmk: | 
|  | SrcIdx = 3; MaskIdx = 7; ElSize = 32; break; | 
|  | case X86::VPERMILPDrm: | 
|  | case X86::VPERMILPDYrm: | 
|  | case X86::VPERMILPDZ128rm: | 
|  | case X86::VPERMILPDZ256rm: | 
|  | case X86::VPERMILPDZrm: | 
|  | SrcIdx = 1; MaskIdx = 5; ElSize = 64; break; | 
|  | case X86::VPERMILPDZ128rmkz: | 
|  | case X86::VPERMILPDZ256rmkz: | 
|  | case X86::VPERMILPDZrmkz: | 
|  | SrcIdx = 2; MaskIdx = 6; ElSize = 64; break; | 
|  | case X86::VPERMILPDZ128rmk: | 
|  | case X86::VPERMILPDZ256rmk: | 
|  | case X86::VPERMILPDZrmk: | 
|  | SrcIdx = 3; MaskIdx = 7; ElSize = 64; break; | 
|  | } | 
|  |  | 
|  | assert(MI->getNumOperands() >= 6 && | 
|  | "We should always have at least 6 operands!"); | 
|  |  | 
|  | const MachineOperand &MaskOp = MI->getOperand(MaskIdx); | 
|  | if (auto *C = getConstantFromPool(*MI, MaskOp)) { | 
|  | SmallVector<int, 16> Mask; | 
|  | DecodeVPERMILPMask(C, ElSize, Mask); | 
|  | if (!Mask.empty()) | 
|  | OutStreamer->AddComment(getShuffleComment(MI, SrcIdx, SrcIdx, Mask), | 
|  | !EnablePrintSchedInfo); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case X86::VPERMIL2PDrm: | 
|  | case X86::VPERMIL2PSrm: | 
|  | case X86::VPERMIL2PDYrm: | 
|  | case X86::VPERMIL2PSYrm: { | 
|  | if (!OutStreamer->isVerboseAsm()) | 
|  | break; | 
|  | assert(MI->getNumOperands() >= 8 && | 
|  | "We should always have at least 8 operands!"); | 
|  |  | 
|  | const MachineOperand &CtrlOp = MI->getOperand(MI->getNumOperands() - 1); | 
|  | if (!CtrlOp.isImm()) | 
|  | break; | 
|  |  | 
|  | unsigned ElSize; | 
|  | switch (MI->getOpcode()) { | 
|  | default: llvm_unreachable("Invalid opcode"); | 
|  | case X86::VPERMIL2PSrm: case X86::VPERMIL2PSYrm: ElSize = 32; break; | 
|  | case X86::VPERMIL2PDrm: case X86::VPERMIL2PDYrm: ElSize = 64; break; | 
|  | } | 
|  |  | 
|  | const MachineOperand &MaskOp = MI->getOperand(6); | 
|  | if (auto *C = getConstantFromPool(*MI, MaskOp)) { | 
|  | SmallVector<int, 16> Mask; | 
|  | DecodeVPERMIL2PMask(C, (unsigned)CtrlOp.getImm(), ElSize, Mask); | 
|  | if (!Mask.empty()) | 
|  | OutStreamer->AddComment(getShuffleComment(MI, 1, 2, Mask), | 
|  | !EnablePrintSchedInfo); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case X86::VPPERMrrm: { | 
|  | if (!OutStreamer->isVerboseAsm()) | 
|  | break; | 
|  | assert(MI->getNumOperands() >= 7 && | 
|  | "We should always have at least 7 operands!"); | 
|  |  | 
|  | const MachineOperand &MaskOp = MI->getOperand(6); | 
|  | if (auto *C = getConstantFromPool(*MI, MaskOp)) { | 
|  | SmallVector<int, 16> Mask; | 
|  | DecodeVPPERMMask(C, Mask); | 
|  | if (!Mask.empty()) | 
|  | OutStreamer->AddComment(getShuffleComment(MI, 1, 2, Mask), | 
|  | !EnablePrintSchedInfo); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case X86::MMX_MOVQ64rm: { | 
|  | if (!OutStreamer->isVerboseAsm()) | 
|  | break; | 
|  | if (MI->getNumOperands() <= 4) | 
|  | break; | 
|  | if (auto *C = getConstantFromPool(*MI, MI->getOperand(4))) { | 
|  | std::string Comment; | 
|  | raw_string_ostream CS(Comment); | 
|  | const MachineOperand &DstOp = MI->getOperand(0); | 
|  | CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = "; | 
|  | if (auto *CF = dyn_cast<ConstantFP>(C)) { | 
|  | CS << "0x" << CF->getValueAPF().bitcastToAPInt().toString(16, false); | 
|  | OutStreamer->AddComment(CS.str(), !EnablePrintSchedInfo); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | #define MOV_CASE(Prefix, Suffix)                                               \ | 
|  | case X86::Prefix##MOVAPD##Suffix##rm:                                        \ | 
|  | case X86::Prefix##MOVAPS##Suffix##rm:                                        \ | 
|  | case X86::Prefix##MOVUPD##Suffix##rm:                                        \ | 
|  | case X86::Prefix##MOVUPS##Suffix##rm:                                        \ | 
|  | case X86::Prefix##MOVDQA##Suffix##rm:                                        \ | 
|  | case X86::Prefix##MOVDQU##Suffix##rm: | 
|  |  | 
|  | #define MOV_AVX512_CASE(Suffix)                                                \ | 
|  | case X86::VMOVDQA64##Suffix##rm:                                             \ | 
|  | case X86::VMOVDQA32##Suffix##rm:                                             \ | 
|  | case X86::VMOVDQU64##Suffix##rm:                                             \ | 
|  | case X86::VMOVDQU32##Suffix##rm:                                             \ | 
|  | case X86::VMOVDQU16##Suffix##rm:                                             \ | 
|  | case X86::VMOVDQU8##Suffix##rm:                                              \ | 
|  | case X86::VMOVAPS##Suffix##rm:                                               \ | 
|  | case X86::VMOVAPD##Suffix##rm:                                               \ | 
|  | case X86::VMOVUPS##Suffix##rm:                                               \ | 
|  | case X86::VMOVUPD##Suffix##rm: | 
|  |  | 
|  | #define CASE_ALL_MOV_RM()                                                      \ | 
|  | MOV_CASE(, )   /* SSE */                                                     \ | 
|  | MOV_CASE(V, )  /* AVX-128 */                                                 \ | 
|  | MOV_CASE(V, Y) /* AVX-256 */                                                 \ | 
|  | MOV_AVX512_CASE(Z)                                                           \ | 
|  | MOV_AVX512_CASE(Z256)                                                        \ | 
|  | MOV_AVX512_CASE(Z128) | 
|  |  | 
|  | // For loads from a constant pool to a vector register, print the constant | 
|  | // loaded. | 
|  | CASE_ALL_MOV_RM() | 
|  | case X86::VBROADCASTF128: | 
|  | case X86::VBROADCASTI128: | 
|  | case X86::VBROADCASTF32X4Z256rm: | 
|  | case X86::VBROADCASTF32X4rm: | 
|  | case X86::VBROADCASTF32X8rm: | 
|  | case X86::VBROADCASTF64X2Z128rm: | 
|  | case X86::VBROADCASTF64X2rm: | 
|  | case X86::VBROADCASTF64X4rm: | 
|  | case X86::VBROADCASTI32X4Z256rm: | 
|  | case X86::VBROADCASTI32X4rm: | 
|  | case X86::VBROADCASTI32X8rm: | 
|  | case X86::VBROADCASTI64X2Z128rm: | 
|  | case X86::VBROADCASTI64X2rm: | 
|  | case X86::VBROADCASTI64X4rm: | 
|  | if (!OutStreamer->isVerboseAsm()) | 
|  | break; | 
|  | if (MI->getNumOperands() <= 4) | 
|  | break; | 
|  | if (auto *C = getConstantFromPool(*MI, MI->getOperand(4))) { | 
|  | int NumLanes = 1; | 
|  | // Override NumLanes for the broadcast instructions. | 
|  | switch (MI->getOpcode()) { | 
|  | case X86::VBROADCASTF128:        NumLanes = 2; break; | 
|  | case X86::VBROADCASTI128:        NumLanes = 2; break; | 
|  | case X86::VBROADCASTF32X4Z256rm: NumLanes = 2; break; | 
|  | case X86::VBROADCASTF32X4rm:     NumLanes = 4; break; | 
|  | case X86::VBROADCASTF32X8rm:     NumLanes = 2; break; | 
|  | case X86::VBROADCASTF64X2Z128rm: NumLanes = 2; break; | 
|  | case X86::VBROADCASTF64X2rm:     NumLanes = 4; break; | 
|  | case X86::VBROADCASTF64X4rm:     NumLanes = 2; break; | 
|  | case X86::VBROADCASTI32X4Z256rm: NumLanes = 2; break; | 
|  | case X86::VBROADCASTI32X4rm:     NumLanes = 4; break; | 
|  | case X86::VBROADCASTI32X8rm:     NumLanes = 2; break; | 
|  | case X86::VBROADCASTI64X2Z128rm: NumLanes = 2; break; | 
|  | case X86::VBROADCASTI64X2rm:     NumLanes = 4; break; | 
|  | case X86::VBROADCASTI64X4rm:     NumLanes = 2; break; | 
|  | } | 
|  |  | 
|  | std::string Comment; | 
|  | raw_string_ostream CS(Comment); | 
|  | const MachineOperand &DstOp = MI->getOperand(0); | 
|  | CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = "; | 
|  | if (auto *CDS = dyn_cast<ConstantDataSequential>(C)) { | 
|  | CS << "["; | 
|  | for (int l = 0; l != NumLanes; ++l) { | 
|  | for (int i = 0, NumElements = CDS->getNumElements(); i < NumElements; | 
|  | ++i) { | 
|  | if (i != 0 || l != 0) | 
|  | CS << ","; | 
|  | if (CDS->getElementType()->isIntegerTy()) | 
|  | CS << CDS->getElementAsInteger(i); | 
|  | else if (CDS->getElementType()->isFloatTy()) | 
|  | CS << CDS->getElementAsFloat(i); | 
|  | else if (CDS->getElementType()->isDoubleTy()) | 
|  | CS << CDS->getElementAsDouble(i); | 
|  | else | 
|  | CS << "?"; | 
|  | } | 
|  | } | 
|  | CS << "]"; | 
|  | OutStreamer->AddComment(CS.str(), !EnablePrintSchedInfo); | 
|  | } else if (auto *CV = dyn_cast<ConstantVector>(C)) { | 
|  | CS << "<"; | 
|  | for (int l = 0; l != NumLanes; ++l) { | 
|  | for (int i = 0, NumOperands = CV->getNumOperands(); i < NumOperands; | 
|  | ++i) { | 
|  | if (i != 0 || l != 0) | 
|  | CS << ","; | 
|  | printConstant(CV->getOperand(i), CS); | 
|  | } | 
|  | } | 
|  | CS << ">"; | 
|  | OutStreamer->AddComment(CS.str(), !EnablePrintSchedInfo); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case X86::VBROADCASTSSrm: | 
|  | case X86::VBROADCASTSSYrm: | 
|  | case X86::VBROADCASTSSZ128m: | 
|  | case X86::VBROADCASTSSZ256m: | 
|  | case X86::VBROADCASTSSZm: | 
|  | case X86::VBROADCASTSDYrm: | 
|  | case X86::VBROADCASTSDZ256m: | 
|  | case X86::VBROADCASTSDZm: | 
|  | case X86::VPBROADCASTBrm: | 
|  | case X86::VPBROADCASTBYrm: | 
|  | case X86::VPBROADCASTBZ128m: | 
|  | case X86::VPBROADCASTBZ256m: | 
|  | case X86::VPBROADCASTBZm: | 
|  | case X86::VPBROADCASTDrm: | 
|  | case X86::VPBROADCASTDYrm: | 
|  | case X86::VPBROADCASTDZ128m: | 
|  | case X86::VPBROADCASTDZ256m: | 
|  | case X86::VPBROADCASTDZm: | 
|  | case X86::VPBROADCASTQrm: | 
|  | case X86::VPBROADCASTQYrm: | 
|  | case X86::VPBROADCASTQZ128m: | 
|  | case X86::VPBROADCASTQZ256m: | 
|  | case X86::VPBROADCASTQZm: | 
|  | case X86::VPBROADCASTWrm: | 
|  | case X86::VPBROADCASTWYrm: | 
|  | case X86::VPBROADCASTWZ128m: | 
|  | case X86::VPBROADCASTWZ256m: | 
|  | case X86::VPBROADCASTWZm: | 
|  | if (!OutStreamer->isVerboseAsm()) | 
|  | break; | 
|  | if (MI->getNumOperands() <= 4) | 
|  | break; | 
|  | if (auto *C = getConstantFromPool(*MI, MI->getOperand(4))) { | 
|  | int NumElts; | 
|  | switch (MI->getOpcode()) { | 
|  | default: llvm_unreachable("Invalid opcode"); | 
|  | case X86::VBROADCASTSSrm:    NumElts = 4;  break; | 
|  | case X86::VBROADCASTSSYrm:   NumElts = 8;  break; | 
|  | case X86::VBROADCASTSSZ128m: NumElts = 4;  break; | 
|  | case X86::VBROADCASTSSZ256m: NumElts = 8;  break; | 
|  | case X86::VBROADCASTSSZm:    NumElts = 16; break; | 
|  | case X86::VBROADCASTSDYrm:   NumElts = 4;  break; | 
|  | case X86::VBROADCASTSDZ256m: NumElts = 4;  break; | 
|  | case X86::VBROADCASTSDZm:    NumElts = 8;  break; | 
|  | case X86::VPBROADCASTBrm:    NumElts = 16; break; | 
|  | case X86::VPBROADCASTBYrm:   NumElts = 32; break; | 
|  | case X86::VPBROADCASTBZ128m: NumElts = 16; break; | 
|  | case X86::VPBROADCASTBZ256m: NumElts = 32; break; | 
|  | case X86::VPBROADCASTBZm:    NumElts = 64; break; | 
|  | case X86::VPBROADCASTDrm:    NumElts = 4;  break; | 
|  | case X86::VPBROADCASTDYrm:   NumElts = 8;  break; | 
|  | case X86::VPBROADCASTDZ128m: NumElts = 4;  break; | 
|  | case X86::VPBROADCASTDZ256m: NumElts = 8;  break; | 
|  | case X86::VPBROADCASTDZm:    NumElts = 16; break; | 
|  | case X86::VPBROADCASTQrm:    NumElts = 2;  break; | 
|  | case X86::VPBROADCASTQYrm:   NumElts = 4;  break; | 
|  | case X86::VPBROADCASTQZ128m: NumElts = 2;  break; | 
|  | case X86::VPBROADCASTQZ256m: NumElts = 4;  break; | 
|  | case X86::VPBROADCASTQZm:    NumElts = 8;  break; | 
|  | case X86::VPBROADCASTWrm:    NumElts = 8;  break; | 
|  | case X86::VPBROADCASTWYrm:   NumElts = 16; break; | 
|  | case X86::VPBROADCASTWZ128m: NumElts = 8;  break; | 
|  | case X86::VPBROADCASTWZ256m: NumElts = 16; break; | 
|  | case X86::VPBROADCASTWZm:    NumElts = 32; break; | 
|  | } | 
|  |  | 
|  | std::string Comment; | 
|  | raw_string_ostream CS(Comment); | 
|  | const MachineOperand &DstOp = MI->getOperand(0); | 
|  | CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = "; | 
|  | CS << "["; | 
|  | for (int i = 0; i != NumElts; ++i) { | 
|  | if (i != 0) | 
|  | CS << ","; | 
|  | printConstant(C, CS); | 
|  | } | 
|  | CS << "]"; | 
|  | OutStreamer->AddComment(CS.str(), !EnablePrintSchedInfo); | 
|  | } | 
|  | } | 
|  |  | 
|  | MCInst TmpInst; | 
|  | MCInstLowering.Lower(MI, TmpInst); | 
|  | if (MI->getAsmPrinterFlag(MachineInstr::NoSchedComment)) | 
|  | TmpInst.setFlags(TmpInst.getFlags() | X86::NO_SCHED_INFO); | 
|  |  | 
|  | // Stackmap shadows cannot include branch targets, so we can count the bytes | 
|  | // in a call towards the shadow, but must ensure that the no thread returns | 
|  | // in to the stackmap shadow.  The only way to achieve this is if the call | 
|  | // is at the end of the shadow. | 
|  | if (MI->isCall()) { | 
|  | // Count then size of the call towards the shadow | 
|  | SMShadowTracker.count(TmpInst, getSubtargetInfo(), CodeEmitter.get()); | 
|  | // Then flush the shadow so that we fill with nops before the call, not | 
|  | // after it. | 
|  | SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo()); | 
|  | // Then emit the call | 
|  | OutStreamer->EmitInstruction(TmpInst, getSubtargetInfo()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | EmitAndCountInstruction(TmpInst); | 
|  | } |