blob: 249fc9126b54d7c5160f30af29e66316b9d275ad [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <limits.h> // For LONG_MIN, LONG_MAX.
#if V8_TARGET_ARCH_MIPS64
#include "src/base/bits.h"
#include "src/base/division-by-constant.h"
#include "src/codegen/assembler-inl.h"
#include "src/codegen/callable.h"
#include "src/codegen/code-factory.h"
#include "src/codegen/external-reference-table.h"
#include "src/codegen/macro-assembler.h"
#include "src/codegen/register-configuration.h"
#include "src/debug/debug.h"
#include "src/execution/frames-inl.h"
#include "src/heap/memory-chunk.h"
#include "src/init/bootstrapper.h"
#include "src/logging/counters.h"
#include "src/objects/heap-number.h"
#include "src/runtime/runtime.h"
#include "src/snapshot/embedded/embedded-data.h"
#include "src/snapshot/snapshot.h"
#include "src/wasm/wasm-code-manager.h"
// Satisfy cpplint check, but don't include platform-specific header. It is
// included recursively via macro-assembler.h.
#if 0
#include "src/codegen/mips64/macro-assembler-mips64.h"
#endif
namespace v8 {
namespace internal {
static inline bool IsZero(const Operand& rt) {
if (rt.is_reg()) {
return rt.rm() == zero_reg;
} else {
return rt.immediate() == 0;
}
}
int TurboAssembler::RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode,
Register exclusion1,
Register exclusion2,
Register exclusion3) const {
int bytes = 0;
RegList exclusions = 0;
if (exclusion1 != no_reg) {
exclusions |= exclusion1.bit();
if (exclusion2 != no_reg) {
exclusions |= exclusion2.bit();
if (exclusion3 != no_reg) {
exclusions |= exclusion3.bit();
}
}
}
RegList list = kJSCallerSaved & ~exclusions;
bytes += NumRegs(list) * kPointerSize;
if (fp_mode == kSaveFPRegs) {
bytes += NumRegs(kCallerSavedFPU) * kDoubleSize;
}
return bytes;
}
int TurboAssembler::PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1,
Register exclusion2, Register exclusion3) {
int bytes = 0;
RegList exclusions = 0;
if (exclusion1 != no_reg) {
exclusions |= exclusion1.bit();
if (exclusion2 != no_reg) {
exclusions |= exclusion2.bit();
if (exclusion3 != no_reg) {
exclusions |= exclusion3.bit();
}
}
}
RegList list = kJSCallerSaved & ~exclusions;
MultiPush(list);
bytes += NumRegs(list) * kPointerSize;
if (fp_mode == kSaveFPRegs) {
MultiPushFPU(kCallerSavedFPU);
bytes += NumRegs(kCallerSavedFPU) * kDoubleSize;
}
return bytes;
}
int TurboAssembler::PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1,
Register exclusion2, Register exclusion3) {
int bytes = 0;
if (fp_mode == kSaveFPRegs) {
MultiPopFPU(kCallerSavedFPU);
bytes += NumRegs(kCallerSavedFPU) * kDoubleSize;
}
RegList exclusions = 0;
if (exclusion1 != no_reg) {
exclusions |= exclusion1.bit();
if (exclusion2 != no_reg) {
exclusions |= exclusion2.bit();
if (exclusion3 != no_reg) {
exclusions |= exclusion3.bit();
}
}
}
RegList list = kJSCallerSaved & ~exclusions;
MultiPop(list);
bytes += NumRegs(list) * kPointerSize;
return bytes;
}
void TurboAssembler::LoadRoot(Register destination, RootIndex index) {
Ld(destination, MemOperand(s6, RootRegisterOffsetForRootIndex(index)));
}
void TurboAssembler::LoadRoot(Register destination, RootIndex index,
Condition cond, Register src1,
const Operand& src2) {
Branch(2, NegateCondition(cond), src1, src2);
Ld(destination, MemOperand(s6, RootRegisterOffsetForRootIndex(index)));
}
void TurboAssembler::PushCommonFrame(Register marker_reg) {
if (marker_reg.is_valid()) {
Push(ra, fp, marker_reg);
Daddu(fp, sp, Operand(kPointerSize));
} else {
Push(ra, fp);
mov(fp, sp);
}
}
void TurboAssembler::PushStandardFrame(Register function_reg) {
int offset = -StandardFrameConstants::kContextOffset;
if (function_reg.is_valid()) {
Push(ra, fp, cp, function_reg, kJavaScriptCallArgCountRegister);
offset += 2 * kPointerSize;
} else {
Push(ra, fp, cp, kJavaScriptCallArgCountRegister);
offset += kPointerSize;
}
Daddu(fp, sp, Operand(offset));
}
int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
// The registers are pushed starting with the highest encoding,
// which means that lowest encodings are closest to the stack pointer.
return kSafepointRegisterStackIndexMap[reg_code];
}
// Clobbers object, dst, value, and ra, if (ra_status == kRAHasBeenSaved)
// The register 'object' contains a heap object pointer. The heap object
// tag is shifted away.
void MacroAssembler::RecordWriteField(Register object, int offset,
Register value, Register dst,
RAStatus ra_status,
SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action,
SmiCheck smi_check) {
DCHECK(!AreAliased(value, dst, t8, object));
// First, check if a write barrier is even needed. The tests below
// catch stores of Smis.
Label done;
// Skip barrier if writing a smi.
if (smi_check == INLINE_SMI_CHECK) {
JumpIfSmi(value, &done);
}
// Although the object register is tagged, the offset is relative to the start
// of the object, so so offset must be a multiple of kPointerSize.
DCHECK(IsAligned(offset, kPointerSize));
Daddu(dst, object, Operand(offset - kHeapObjectTag));
if (emit_debug_code()) {
BlockTrampolinePoolScope block_trampoline_pool(this);
Label ok;
And(t8, dst, Operand(kPointerSize - 1));
Branch(&ok, eq, t8, Operand(zero_reg));
stop();
bind(&ok);
}
RecordWrite(object, dst, value, ra_status, save_fp, remembered_set_action,
OMIT_SMI_CHECK);
bind(&done);
// Clobber clobbered input registers when running with the debug-code flag
// turned on to provoke errors.
if (emit_debug_code()) {
li(value, Operand(bit_cast<int64_t>(kZapValue + 4)));
li(dst, Operand(bit_cast<int64_t>(kZapValue + 8)));
}
}
void TurboAssembler::SaveRegisters(RegList registers) {
DCHECK_GT(NumRegs(registers), 0);
RegList regs = 0;
for (int i = 0; i < Register::kNumRegisters; ++i) {
if ((registers >> i) & 1u) {
regs |= Register::from_code(i).bit();
}
}
MultiPush(regs);
}
void TurboAssembler::RestoreRegisters(RegList registers) {
DCHECK_GT(NumRegs(registers), 0);
RegList regs = 0;
for (int i = 0; i < Register::kNumRegisters; ++i) {
if ((registers >> i) & 1u) {
regs |= Register::from_code(i).bit();
}
}
MultiPop(regs);
}
void TurboAssembler::CallEphemeronKeyBarrier(Register object, Register address,
SaveFPRegsMode fp_mode) {
EphemeronKeyBarrierDescriptor descriptor;
RegList registers = descriptor.allocatable_registers();
SaveRegisters(registers);
Register object_parameter(
descriptor.GetRegisterParameter(EphemeronKeyBarrierDescriptor::kObject));
Register slot_parameter(descriptor.GetRegisterParameter(
EphemeronKeyBarrierDescriptor::kSlotAddress));
Register fp_mode_parameter(
descriptor.GetRegisterParameter(EphemeronKeyBarrierDescriptor::kFPMode));
Push(object);
Push(address);
Pop(slot_parameter);
Pop(object_parameter);
Move(fp_mode_parameter, Smi::FromEnum(fp_mode));
Call(isolate()->builtins()->builtin_handle(Builtins::kEphemeronKeyBarrier),
RelocInfo::CODE_TARGET);
RestoreRegisters(registers);
}
void TurboAssembler::CallRecordWriteStub(
Register object, Register address,
RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode) {
CallRecordWriteStub(
object, address, remembered_set_action, fp_mode,
isolate()->builtins()->builtin_handle(Builtins::kRecordWrite),
kNullAddress);
}
void TurboAssembler::CallRecordWriteStub(
Register object, Register address,
RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode,
Address wasm_target) {
CallRecordWriteStub(object, address, remembered_set_action, fp_mode,
Handle<Code>::null(), wasm_target);
}
void TurboAssembler::CallRecordWriteStub(
Register object, Register address,
RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode,
Handle<Code> code_target, Address wasm_target) {
DCHECK_NE(code_target.is_null(), wasm_target == kNullAddress);
// TODO(albertnetymk): For now we ignore remembered_set_action and fp_mode,
// i.e. always emit remember set and save FP registers in RecordWriteStub. If
// large performance regression is observed, we should use these values to
// avoid unnecessary work.
RecordWriteDescriptor descriptor;
RegList registers = descriptor.allocatable_registers();
SaveRegisters(registers);
Register object_parameter(
descriptor.GetRegisterParameter(RecordWriteDescriptor::kObject));
Register slot_parameter(
descriptor.GetRegisterParameter(RecordWriteDescriptor::kSlot));
Register remembered_set_parameter(
descriptor.GetRegisterParameter(RecordWriteDescriptor::kRememberedSet));
Register fp_mode_parameter(
descriptor.GetRegisterParameter(RecordWriteDescriptor::kFPMode));
Push(object);
Push(address);
Pop(slot_parameter);
Pop(object_parameter);
Move(remembered_set_parameter, Smi::FromEnum(remembered_set_action));
Move(fp_mode_parameter, Smi::FromEnum(fp_mode));
if (code_target.is_null()) {
Call(wasm_target, RelocInfo::WASM_STUB_CALL);
} else {
Call(code_target, RelocInfo::CODE_TARGET);
}
RestoreRegisters(registers);
}
// Clobbers object, address, value, and ra, if (ra_status == kRAHasBeenSaved)
// The register 'object' contains a heap object pointer. The heap object
// tag is shifted away.
void MacroAssembler::RecordWrite(Register object, Register address,
Register value, RAStatus ra_status,
SaveFPRegsMode fp_mode,
RememberedSetAction remembered_set_action,
SmiCheck smi_check) {
DCHECK(!AreAliased(object, address, value, t8));
DCHECK(!AreAliased(object, address, value, t9));
if (emit_debug_code()) {
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
Ld(scratch, MemOperand(address));
Assert(eq, AbortReason::kWrongAddressOrValuePassedToRecordWrite, scratch,
Operand(value));
}
if ((remembered_set_action == OMIT_REMEMBERED_SET &&
!FLAG_incremental_marking) ||
FLAG_disable_write_barriers) {
return;
}
// First, check if a write barrier is even needed. The tests below
// catch stores of smis and stores into the young generation.
Label done;
if (smi_check == INLINE_SMI_CHECK) {
DCHECK_EQ(0, kSmiTag);
JumpIfSmi(value, &done);
}
CheckPageFlag(value,
value, // Used as scratch.
MemoryChunk::kPointersToHereAreInterestingMask, eq, &done);
CheckPageFlag(object,
value, // Used as scratch.
MemoryChunk::kPointersFromHereAreInterestingMask, eq, &done);
// Record the actual write.
if (ra_status == kRAHasNotBeenSaved) {
push(ra);
}
CallRecordWriteStub(object, address, remembered_set_action, fp_mode);
if (ra_status == kRAHasNotBeenSaved) {
pop(ra);
}
bind(&done);
// Clobber clobbered registers when running with the debug-code flag
// turned on to provoke errors.
if (emit_debug_code()) {
li(address, Operand(bit_cast<int64_t>(kZapValue + 12)));
li(value, Operand(bit_cast<int64_t>(kZapValue + 16)));
}
}
// ---------------------------------------------------------------------------
// Instruction macros.
void TurboAssembler::Addu(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
addu(rd, rs, rt.rm());
} else {
if (is_int16(rt.immediate()) && !MustUseReg(rt.rmode())) {
addiu(rd, rs, static_cast<int32_t>(rt.immediate()));
} else {
// li handles the relocation.
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
DCHECK(rs != scratch);
li(scratch, rt);
addu(rd, rs, scratch);
}
}
}
void TurboAssembler::Daddu(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
daddu(rd, rs, rt.rm());
} else {
if (is_int16(rt.immediate()) && !MustUseReg(rt.rmode())) {
daddiu(rd, rs, static_cast<int32_t>(rt.immediate()));
} else {
// li handles the relocation.
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
DCHECK(rs != scratch);
li(scratch, rt);
daddu(rd, rs, scratch);
}
}
}
void TurboAssembler::Subu(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
subu(rd, rs, rt.rm());
} else {
DCHECK(is_int32(rt.immediate()));
if (is_int16(-rt.immediate()) && !MustUseReg(rt.rmode())) {
addiu(rd, rs,
static_cast<int32_t>(
-rt.immediate())); // No subiu instr, use addiu(x, y, -imm).
} else {
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
DCHECK(rs != scratch);
if (-rt.immediate() >> 16 == 0 && !MustUseReg(rt.rmode())) {
// Use load -imm and addu when loading -imm generates one instruction.
li(scratch, -rt.immediate());
addu(rd, rs, scratch);
} else {
// li handles the relocation.
li(scratch, rt);
subu(rd, rs, scratch);
}
}
}
}
void TurboAssembler::Dsubu(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
dsubu(rd, rs, rt.rm());
} else if (is_int16(-rt.immediate()) && !MustUseReg(rt.rmode())) {
daddiu(rd, rs,
static_cast<int32_t>(
-rt.immediate())); // No dsubiu instr, use daddiu(x, y, -imm).
} else {
DCHECK(rs != at);
int li_count = InstrCountForLi64Bit(rt.immediate());
int li_neg_count = InstrCountForLi64Bit(-rt.immediate());
if (li_neg_count < li_count && !MustUseReg(rt.rmode())) {
// Use load -imm and daddu when loading -imm generates one instruction.
DCHECK(rt.immediate() != std::numeric_limits<int32_t>::min());
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
li(scratch, Operand(-rt.immediate()));
Daddu(rd, rs, scratch);
} else {
// li handles the relocation.
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
li(scratch, rt);
dsubu(rd, rs, scratch);
}
}
}
void TurboAssembler::Mul(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
mul(rd, rs, rt.rm());
} else {
// li handles the relocation.
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
DCHECK(rs != scratch);
li(scratch, rt);
mul(rd, rs, scratch);
}
}
void TurboAssembler::Mulh(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
if (kArchVariant != kMips64r6) {
mult(rs, rt.rm());
mfhi(rd);
} else {
muh(rd, rs, rt.rm());
}
} else {
// li handles the relocation.
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
DCHECK(rs != scratch);
li(scratch, rt);
if (kArchVariant != kMips64r6) {
mult(rs, scratch);
mfhi(rd);
} else {
muh(rd, rs, scratch);
}
}
}
void TurboAssembler::Mulhu(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
if (kArchVariant != kMips64r6) {
multu(rs, rt.rm());
mfhi(rd);
} else {
muhu(rd, rs, rt.rm());
}
} else {
// li handles the relocation.
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
DCHECK(rs != scratch);
li(scratch, rt);
if (kArchVariant != kMips64r6) {
multu(rs, scratch);
mfhi(rd);
} else {
muhu(rd, rs, scratch);
}
}
}
void TurboAssembler::Dmul(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
if (kArchVariant == kMips64r6) {
dmul(rd, rs, rt.rm());
} else {
dmult(rs, rt.rm());
mflo(rd);
}
} else {
// li handles the relocation.
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
DCHECK(rs != scratch);
li(scratch, rt);
if (kArchVariant == kMips64r6) {
dmul(rd, rs, scratch);
} else {
dmult(rs, scratch);
mflo(rd);
}
}
}
void TurboAssembler::Dmulh(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
if (kArchVariant == kMips64r6) {
dmuh(rd, rs, rt.rm());
} else {
dmult(rs, rt.rm());
mfhi(rd);
}
} else {
// li handles the relocation.
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
DCHECK(rs != scratch);
li(scratch, rt);
if (kArchVariant == kMips64r6) {
dmuh(rd, rs, scratch);
} else {
dmult(rs, scratch);
mfhi(rd);
}
}
}
void TurboAssembler::Mult(Register rs, const Operand& rt) {
if (rt.is_reg()) {
mult(rs, rt.rm());
} else {
// li handles the relocation.
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
DCHECK(rs != scratch);
li(scratch, rt);
mult(rs, scratch);
}
}
void TurboAssembler::Dmult(Register rs, const Operand& rt) {
if (rt.is_reg()) {
dmult(rs, rt.rm());
} else {
// li handles the relocation.
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
DCHECK(rs != scratch);
li(scratch, rt);
dmult(rs, scratch);
}
}
void TurboAssembler::Multu(Register rs, const Operand& rt) {
if (rt.is_reg()) {
multu(rs, rt.rm());
} else {
// li handles the relocation.
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
DCHECK(rs != scratch);
li(scratch, rt);
multu(rs, scratch);
}
}
void TurboAssembler::Dmultu(Register rs, const Operand& rt) {
if (rt.is_reg()) {
dmultu(rs, rt.rm());
} else {
// li handles the relocation.
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
DCHECK(rs != scratch);
li(scratch, rt);
dmultu(rs, scratch);
}
}
void TurboAssembler::Div(Register rs, const Operand& rt) {
if (rt.is_reg()) {
div(rs, rt.rm());
} else {
// li handles the relocation.
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
DCHECK(rs != scratch);
li(scratch, rt);
div(rs, scratch);
}
}
void TurboAssembler::Div(Register res, Register rs, const Operand& rt) {
if (rt.is_reg()) {
if (kArchVariant != kMips64r6) {
div(rs, rt.rm());
mflo(res);
} else {
div(res, rs, rt.rm());
}
} else {
// li handles the relocation.
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
DCHECK(rs != scratch);
li(scratch, rt);
if (kArchVariant != kMips64r6) {
div(rs, scratch);
mflo(res);
} else {
div(res, rs, scratch);
}
}
}
void TurboAssembler::Mod(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
if (kArchVariant != kMips64r6) {
div(rs, rt.rm());
mfhi(rd);
} else {
mod(rd, rs, rt.rm());
}
} else {
// li handles the relocation.
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
DCHECK(rs != scratch);
li(scratch, rt);
if (kArchVariant != kMips64r6) {
div(rs, scratch);
mfhi(rd);
} else {
mod(rd, rs, scratch);
}
}
}
void TurboAssembler::Modu(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
if (kArchVariant != kMips64r6) {
divu(rs, rt.rm());
mfhi(rd);
} else {
modu(rd, rs, rt.rm());
}
} else {
// li handles the relocation.
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
DCHECK(rs != scratch);
li(scratch, rt);
if (kArchVariant != kMips64r6) {
divu(rs, scratch);
mfhi(rd);
} else {
modu(rd, rs, scratch);
}
}
}
void TurboAssembler::Ddiv(Register rs, const Operand& rt) {
if (rt.is_reg()) {
ddiv(rs, rt.rm());
} else {
// li handles the relocation.
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
DCHECK(rs != scratch);
li(scratch, rt);
ddiv(rs, scratch);
}
}
void TurboAssembler::Ddiv(Register rd, Register rs, const Operand& rt) {
if (kArchVariant != kMips64r6) {
if (rt.is_reg()) {
ddiv(rs, rt.rm());
mflo(rd);
} else {
// li handles the relocation.
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
DCHECK(rs != scratch);
li(scratch, rt);
ddiv(rs, scratch);
mflo(rd);
}
} else {
if (rt.is_reg()) {
ddiv(rd, rs, rt.rm());
} else {
// li handles the relocation.
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
DCHECK(rs != scratch);
li(scratch, rt);
ddiv(rd, rs, scratch);
}
}
}
void TurboAssembler::Divu(Register rs, const Operand& rt) {
if (rt.is_reg()) {
divu(rs, rt.rm());
} else {
// li handles the relocation.
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
DCHECK(rs != scratch);
li(scratch, rt);
divu(rs, scratch);
}
}
void TurboAssembler::Divu(Register res, Register rs, const Operand& rt) {
if (rt.is_reg()) {
if (kArchVariant != kMips64r6) {
divu(rs, rt.rm());
mflo(res);
} else {
divu(res, rs, rt.rm());
}
} else {
// li handles the relocation.
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
DCHECK(rs != scratch);
li(scratch, rt);
if (kArchVariant != kMips64r6) {
divu(rs, scratch);
mflo(res);
} else {
divu(res, rs, scratch);
}
}
}
void TurboAssembler::Ddivu(Register rs, const Operand& rt) {
if (rt.is_reg()) {
ddivu(rs, rt.rm());
} else {
// li handles the relocation.
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
DCHECK(rs != scratch);
li(scratch, rt);
ddivu(rs, scratch);
}
}
void TurboAssembler::Ddivu(Register res, Register rs, const Operand& rt) {
if (rt.is_reg()) {
if (kArchVariant != kMips64r6) {
ddivu(rs, rt.rm());
mflo(res);
} else {
ddivu(res, rs, rt.rm());
}
} else {
// li handles the relocation.
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
DCHECK(rs != scratch);
li(scratch, rt);
if (kArchVariant != kMips64r6) {
ddivu(rs, scratch);
mflo(res);
} else {
ddivu(res, rs, scratch);
}
}
}
void TurboAssembler::Dmod(Register rd, Register rs, const Operand& rt) {
if (kArchVariant != kMips64r6) {
if (rt.is_reg()) {
ddiv(rs, rt.rm());
mfhi(rd);
} else {
// li handles the relocation.
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
DCHECK(rs != scratch);
li(scratch, rt);
ddiv(rs, scratch);
mfhi(rd);
}
} else {
if (rt.is_reg()) {
dmod(rd, rs, rt.rm());
} else {
// li handles the relocation.
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
DCHECK(rs != scratch);
li(scratch, rt);
dmod(rd, rs, scratch);
}
}
}
void TurboAssembler::Dmodu(Register rd, Register rs, const Operand& rt) {
if (kArchVariant != kMips64r6) {
if (rt.is_reg()) {
ddivu(rs, rt.rm());
mfhi(rd);
} else {
// li handles the relocation.
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
DCHECK(rs != scratch);
li(scratch, rt);
ddivu(rs, scratch);
mfhi(rd);
}
} else {
if (rt.is_reg()) {
dmodu(rd, rs, rt.rm());
} else {
// li handles the relocation.
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
DCHECK(rs != scratch);
li(scratch, rt);
dmodu(rd, rs, scratch);
}
}
}
void TurboAssembler::And(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
and_(rd, rs, rt.rm());
} else {
if (is_uint16(rt.immediate()) && !MustUseReg(rt.rmode())) {
andi(rd, rs, static_cast<int32_t>(rt.immediate()));
} else {
// li handles the relocation.
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
DCHECK(rs != scratch);
li(scratch, rt);
and_(rd, rs, scratch);
}
}
}
void TurboAssembler::Or(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
or_(rd, rs, rt.rm());
} else {
if (is_uint16(rt.immediate()) && !MustUseReg(rt.rmode())) {
ori(rd, rs, static_cast<int32_t>(rt.immediate()));
} else {
// li handles the relocation.
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
DCHECK(rs != scratch);
li(scratch, rt);
or_(rd, rs, scratch);
}
}
}
void TurboAssembler::Xor(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
xor_(rd, rs, rt.rm());
} else {
if (is_uint16(rt.immediate()) && !MustUseReg(rt.rmode())) {
xori(rd, rs, static_cast<int32_t>(rt.immediate()));
} else {
// li handles the relocation.
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
DCHECK(rs != scratch);
li(scratch, rt);
xor_(rd, rs, scratch);
}
}
}
void TurboAssembler::Nor(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
nor(rd, rs, rt.rm());
} else {
// li handles the relocation.
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
DCHECK(rs != scratch);
li(scratch, rt);
nor(rd, rs, scratch);
}
}
void TurboAssembler::Neg(Register rs, const Operand& rt) {
dsubu(rs, zero_reg, rt.rm());
}
void TurboAssembler::Slt(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
slt(rd, rs, rt.rm());
} else {
if (is_int16(rt.immediate()) && !MustUseReg(rt.rmode())) {
slti(rd, rs, static_cast<int32_t>(rt.immediate()));
} else {
// li handles the relocation.
UseScratchRegisterScope temps(this);
BlockTrampolinePoolScope block_trampoline_pool(this);
Register scratch = temps.hasAvailable() ? temps.Acquire() : t8;
DCHECK(rs != scratch);
li(scratch, rt);
slt(rd, rs, scratch);
}
}
}
void TurboAssembler::Sltu(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
sltu(rd, rs, rt.rm());
} else {
const uint64_t int16_min = std::numeric_limits<int16_t>::min();
if (is_uint15(rt.immediate()) && !MustUseReg(rt.rmode())) {
// Imm range is: [0, 32767].
sltiu(rd, rs, static_cast<int32_t>(rt.immediate()));
} else if (is_uint15(rt.immediate() - int16_min) &&
!MustUseReg(rt.rmode())) {
// Imm range is: [max_unsigned-32767,max_unsigned].
sltiu(rd, rs, static_cast<uint16_t>(rt.immediate()));
} else {
// li handles the relocation.
UseScratchRegisterScope temps(this);
BlockTrampolinePoolScope block_trampoline_pool(this);
Register scratch = temps.hasAvailable() ? temps.Acquire() : t8;
DCHECK(rs != scratch);
li(scratch, rt);
sltu(rd, rs, scratch);
}
}
}
void TurboAssembler::Sle(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
slt(rd, rt.rm(), rs);
} else {
// li handles the relocation.
UseScratchRegisterScope temps(this);
Register scratch = temps.hasAvailable() ? temps.Acquire() : t8;
BlockTrampolinePoolScope block_trampoline_pool(this);
DCHECK(rs != scratch);
li(scratch, rt);
slt(rd, scratch, rs);
}
xori(rd, rd, 1);
}
void TurboAssembler::Sleu(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
sltu(rd, rt.rm(), rs);
} else {
// li handles the relocation.
UseScratchRegisterScope temps(this);
Register scratch = temps.hasAvailable() ? temps.Acquire() : t8;
BlockTrampolinePoolScope block_trampoline_pool(this);
DCHECK(rs != scratch);
li(scratch, rt);
sltu(rd, scratch, rs);
}
xori(rd, rd, 1);
}
void TurboAssembler::Sge(Register rd, Register rs, const Operand& rt) {
Slt(rd, rs, rt);
xori(rd, rd, 1);
}
void TurboAssembler::Sgeu(Register rd, Register rs, const Operand& rt) {
Sltu(rd, rs, rt);
xori(rd, rd, 1);
}
void TurboAssembler::Sgt(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
slt(rd, rt.rm(), rs);
} else {
// li handles the relocation.
UseScratchRegisterScope temps(this);
Register scratch = temps.hasAvailable() ? temps.Acquire() : t8;
BlockTrampolinePoolScope block_trampoline_pool(this);
DCHECK(rs != scratch);
li(scratch, rt);
slt(rd, scratch, rs);
}
}
void TurboAssembler::Sgtu(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
sltu(rd, rt.rm(), rs);
} else {
// li handles the relocation.
UseScratchRegisterScope temps(this);
Register scratch = temps.hasAvailable() ? temps.Acquire() : t8;
BlockTrampolinePoolScope block_trampoline_pool(this);
DCHECK(rs != scratch);
li(scratch, rt);
sltu(rd, scratch, rs);
}
}
void TurboAssembler::Ror(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
rotrv(rd, rs, rt.rm());
} else {
int64_t ror_value = rt.immediate() % 32;
if (ror_value < 0) {
ror_value += 32;
}
rotr(rd, rs, ror_value);
}
}
void TurboAssembler::Dror(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
drotrv(rd, rs, rt.rm());
} else {
int64_t dror_value = rt.immediate() % 64;
if (dror_value < 0) dror_value += 64;
if (dror_value <= 31) {
drotr(rd, rs, dror_value);
} else {
drotr32(rd, rs, dror_value - 32);
}
}
}
void MacroAssembler::Pref(int32_t hint, const MemOperand& rs) {
pref(hint, rs);
}
void TurboAssembler::Lsa(Register rd, Register rt, Register rs, uint8_t sa,
Register scratch) {
DCHECK(sa >= 1 && sa <= 31);
if (kArchVariant == kMips64r6 && sa <= 4) {
lsa(rd, rt, rs, sa - 1);
} else {
Register tmp = rd == rt ? scratch : rd;
DCHECK(tmp != rt);
sll(tmp, rs, sa);
Addu(rd, rt, tmp);
}
}
void TurboAssembler::Dlsa(Register rd, Register rt, Register rs, uint8_t sa,
Register scratch) {
DCHECK(sa >= 1 && sa <= 31);
if (kArchVariant == kMips64r6 && sa <= 4) {
dlsa(rd, rt, rs, sa - 1);
} else {
Register tmp = rd == rt ? scratch : rd;
DCHECK(tmp != rt);
dsll(tmp, rs, sa);
Daddu(rd, rt, tmp);
}
}
void TurboAssembler::Bovc(Register rs, Register rt, Label* L) {
if (is_trampoline_emitted()) {
Label skip;
bnvc(rs, rt, &skip);
BranchLong(L, PROTECT);
bind(&skip);
} else {
bovc(rs, rt, L);
}
}
void TurboAssembler::Bnvc(Register rs, Register rt, Label* L) {
if (is_trampoline_emitted()) {
Label skip;
bovc(rs, rt, &skip);
BranchLong(L, PROTECT);
bind(&skip);
} else {
bnvc(rs, rt, L);
}
}
// ------------Pseudo-instructions-------------
// Change endianness
void TurboAssembler::ByteSwapSigned(Register dest, Register src,
int operand_size) {
DCHECK(operand_size == 2 || operand_size == 4 || operand_size == 8);
DCHECK(kArchVariant == kMips64r6 || kArchVariant == kMips64r2);
if (operand_size == 2) {
wsbh(dest, src);
seh(dest, dest);
} else if (operand_size == 4) {
wsbh(dest, src);
rotr(dest, dest, 16);
} else {
dsbh(dest, src);
dshd(dest, dest);
}
}
void TurboAssembler::ByteSwapUnsigned(Register dest, Register src,
int operand_size) {
DCHECK(operand_size == 2 || operand_size == 4);
if (operand_size == 2) {
wsbh(dest, src);
andi(dest, dest, 0xFFFF);
} else {
wsbh(dest, src);
rotr(dest, dest, 16);
dinsu_(dest, zero_reg, 32, 32);
}
}
void TurboAssembler::Ulw(Register rd, const MemOperand& rs) {
DCHECK(rd != at);
DCHECK(rs.rm() != at);
if (kArchVariant == kMips64r6) {
Lw(rd, rs);
} else {
DCHECK_EQ(kArchVariant, kMips64r2);
DCHECK(kMipsLwrOffset <= 3 && kMipsLwlOffset <= 3);
MemOperand source = rs;
// Adjust offset for two accesses and check if offset + 3 fits into int16_t.
AdjustBaseAndOffset(&source, OffsetAccessType::TWO_ACCESSES, 3);
if (rd != source.rm()) {
lwr(rd, MemOperand(source.rm(), source.offset() + kMipsLwrOffset));
lwl(rd, MemOperand(source.rm(), source.offset() + kMipsLwlOffset));
} else {
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
lwr(scratch, MemOperand(rs.rm(), rs.offset() + kMipsLwrOffset));
lwl(scratch, MemOperand(rs.rm(), rs.offset() + kMipsLwlOffset));
mov(rd, scratch);
}
}
}
void TurboAssembler::Ulwu(Register rd, const MemOperand& rs) {
if (kArchVariant == kMips64r6) {
Lwu(rd, rs);
} else {
DCHECK_EQ(kArchVariant, kMips64r2);
Ulw(rd, rs);
Dext(rd, rd, 0, 32);
}
}
void TurboAssembler::Usw(Register rd, const MemOperand& rs) {
DCHECK(rd != at);
DCHECK(rs.rm() != at);
DCHECK(rd != rs.rm());
if (kArchVariant == kMips64r6) {
Sw(rd, rs);
} else {
DCHECK_EQ(kArchVariant, kMips64r2);
DCHECK(kMipsSwrOffset <= 3 && kMipsSwlOffset <= 3);
MemOperand source = rs;
// Adjust offset for two accesses and check if offset + 3 fits into int16_t.
AdjustBaseAndOffset(&source, OffsetAccessType::TWO_ACCESSES, 3);
swr(rd, MemOperand(source.rm(), source.offset() + kMipsSwrOffset));
swl(rd, MemOperand(source.rm(), source.offset() + kMipsSwlOffset));
}
}
void TurboAssembler::Ulh(Register rd, const MemOperand& rs) {
DCHECK(rd != at);
DCHECK(rs.rm() != at);
if (kArchVariant == kMips64r6) {
Lh(rd, rs);
} else {
DCHECK_EQ(kArchVariant, kMips64r2);
MemOperand source = rs;
// Adjust offset for two accesses and check if offset + 1 fits into int16_t.
AdjustBaseAndOffset(&source, OffsetAccessType::TWO_ACCESSES, 1);
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
if (source.rm() == scratch) {
#if defined(V8_TARGET_LITTLE_ENDIAN)
Lb(rd, MemOperand(source.rm(), source.offset() + 1));
Lbu(scratch, source);
#elif defined(V8_TARGET_BIG_ENDIAN)
Lb(rd, source);
Lbu(scratch, MemOperand(source.rm(), source.offset() + 1));
#endif
} else {
#if defined(V8_TARGET_LITTLE_ENDIAN)
Lbu(scratch, source);
Lb(rd, MemOperand(source.rm(), source.offset() + 1));
#elif defined(V8_TARGET_BIG_ENDIAN)
Lbu(scratch, MemOperand(source.rm(), source.offset() + 1));
Lb(rd, source);
#endif
}
dsll(rd, rd, 8);
or_(rd, rd, scratch);
}
}
void TurboAssembler::Ulhu(Register rd, const MemOperand& rs) {
DCHECK(rd != at);
DCHECK(rs.rm() != at);
if (kArchVariant == kMips64r6) {
Lhu(rd, rs);
} else {
DCHECK_EQ(kArchVariant, kMips64r2);
MemOperand source = rs;
// Adjust offset for two accesses and check if offset + 1 fits into int16_t.
AdjustBaseAndOffset(&source, OffsetAccessType::TWO_ACCESSES, 1);
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
if (source.rm() == scratch) {
#if defined(V8_TARGET_LITTLE_ENDIAN)
Lbu(rd, MemOperand(source.rm(), source.offset() + 1));
Lbu(scratch, source);
#elif defined(V8_TARGET_BIG_ENDIAN)
Lbu(rd, source);
Lbu(scratch, MemOperand(source.rm(), source.offset() + 1));
#endif
} else {
#if defined(V8_TARGET_LITTLE_ENDIAN)
Lbu(scratch, source);
Lbu(rd, MemOperand(source.rm(), source.offset() + 1));
#elif defined(V8_TARGET_BIG_ENDIAN)
Lbu(scratch, MemOperand(source.rm(), source.offset() + 1));
Lbu(rd, source);
#endif
}
dsll(rd, rd, 8);
or_(rd, rd, scratch);
}
}
void TurboAssembler::Ush(Register rd, const MemOperand& rs, Register scratch) {
DCHECK(rd != at);
DCHECK(rs.rm() != at);
DCHECK(rs.rm() != scratch);
DCHECK(scratch != at);
if (kArchVariant == kMips64r6) {
Sh(rd, rs);
} else {
DCHECK_EQ(kArchVariant, kMips64r2);
MemOperand source = rs;
// Adjust offset for two accesses and check if offset + 1 fits into int16_t.
AdjustBaseAndOffset(&source, OffsetAccessType::TWO_ACCESSES, 1);
if (scratch != rd) {
mov(scratch, rd);
}
#if defined(V8_TARGET_LITTLE_ENDIAN)
Sb(scratch, source);
srl(scratch, scratch, 8);
Sb(scratch, MemOperand(source.rm(), source.offset() + 1));
#elif defined(V8_TARGET_BIG_ENDIAN)
Sb(scratch, MemOperand(source.rm(), source.offset() + 1));
srl(scratch, scratch, 8);
Sb(scratch, source);
#endif
}
}
void TurboAssembler::Uld(Register rd, const MemOperand& rs) {
DCHECK(rd != at);
DCHECK(rs.rm() != at);
if (kArchVariant == kMips64r6) {
Ld(rd, rs);
} else {
DCHECK_EQ(kArchVariant, kMips64r2);
DCHECK(kMipsLdrOffset <= 7 && kMipsLdlOffset <= 7);
MemOperand source = rs;
// Adjust offset for two accesses and check if offset + 7 fits into int16_t.
AdjustBaseAndOffset(&source, OffsetAccessType::TWO_ACCESSES, 7);
if (rd != source.rm()) {
ldr(rd, MemOperand(source.rm(), source.offset() + kMipsLdrOffset));
ldl(rd, MemOperand(source.rm(), source.offset() + kMipsLdlOffset));
} else {
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
ldr(scratch, MemOperand(rs.rm(), rs.offset() + kMipsLdrOffset));
ldl(scratch, MemOperand(rs.rm(), rs.offset() + kMipsLdlOffset));
mov(rd, scratch);
}
}
}
// Load consequent 32-bit word pair in 64-bit reg. and put first word in low
// bits,
// second word in high bits.
void MacroAssembler::LoadWordPair(Register rd, const MemOperand& rs,
Register scratch) {
Lwu(rd, rs);
Lw(scratch, MemOperand(rs.rm(), rs.offset() + kPointerSize / 2));
dsll32(scratch, scratch, 0);
Daddu(rd, rd, scratch);
}
void TurboAssembler::Usd(Register rd, const MemOperand& rs) {
DCHECK(rd != at);
DCHECK(rs.rm() != at);
if (kArchVariant == kMips64r6) {
Sd(rd, rs);
} else {
DCHECK_EQ(kArchVariant, kMips64r2);
DCHECK(kMipsSdrOffset <= 7 && kMipsSdlOffset <= 7);
MemOperand source = rs;
// Adjust offset for two accesses and check if offset + 7 fits into int16_t.
AdjustBaseAndOffset(&source, OffsetAccessType::TWO_ACCESSES, 7);
sdr(rd, MemOperand(source.rm(), source.offset() + kMipsSdrOffset));
sdl(rd, MemOperand(source.rm(), source.offset() + kMipsSdlOffset));
}
}
// Do 64-bit store as two consequent 32-bit stores to unaligned address.
void MacroAssembler::StoreWordPair(Register rd, const MemOperand& rs,
Register scratch) {
Sw(rd, rs);
dsrl32(scratch, rd, 0);
Sw(scratch, MemOperand(rs.rm(), rs.offset() + kPointerSize / 2));
}
void TurboAssembler::Ulwc1(FPURegister fd, const MemOperand& rs,
Register scratch) {
if (kArchVariant == kMips64r6) {
Lwc1(fd, rs);
} else {
DCHECK_EQ(kArchVariant, kMips64r2);
Ulw(scratch, rs);
mtc1(scratch, fd);
}
}
void TurboAssembler::Uswc1(FPURegister fd, const MemOperand& rs,
Register scratch) {
if (kArchVariant == kMips64r6) {
Swc1(fd, rs);
} else {
DCHECK_EQ(kArchVariant, kMips64r2);
mfc1(scratch, fd);
Usw(scratch, rs);
}
}
void TurboAssembler::Uldc1(FPURegister fd, const MemOperand& rs,
Register scratch) {
DCHECK(scratch != at);
if (kArchVariant == kMips64r6) {
Ldc1(fd, rs);
} else {
DCHECK_EQ(kArchVariant, kMips64r2);
Uld(scratch, rs);
dmtc1(scratch, fd);
}
}
void TurboAssembler::Usdc1(FPURegister fd, const MemOperand& rs,
Register scratch) {
DCHECK(scratch != at);
if (kArchVariant == kMips64r6) {
Sdc1(fd, rs);
} else {
DCHECK_EQ(kArchVariant, kMips64r2);
dmfc1(scratch, fd);
Usd(scratch, rs);
}
}
void TurboAssembler::Lb(Register rd, const MemOperand& rs) {
MemOperand source = rs;
AdjustBaseAndOffset(&source);
lb(rd, source);
}
void TurboAssembler::Lbu(Register rd, const MemOperand& rs) {
MemOperand source = rs;
AdjustBaseAndOffset(&source);
lbu(rd, source);
}
void TurboAssembler::Sb(Register rd, const MemOperand& rs) {
MemOperand source = rs;
AdjustBaseAndOffset(&source);
sb(rd, source);
}
void TurboAssembler::Lh(Register rd, const MemOperand& rs) {
MemOperand source = rs;
AdjustBaseAndOffset(&source);
lh(rd, source);
}
void TurboAssembler::Lhu(Register rd, const MemOperand& rs) {
MemOperand source = rs;
AdjustBaseAndOffset(&source);
lhu(rd, source);
}
void TurboAssembler::Sh(Register rd, const MemOperand& rs) {
MemOperand source = rs;
AdjustBaseAndOffset(&source);
sh(rd, source);
}
void TurboAssembler::Lw(Register rd, const MemOperand& rs) {
MemOperand source = rs;
AdjustBaseAndOffset(&source);
lw(rd, source);
}
void TurboAssembler::Lwu(Register rd, const MemOperand& rs) {
MemOperand source = rs;
AdjustBaseAndOffset(&source);
lwu(rd, source);
}
void TurboAssembler::Sw(Register rd, const MemOperand& rs) {
MemOperand source = rs;
AdjustBaseAndOffset(&source);
sw(rd, source);
}
void TurboAssembler::Ld(Register rd, const MemOperand& rs) {
MemOperand source = rs;
AdjustBaseAndOffset(&source);
ld(rd, source);
}
void TurboAssembler::Sd(Register rd, const MemOperand& rs) {
MemOperand source = rs;
AdjustBaseAndOffset(&source);
sd(rd, source);
}
void TurboAssembler::Lwc1(FPURegister fd, const MemOperand& src) {
MemOperand tmp = src;
AdjustBaseAndOffset(&tmp);
lwc1(fd, tmp);
}
void TurboAssembler::Swc1(FPURegister fs, const MemOperand& src) {
MemOperand tmp = src;
AdjustBaseAndOffset(&tmp);
swc1(fs, tmp);
}
void TurboAssembler::Ldc1(FPURegister fd, const MemOperand& src) {
MemOperand tmp = src;
AdjustBaseAndOffset(&tmp);
ldc1(fd, tmp);
}
void TurboAssembler::Sdc1(FPURegister fs, const MemOperand& src) {
MemOperand tmp = src;
AdjustBaseAndOffset(&tmp);
sdc1(fs, tmp);
}
void TurboAssembler::Ll(Register rd, const MemOperand& rs) {
bool is_one_instruction = (kArchVariant == kMips64r6) ? is_int9(rs.offset())
: is_int16(rs.offset());
if (is_one_instruction) {
ll(rd, rs);
} else {
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
li(scratch, rs.offset());
daddu(scratch, scratch, rs.rm());
ll(rd, MemOperand(scratch, 0));
}
}
void TurboAssembler::Lld(Register rd, const MemOperand& rs) {
bool is_one_instruction = (kArchVariant == kMips64r6) ? is_int9(rs.offset())
: is_int16(rs.offset());
if (is_one_instruction) {
lld(rd, rs);
} else {
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
li(scratch, rs.offset());
daddu(scratch, scratch, rs.rm());
lld(rd, MemOperand(scratch, 0));
}
}
void TurboAssembler::Sc(Register rd, const MemOperand& rs) {
bool is_one_instruction = (kArchVariant == kMips64r6) ? is_int9(rs.offset())
: is_int16(rs.offset());
if (is_one_instruction) {
sc(rd, rs);
} else {
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
li(scratch, rs.offset());
daddu(scratch, scratch, rs.rm());
sc(rd, MemOperand(scratch, 0));
}
}
void TurboAssembler::Scd(Register rd, const MemOperand& rs) {
bool is_one_instruction = (kArchVariant == kMips64r6) ? is_int9(rs.offset())
: is_int16(rs.offset());
if (is_one_instruction) {
scd(rd, rs);
} else {
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
li(scratch, rs.offset());
daddu(scratch, scratch, rs.rm());
scd(rd, MemOperand(scratch, 0));
}
}
void TurboAssembler::li(Register dst, Handle<HeapObject> value, LiFlags mode) {
// TODO(jgruber,v8:8887): Also consider a root-relative load when generating
// non-isolate-independent code. In many cases it might be cheaper than
// embedding the relocatable value.
if (root_array_available_ && options().isolate_independent_code) {
IndirectLoadConstant(dst, value);
return;
}
li(dst, Operand(value), mode);
}
void TurboAssembler::li(Register dst, ExternalReference value, LiFlags mode) {
// TODO(jgruber,v8:8887): Also consider a root-relative load when generating
// non-isolate-independent code. In many cases it might be cheaper than
// embedding the relocatable value.
if (root_array_available_ && options().isolate_independent_code) {
IndirectLoadExternalReference(dst, value);
return;
}
li(dst, Operand(value), mode);
}
void TurboAssembler::li(Register dst, const StringConstantBase* string,
LiFlags mode) {
li(dst, Operand::EmbeddedStringConstant(string), mode);
}
static inline int InstrCountForLiLower32Bit(int64_t value) {
if (!is_int16(static_cast<int32_t>(value)) && (value & kUpper16MaskOf64) &&
(value & kImm16Mask)) {
return 2;
} else {
return 1;
}
}
void TurboAssembler::LiLower32BitHelper(Register rd, Operand j) {
if (is_int16(static_cast<int32_t>(j.immediate()))) {
daddiu(rd, zero_reg, (j.immediate() & kImm16Mask));
} else if (!(j.immediate() & kUpper16MaskOf64)) {
ori(rd, zero_reg, j.immediate() & kImm16Mask);
} else {
lui(rd, j.immediate() >> kLuiShift & kImm16Mask);
if (j.immediate() & kImm16Mask) {
ori(rd, rd, j.immediate() & kImm16Mask);
}
}
}
static inline int InstrCountForLoadReplicatedConst32(int64_t value) {
uint32_t x = static_cast<uint32_t>(value);
uint32_t y = static_cast<uint32_t>(value >> 32);
if (x == y) {
return (is_uint16(x) || is_int16(x) || (x & kImm16Mask) == 0) ? 2 : 3;
}
return INT_MAX;
}
int TurboAssembler::InstrCountForLi64Bit(int64_t value) {
if (is_int32(value)) {
return InstrCountForLiLower32Bit(value);
} else {
int bit31 = value >> 31 & 0x1;
if ((value & kUpper16MaskOf64) == 0 && is_int16(value >> 32) &&
kArchVariant == kMips64r6) {
return 2;
} else if ((value & (kHigher16MaskOf64 | kUpper16MaskOf64)) == 0 &&
kArchVariant == kMips64r6) {
return 2;
} else if ((value & kImm16Mask) == 0 && is_int16((value >> 32) + bit31) &&
kArchVariant == kMips64r6) {
return 2;
} else if ((value & kImm16Mask) == 0 &&
((value >> 31) & 0x1FFFF) == ((0x20000 - bit31) & 0x1FFFF) &&
kArchVariant == kMips64r6) {
return 2;
} else if (is_int16(static_cast<int32_t>(value)) &&
is_int16((value >> 32) + bit31) && kArchVariant == kMips64r6) {
return 2;
} else if (is_int16(static_cast<int32_t>(value)) &&
((value >> 31) & 0x1FFFF) == ((0x20000 - bit31) & 0x1FFFF) &&
kArchVariant == kMips64r6) {
return 2;
} else if (base::bits::IsPowerOfTwo(value + 1) ||
value == std::numeric_limits<int64_t>::max()) {
return 2;
} else {
int shift_cnt = base::bits::CountTrailingZeros64(value);
int rep32_count = InstrCountForLoadReplicatedConst32(value);
int64_t tmp = value >> shift_cnt;
if (is_uint16(tmp)) {
return 2;
} else if (is_int16(tmp)) {
return 2;
} else if (rep32_count < 3) {
return 2;
} else if (is_int32(tmp)) {
return 3;
} else {
shift_cnt = 16 + base::bits::CountTrailingZeros64(value >> 16);
tmp = value >> shift_cnt;
if (is_uint16(tmp)) {
return 3;
} else if (is_int16(tmp)) {
return 3;
} else if (rep32_count < 4) {
return 3;
} else if (kArchVariant == kMips64r6) {
int64_t imm = value;
int count = InstrCountForLiLower32Bit(imm);
imm = (imm >> 32) + bit31;
if (imm & kImm16Mask) {
count++;
}
imm = (imm >> 16) + (imm >> 15 & 0x1);
if (imm & kImm16Mask) {
count++;
}
return count;
} else {
if (is_int48(value)) {
int64_t k = value >> 16;
int count = InstrCountForLiLower32Bit(k) + 1;
if (value & kImm16Mask) {
count++;
}
return count;
} else {
int64_t k = value >> 32;
int count = InstrCountForLiLower32Bit(k);
if ((value >> 16) & kImm16Mask) {
count += 3;
if (value & kImm16Mask) {
count++;
}
} else {
count++;
if (value & kImm16Mask) {
count++;
}
}
return count;
}
}
}
}
}
UNREACHABLE();
return INT_MAX;
}
// All changes to if...else conditions here must be added to
// InstrCountForLi64Bit as well.
void TurboAssembler::li_optimized(Register rd, Operand j, LiFlags mode) {
DCHECK(!j.is_reg());
DCHECK(!MustUseReg(j.rmode()));
DCHECK(mode == OPTIMIZE_SIZE);
BlockTrampolinePoolScope block_trampoline_pool(this);
// Normal load of an immediate value which does not need Relocation Info.
if (is_int32(j.immediate())) {
LiLower32BitHelper(rd, j);
} else {
int bit31 = j.immediate() >> 31 & 0x1;
if ((j.immediate() & kUpper16MaskOf64) == 0 &&
is_int16(j.immediate() >> 32) && kArchVariant == kMips64r6) {
// 64-bit value which consists of an unsigned 16-bit value in its
// least significant 32-bits, and a signed 16-bit value in its
// most significant 32-bits.
ori(rd, zero_reg, j.immediate() & kImm16Mask);
dahi(rd, j.immediate() >> 32 & kImm16Mask);
} else if ((j.immediate() & (kHigher16MaskOf64 | kUpper16MaskOf64)) == 0 &&
kArchVariant == kMips64r6) {
// 64-bit value which consists of an unsigned 16-bit value in its
// least significant 48-bits, and a signed 16-bit value in its
// most significant 16-bits.
ori(rd, zero_reg, j.immediate() & kImm16Mask);
dati(rd, j.immediate() >> 48 & kImm16Mask);
} else if ((j.immediate() & kImm16Mask) == 0 &&
is_int16((j.immediate() >> 32) + bit31) &&
kArchVariant == kMips64r6) {
// 16 LSBs (Least Significant Bits) all set to zero.
// 48 MSBs (Most Significant Bits) hold a signed 32-bit value.
lui(rd, j.immediate() >> kLuiShift & kImm16Mask);
dahi(rd, ((j.immediate() >> 32) + bit31) & kImm16Mask);
} else if ((j.immediate() & kImm16Mask) == 0 &&
((j.immediate() >> 31) & 0x1FFFF) ==
((0x20000 - bit31) & 0x1FFFF) &&
kArchVariant == kMips64r6) {
// 16 LSBs all set to zero.
// 48 MSBs hold a signed value which can't be represented by signed
// 32-bit number, and the middle 16 bits are all zero, or all one.
lui(rd, j.immediate() >> kLuiShift & kImm16Mask);
dati(rd, ((j.immediate() >> 48) + bit31) & kImm16Mask);
} else if (is_int16(static_cast<int32_t>(j.immediate())) &&
is_int16((j.immediate() >> 32) + bit31) &&
kArchVariant == kMips64r6) {
// 32 LSBs contain a signed 16-bit number.
// 32 MSBs contain a signed 16-bit number.
daddiu(rd, zero_reg, j.immediate() & kImm16Mask);
dahi(rd, ((j.immediate() >> 32) + bit31) & kImm16Mask);
} else if (is_int16(static_cast<int32_t>(j.immediate())) &&
((j.immediate() >> 31) & 0x1FFFF) ==
((0x20000 - bit31) & 0x1FFFF) &&
kArchVariant == kMips64r6) {
// 48 LSBs contain an unsigned 16-bit number.
// 16 MSBs contain a signed 16-bit number.
daddiu(rd, zero_reg, j.immediate() & kImm16Mask);
dati(rd, ((j.immediate() >> 48) + bit31) & kImm16Mask);
} else if (base::bits::IsPowerOfTwo(j.immediate() + 1) ||
j.immediate() == std::numeric_limits<int64_t>::max()) {
// 64-bit values which have their "n" LSBs set to one, and their
// "64-n" MSBs set to zero. "n" must meet the restrictions 0 < n < 64.
int shift_cnt = 64 - base::bits::CountTrailingZeros64(j.immediate() + 1);
daddiu(rd, zero_reg, -1);
if (shift_cnt < 32) {
dsrl(rd, rd, shift_cnt);
} else {
dsrl32(rd, rd, shift_cnt & 31);
}
} else {
int shift_cnt = base::bits::CountTrailingZeros64(j.immediate());
int rep32_count = InstrCountForLoadReplicatedConst32(j.immediate());
int64_t tmp = j.immediate() >> shift_cnt;
if (is_uint16(tmp)) {
// Value can be computed by loading a 16-bit unsigned value, and
// then shifting left.
ori(rd, zero_reg, tmp & kImm16Mask);
if (shift_cnt < 32) {
dsll(rd, rd, shift_cnt);
} else {
dsll32(rd, rd, shift_cnt & 31);
}
} else if (is_int16(tmp)) {
// Value can be computed by loading a 16-bit signed value, and
// then shifting left.
daddiu(rd, zero_reg, static_cast<int32_t>(tmp));
if (shift_cnt < 32) {
dsll(rd, rd, shift_cnt);
} else {
dsll32(rd, rd, shift_cnt & 31);
}
} else if (rep32_count < 3) {
// Value being loaded has 32 LSBs equal to the 32 MSBs, and the
// value loaded into the 32 LSBs can be loaded with a single
// MIPS instruction.
LiLower32BitHelper(rd, j);
Dins(rd, rd, 32, 32);
} else if (is_int32(tmp)) {
// Loads with 3 instructions.
// Value can be computed by loading a 32-bit signed value, and
// then shifting left.
lui(rd, tmp >> kLuiShift & kImm16Mask);
ori(rd, rd, tmp & kImm16Mask);
if (shift_cnt < 32) {
dsll(rd, rd, shift_cnt);
} else {
dsll32(rd, rd, shift_cnt & 31);
}
} else {
shift_cnt = 16 + base::bits::CountTrailingZeros64(j.immediate() >> 16);
tmp = j.immediate() >> shift_cnt;
if (is_uint16(tmp)) {
// Value can be computed by loading a 16-bit unsigned value,
// shifting left, and "or"ing in another 16-bit unsigned value.
ori(rd, zero_reg, tmp & kImm16Mask);
if (shift_cnt < 32) {
dsll(rd, rd, shift_cnt);
} else {
dsll32(rd, rd, shift_cnt & 31);
}
ori(rd, rd, j.immediate() & kImm16Mask);
} else if (is_int16(tmp)) {
// Value can be computed by loading a 16-bit signed value,
// shifting left, and "or"ing in a 16-bit unsigned value.
daddiu(rd, zero_reg, static_cast<int32_t>(tmp));
if (shift_cnt < 32) {
dsll(rd, rd, shift_cnt);
} else {
dsll32(rd, rd, shift_cnt & 31);
}
ori(rd, rd, j.immediate() & kImm16Mask);
} else if (rep32_count < 4) {
// Value being loaded has 32 LSBs equal to the 32 MSBs, and the
// value in the 32 LSBs requires 2 MIPS instructions to load.
LiLower32BitHelper(rd, j);
Dins(rd, rd, 32, 32);
} else if (kArchVariant == kMips64r6) {
// Loads with 3-4 instructions.
// Catch-all case to get any other 64-bit values which aren't
// handled by special cases above.
int64_t imm = j.immediate();
LiLower32BitHelper(rd, j);
imm = (imm >> 32) + bit31;
if (imm & kImm16Mask) {
dahi(rd, imm & kImm16Mask);
}
imm = (imm >> 16) + (imm >> 15 & 0x1);
if (imm & kImm16Mask) {
dati(rd, imm & kImm16Mask);
}
} else {
if (is_int48(j.immediate())) {
Operand k = Operand(j.immediate() >> 16);
LiLower32BitHelper(rd, k);
dsll(rd, rd, 16);
if (j.immediate() & kImm16Mask) {
ori(rd, rd, j.immediate() & kImm16Mask);
}
} else {
Operand k = Operand(j.immediate() >> 32);
LiLower32BitHelper(rd, k);
if ((j.immediate() >> 16) & kImm16Mask) {
dsll(rd, rd, 16);
ori(rd, rd, (j.immediate() >> 16) & kImm16Mask);
dsll(rd, rd, 16);
if (j.immediate() & kImm16Mask) {
ori(rd, rd, j.immediate() & kImm16Mask);
}
} else {
dsll32(rd, rd, 0);
if (j.immediate() & kImm16Mask) {
ori(rd, rd, j.immediate() & kImm16Mask);
}
}
}
}
}
}
}
}
void TurboAssembler::li(Register rd, Operand j, LiFlags mode) {
DCHECK(!j.is_reg());
BlockTrampolinePoolScope block_trampoline_pool(this);
if (!MustUseReg(j.rmode()) && mode == OPTIMIZE_SIZE) {
int li_count = InstrCountForLi64Bit(j.immediate());
int li_neg_count = InstrCountForLi64Bit(-j.immediate());
int li_not_count = InstrCountForLi64Bit(~j.immediate());
// Loading -MIN_INT64 could cause problems, but loading MIN_INT64 takes only
// two instructions so no need to check for this.
if (li_neg_count <= li_not_count && li_neg_count < li_count - 1) {
DCHECK(j.immediate() != std::numeric_limits<int64_t>::min());
li_optimized(rd, Operand(-j.immediate()), mode);
Dsubu(rd, zero_reg, rd);
} else if (li_neg_count > li_not_count && li_not_count < li_count - 1) {
DCHECK(j.immediate() != std::numeric_limits<int64_t>::min());
li_optimized(rd, Operand(~j.immediate()), mode);
nor(rd, rd, rd);
} else {
li_optimized(rd, j, mode);
}
} else if (MustUseReg(j.rmode())) {
int64_t immediate;
if (j.IsHeapObjectRequest()) {
RequestHeapObject(j.heap_object_request());
immediate = 0;
} else {
immediate = j.immediate();
}
RecordRelocInfo(j.rmode(), immediate);
lui(rd, (immediate >> 32) & kImm16Mask);
ori(rd, rd, (immediate >> 16) & kImm16Mask);
dsll(rd, rd, 16);
ori(rd, rd, immediate & kImm16Mask);
} else if (mode == ADDRESS_LOAD) {
// We always need the same number of instructions as we may need to patch
// this code to load another value which may need all 4 instructions.
lui(rd, (j.immediate() >> 32) & kImm16Mask);
ori(rd, rd, (j.immediate() >> 16) & kImm16Mask);
dsll(rd, rd, 16);
ori(rd, rd, j.immediate() & kImm16Mask);
} else { // mode == CONSTANT_SIZE - always emit the same instruction
// sequence.
if (kArchVariant == kMips64r6) {
int64_t imm = j.immediate();
lui(rd, imm >> kLuiShift & kImm16Mask);
ori(rd, rd, (imm & kImm16Mask));
imm = (imm >> 32) + ((imm >> 31) & 0x1);
dahi(rd, imm & kImm16Mask & kImm16Mask);
imm = (imm >> 16) + ((imm >> 15) & 0x1);
dati(rd, imm & kImm16Mask & kImm16Mask);
} else {
lui(rd, (j.immediate() >> 48) & kImm16Mask);
ori(rd, rd, (j.immediate() >> 32) & kImm16Mask);
dsll(rd, rd, 16);
ori(rd, rd, (j.immediate() >> 16) & kImm16Mask);
dsll(rd, rd, 16);
ori(rd, rd, j.immediate() & kImm16Mask);
}
}
}
void TurboAssembler::MultiPush(RegList regs) {
int16_t num_to_push = base::bits::CountPopulation(regs);
int16_t stack_offset = num_to_push * kPointerSize;
Dsubu(sp, sp, Operand(stack_offset));
for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
if ((regs & (1 << i)) != 0) {
stack_offset -= kPointerSize;
Sd(ToRegister(i), MemOperand(sp, stack_offset));
}
}
}
void TurboAssembler::MultiPop(RegList regs) {
int16_t stack_offset = 0;
for (int16_t i = 0; i < kNumRegisters; i++) {
if ((regs & (1 << i)) != 0) {
Ld(ToRegister(i), MemOperand(sp, stack_offset));
stack_offset += kPointerSize;
}
}
daddiu(sp, sp, stack_offset);
}
void TurboAssembler::MultiPushFPU(RegList regs) {
int16_t num_to_push = base::bits::CountPopulation(regs);
int16_t stack_offset = num_to_push * kDoubleSize;
Dsubu(sp, sp, Operand(stack_offset));
for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
if ((regs & (1 << i)) != 0) {
stack_offset -= kDoubleSize;
Sdc1(FPURegister::from_code(i), MemOperand(sp, stack_offset));
}
}
}
void TurboAssembler::MultiPopFPU(RegList regs) {
int16_t stack_offset = 0;
for (int16_t i = 0; i < kNumRegisters; i++) {
if ((regs & (1 << i)) != 0) {
Ldc1(FPURegister::from_code(i), MemOperand(sp, stack_offset));
stack_offset += kDoubleSize;
}
}
daddiu(sp, sp, stack_offset);
}
void TurboAssembler::Ext(Register rt, Register rs, uint16_t pos,
uint16_t size) {
DCHECK_LT(pos, 32);
DCHECK_LT(pos + size, 33);
ext_(rt, rs, pos, size);
}
void TurboAssembler::Dext(Register rt, Register rs, uint16_t pos,
uint16_t size) {
DCHECK(pos < 64 && 0 < size && size <= 64 && 0 < pos + size &&
pos + size <= 64);
if (size > 32) {
dextm_(rt, rs, pos, size);
} else if (pos >= 32) {
dextu_(rt, rs, pos, size);
} else {
dext_(rt, rs, pos, size);
}
}
void TurboAssembler::Ins(Register rt, Register rs, uint16_t pos,
uint16_t size) {
DCHECK_LT(pos, 32);
DCHECK_LE(pos + size, 32);
DCHECK_NE(size, 0);
ins_(rt, rs, pos, size);
}
void TurboAssembler::Dins(Register rt, Register rs, uint16_t pos,
uint16_t size) {
DCHECK(pos < 64 && 0 < size && size <= 64 && 0 < pos + size &&
pos + size <= 64);
if (pos + size <= 32) {
dins_(rt, rs, pos, size);
} else if (pos < 32) {
dinsm_(rt, rs, pos, size);
} else {
dinsu_(rt, rs, pos, size);
}
}
void TurboAssembler::ExtractBits(Register dest, Register source, Register pos,
int size, bool sign_extend) {
dsrav(dest, source, pos);
Dext(dest, dest, 0, size);
if (sign_extend) {
switch (size) {
case 8:
seb(dest, dest);
break;
case 16:
seh(dest, dest);
break;
case 32:
// sign-extend word
sll(dest, dest, 0);
break;
default:
UNREACHABLE();
}
}
}
void TurboAssembler::InsertBits(Register dest, Register source, Register pos,
int size) {
Dror(dest, dest, pos);
Dins(dest, source, 0, size);
{
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
Dsubu(scratch, zero_reg, pos);
Dror(dest, dest, scratch);
}
}
void TurboAssembler::Neg_s(FPURegister fd, FPURegister fs) {
if (kArchVariant == kMips64r6) {
// r6 neg_s changes the sign for NaN-like operands as well.
neg_s(fd, fs);
} else {
DCHECK_EQ(kArchVariant, kMips64r2);
BlockTrampolinePoolScope block_trampoline_pool(this);
Label is_nan, done;
Register scratch1 = t8;
Register scratch2 = t9;
CompareIsNanF32(fs, fs);
BranchTrueShortF(&is_nan);
Branch(USE_DELAY_SLOT, &done);
// For NaN input, neg_s will return the same NaN value,
// while the sign has to be changed separately.
neg_s(fd, fs); // In delay slot.
bind(&is_nan);
mfc1(scratch1, fs);
li(scratch2, kBinary32SignMask);
Xor(scratch1, scratch1, scratch2);
mtc1(scratch1, fd);
bind(&done);
}
}
void TurboAssembler::Neg_d(FPURegister fd, FPURegister fs) {
if (kArchVariant == kMips64r6) {
// r6 neg_d changes the sign for NaN-like operands as well.
neg_d(fd, fs);
} else {
DCHECK_EQ(kArchVariant, kMips64r2);
BlockTrampolinePoolScope block_trampoline_pool(this);
Label is_nan, done;
Register scratch1 = t8;
Register scratch2 = t9;
CompareIsNanF64(fs, fs);
BranchTrueShortF(&is_nan);
Branch(USE_DELAY_SLOT, &done);
// For NaN input, neg_d will return the same NaN value,
// while the sign has to be changed separately.
neg_d(fd, fs); // In delay slot.
bind(&is_nan);
dmfc1(scratch1, fs);
li(scratch2, Double::kSignMask);
Xor(scratch1, scratch1, scratch2);
dmtc1(scratch1, fd);
bind(&done);
}
}
void TurboAssembler::Cvt_d_uw(FPURegister fd, FPURegister fs) {
// Move the data from fs to t8.
BlockTrampolinePoolScope block_trampoline_pool(this);
mfc1(t8, fs);
Cvt_d_uw(fd, t8);
}
void TurboAssembler::Cvt_d_uw(FPURegister fd, Register rs) {
BlockTrampolinePoolScope block_trampoline_pool(this);
// Convert rs to a FP value in fd.
DCHECK(rs != t9);
DCHECK(rs != at);
// Zero extend int32 in rs.
Dext(t9, rs, 0, 32);
dmtc1(t9, fd);
cvt_d_l(fd, fd);
}
void TurboAssembler::Cvt_d_ul(FPURegister fd, FPURegister fs) {
BlockTrampolinePoolScope block_trampoline_pool(this);
// Move the data from fs to t8.
dmfc1(t8, fs);
Cvt_d_ul(fd, t8);
}
void TurboAssembler::Cvt_d_ul(FPURegister fd, Register rs) {
BlockTrampolinePoolScope block_trampoline_pool(this);
// Convert rs to a FP value in fd.
DCHECK(rs != t9);
DCHECK(rs != at);
Label msb_clear, conversion_done;
Branch(&msb_clear, ge, rs, Operand(zero_reg));
// Rs >= 2^63
andi(t9, rs, 1);
dsrl(rs, rs, 1);
or_(t9, t9, rs);
dmtc1(t9, fd);
cvt_d_l(fd, fd);
Branch(USE_DELAY_SLOT, &conversion_done);
add_d(fd, fd, fd); // In delay slot.
bind(&msb_clear);
// Rs < 2^63, we can do simple conversion.
dmtc1(rs, fd);
cvt_d_l(fd, fd);
bind(&conversion_done);
}
void TurboAssembler::Cvt_s_uw(FPURegister fd, FPURegister fs) {
BlockTrampolinePoolScope block_trampoline_pool(this);
// Move the data from fs to t8.
mfc1(t8, fs);
Cvt_s_uw(fd, t8);
}
void TurboAssembler::Cvt_s_uw(FPURegister fd, Register rs) {
BlockTrampolinePoolScope block_trampoline_pool(this);
// Convert rs to a FP value in fd.
DCHECK(rs != t9);
DCHECK(rs != at);
// Zero extend int32 in rs.
Dext(t9, rs, 0, 32);
dmtc1(t9, fd);
cvt_s_l(fd, fd);
}
void TurboAssembler::Cvt_s_ul(FPURegister fd, FPURegister fs) {
BlockTrampolinePoolScope block_trampoline_pool(this);
// Move the data from fs to t8.
dmfc1(t8, fs);
Cvt_s_ul(fd, t8);
}
void TurboAssembler::Cvt_s_ul(FPURegister fd, Register rs) {
BlockTrampolinePoolScope block_trampoline_pool(this);
// Convert rs to a FP value in fd.
DCHECK(rs != t9);
DCHECK(rs != at);
Label positive, conversion_done;
Branch(&positive, ge, rs, Operand(zero_reg));
// Rs >= 2^31.
andi(t9, rs, 1);
dsrl(rs, rs, 1);
or_(t9, t9, rs);
dmtc1(t9, fd);
cvt_s_l(fd, fd);
Branch(USE_DELAY_SLOT, &conversion_done);
add_s(fd, fd, fd); // In delay slot.
bind(&positive);
// Rs < 2^31, we can do simple conversion.
dmtc1(rs, fd);
cvt_s_l(fd, fd);
bind(&conversion_done);
}
void MacroAssembler::Round_l_d(FPURegister fd, FPURegister fs) {
round_l_d(fd, fs);
}
void MacroAssembler::Floor_l_d(FPURegister fd, FPURegister fs) {
floor_l_d(fd, fs);
}
void MacroAssembler::Ceil_l_d(FPURegister fd, FPURegister fs) {
ceil_l_d(fd, fs);
}
void MacroAssembler::Trunc_l_d(FPURegister fd, FPURegister fs) {
trunc_l_d(fd, fs);
}
void MacroAssembler::Trunc_l_ud(FPURegister fd, FPURegister fs,
FPURegister scratch) {
BlockTrampolinePoolScope block_trampoline_pool(this);
// Load to GPR.
dmfc1(t8, fs);
// Reset sign bit.
{
UseScratchRegisterScope temps(this);
Register scratch1 = temps.Acquire();
li(scratch1, 0x7FFFFFFFFFFFFFFF);
and_(t8, t8, scratch1);
}
dmtc1(t8, fs);
trunc_l_d(fd, fs);
}
void TurboAssembler::Trunc_uw_d(FPURegister fd, FPURegister fs,
FPURegister scratch) {
BlockTrampolinePoolScope block_trampoline_pool(this);
Trunc_uw_d(t8, fs, scratch);
mtc1(t8, fd);
}
void TurboAssembler::Trunc_uw_s(FPURegister fd, FPURegister fs,
FPURegister scratch) {
BlockTrampolinePoolScope block_trampoline_pool(this);
Trunc_uw_s(t8, fs, scratch);
mtc1(t8, fd);
}
void TurboAssembler::Trunc_ul_d(FPURegister fd, FPURegister fs,
FPURegister scratch, Register result) {
BlockTrampolinePoolScope block_trampoline_pool(this);
Trunc_ul_d(t8, fs, scratch, result);
dmtc1(t8, fd);
}
void TurboAssembler::Trunc_ul_s(FPURegister fd, FPURegister fs,
FPURegister scratch, Register result) {
BlockTrampolinePoolScope block_trampoline_pool(this);
Trunc_ul_s(t8, fs, scratch, result);
dmtc1(t8, fd);
}
void MacroAssembler::Trunc_w_d(FPURegister fd, FPURegister fs) {
trunc_w_d(fd, fs);
}
void MacroAssembler::Round_w_d(FPURegister fd, FPURegister fs) {
round_w_d(fd, fs);
}
void MacroAssembler::Floor_w_d(FPURegister fd, FPURegister fs) {
floor_w_d(fd, fs);
}
void MacroAssembler::Ceil_w_d(FPURegister fd, FPURegister fs) {
ceil_w_d(fd, fs);
}
void TurboAssembler::Trunc_uw_d(Register rd, FPURegister fs,
FPURegister scratch) {
DCHECK(fs != scratch);
DCHECK(rd != at);
{
// Load 2^31 into scratch as its float representation.
UseScratchRegisterScope temps(this);
Register scratch1 = temps.Acquire();
li(scratch1, 0x41E00000);
mtc1(zero_reg, scratch);
mthc1(scratch1, scratch);
}
// Test if scratch > fd.
// If fd < 2^31 we can convert it normally.
Label simple_convert;
CompareF64(OLT, fs, scratch);
BranchTrueShortF(&simple_convert);
// First we subtract 2^31 from fd, then trunc it to rs
// and add 2^31 to rs.
sub_d(scratch, fs, scratch);
trunc_w_d(scratch, scratch);
mfc1(rd, scratch);
Or(rd, rd, 1 << 31);
Label done;
Branch(&done);
// Simple conversion.
bind(&simple_convert);
trunc_w_d(scratch, fs);
mfc1(rd, scratch);
bind(&done);
}
void TurboAssembler::Trunc_uw_s(Register rd, FPURegister fs,
FPURegister scratch) {
DCHECK(fs != scratch);
DCHECK(rd != at);
{
// Load 2^31 into scratch as its float representation.
UseScratchRegisterScope temps(this);
Register scratch1 = temps.Acquire();
li(scratch1, 0x4F000000);
mtc1(scratch1, scratch);
}
// Test if scratch > fs.
// If fs < 2^31 we can convert it normally.
Label simple_convert;
CompareF32(OLT, fs, scratch);
BranchTrueShortF(&simple_convert);
// First we subtract 2^31 from fs, then trunc it to rd
// and add 2^31 to rd.
sub_s(scratch, fs, scratch);
trunc_w_s(scratch, scratch);
mfc1(rd, scratch);
Or(rd, rd, 1 << 31);
Label done;
Branch(&done);
// Simple conversion.
bind(&simple_convert);
trunc_w_s(scratch, fs);
mfc1(rd, scratch);
bind(&done);
}
void TurboAssembler::Trunc_ul_d(Register rd, FPURegister fs,
FPURegister scratch, Register result) {
DCHECK(fs != scratch);
DCHECK(result.is_valid() ? !AreAliased(rd, result, at) : !AreAliased(rd, at));
Label simple_convert, done, fail;
if (result.is_valid()) {
mov(result, zero_reg);
Move(scratch, -1.0);
// If fd =< -1 or unordered, then the conversion fails.
CompareF64(OLE, fs, scratch);
BranchTrueShortF(&fail);
CompareIsNanF64(fs, scratch);
BranchTrueShortF(&fail);
}
// Load 2^63 into scratch as its double representation.
li(at, 0x43E0000000000000);
dmtc1(at, scratch);
// Test if scratch > fs.
// If fs < 2^63 we can convert it normally.
CompareF64(OLT, fs, scratch);
BranchTrueShortF(&simple_convert);
// First we subtract 2^63 from fs, then trunc it to rd
// and add 2^63 to rd.
sub_d(scratch, fs, scratch);
trunc_l_d(scratch, scratch);
dmfc1(rd, scratch);
Or(rd, rd, Operand(1UL << 63));
Branch(&done);
// Simple conversion.
bind(&simple_convert);
trunc_l_d(scratch, fs);
dmfc1(rd, scratch);
bind(&done);
if (result.is_valid()) {
// Conversion is failed if the result is negative.
{
UseScratchRegisterScope temps(this);
Register scratch1 = temps.Acquire();
addiu(scratch1, zero_reg, -1);
dsrl(scratch1, scratch1, 1); // Load 2^62.
dmfc1(result, scratch);
xor_(result, result, scratch1);
}
Slt(result, zero_reg, result);
}
bind(&fail);
}
void TurboAssembler::Trunc_ul_s(Register rd, FPURegister fs,
FPURegister scratch, Register result) {
DCHECK(fs != scratch);
DCHECK(result.is_valid() ? !AreAliased(rd, result, at) : !AreAliased(rd, at));
Label simple_convert, done, fail;
if (result.is_valid()) {
mov(result, zero_reg);
Move(scratch, -1.0f);
// If fd =< -1 or unordered, then the conversion fails.
CompareF32(OLE, fs, scratch);
BranchTrueShortF(&fail);
CompareIsNanF32(fs, scratch);
BranchTrueShortF(&fail);
}
{
// Load 2^63 into scratch as its float representation.
UseScratchRegisterScope temps(this);
Register scratch1 = temps.Acquire();
li(scratch1, 0x5F000000);
mtc1(scratch1, scratch);
}
// Test if scratch > fs.
// If fs < 2^63 we can convert it normally.
CompareF32(OLT, fs, scratch);
BranchTrueShortF(&simple_convert);
// First we subtract 2^63 from fs, then trunc it to rd
// and add 2^63 to rd.
sub_s(scratch, fs, scratch);
trunc_l_s(scratch, scratch);
dmfc1(rd, scratch);
Or(rd, rd, Operand(1UL << 63));
Branch(&done);
// Simple conversion.
bind(&simple_convert);
trunc_l_s(scratch, fs);
dmfc1(rd, scratch);
bind(&done);
if (result.is_valid()) {
// Conversion is failed if the result is negative or unordered.
{
UseScratchRegisterScope temps(this);
Register scratch1 = temps.Acquire();
addiu(scratch1, zero_reg, -1);
dsrl(scratch1, scratch1, 1); // Load 2^62.
dmfc1(result, scratch);
xor_(result, result, scratch1);
}
Slt(result, zero_reg, result);
}
bind(&fail);
}
template <typename RoundFunc>
void TurboAssembler::RoundDouble(FPURegister dst, FPURegister src,
FPURoundingMode mode, RoundFunc round) {
BlockTrampolinePoolScope block_trampoline_pool(this);
Register scratch = t8;
if (kArchVariant == kMips64r6) {
cfc1(scratch, FCSR);
li(at, Operand(mode));
ctc1(at, FCSR);
rint_d(dst, src);
ctc1(scratch, FCSR);
} else {
Label done;
if (!IsDoubleZeroRegSet()) {
Move(kDoubleRegZero, 0.0);
}
mfhc1(scratch, src);
Ext(at, scratch, HeapNumber::kExponentShift, HeapNumber::kExponentBits);
Branch(USE_DELAY_SLOT, &done, hs, at,
Operand(HeapNumber::kExponentBias + HeapNumber::kMantissaBits));
// Canonicalize the result.
sub_d(dst, src, kDoubleRegZero);
round(this, dst, src);
dmfc1(at, dst);
Branch(USE_DELAY_SLOT, &done, ne, at, Operand(zero_reg));
cvt_d_l(dst, dst);
srl(at, scratch, 31);
sll(at, at, 31);
mthc1(at, dst);
bind(&done);
}
}
void TurboAssembler::Floor_d_d(FPURegister dst, FPURegister src) {
RoundDouble(dst, src, mode_floor,
[](TurboAssembler* tasm, FPURegister dst, FPURegister src) {
tasm->floor_l_d(dst, src);
});
}
void TurboAssembler::Ceil_d_d(FPURegister dst, FPURegister src) {
RoundDouble(dst, src, mode_ceil,
[](TurboAssembler* tasm, FPURegister dst, FPURegister src) {
tasm->ceil_l_d(dst, src);
});
}
void TurboAssembler::Trunc_d_d(FPURegister dst, FPURegister src) {
RoundDouble(dst, src, mode_trunc,
[](TurboAssembler* tasm, FPURegister dst, FPURegister src) {
tasm->trunc_l_d(dst, src);
});
}
void TurboAssembler::Round_d_d(FPURegister dst, FPURegister src) {
RoundDouble(dst, src, mode_round,
[](TurboAssembler* tasm, FPURegister dst, FPURegister src) {
tasm->round_l_d(dst, src);
});
}
template <typename RoundFunc>
void TurboAssembler::RoundFloat(FPURegister dst, FPURegister src,
FPURoundingMode mode, RoundFunc round) {
BlockTrampolinePoolScope block_trampoline_pool(this);
Register scratch = t8;
if (kArchVariant == kMips64r6) {
cfc1(scratch, FCSR);
li(at, Operand(mode));
ctc1(at, FCSR);
rint_s(dst, src);
ctc1(scratch, FCSR);
} else {
int32_t kFloat32ExponentBias = 127;
int32_t kFloat32MantissaBits = 23;
int32_t kFloat32ExponentBits = 8;
Label done;
if (!IsDoubleZeroRegSet()) {
Move(kDoubleRegZero, 0.0);
}
mfc1(scratch, src);
Ext(at, scratch, kFloat32MantissaBits, kFloat32ExponentBits);
Branch(USE_DELAY_SLOT, &done, hs, at,
Operand(kFloat32ExponentBias + kFloat32MantissaBits));
// Canonicalize the result.
sub_s(dst, src, kDoubleRegZero);
round(this, dst, src);
mfc1(at, dst);
Branch(USE_DELAY_SLOT, &done, ne, at, Operand(zero_reg));
cvt_s_w(dst, dst);
srl(at, scratch, 31);
sll(at, at, 31);
mtc1(at, dst);
bind(&done);
}
}
void TurboAssembler::Floor_s_s(FPURegister dst, FPURegister src) {
RoundFloat(dst, src, mode_floor,
[](TurboAssembler* tasm, FPURegister dst, FPURegister src) {
tasm->floor_w_s(dst, src);
});
}
void TurboAssembler::Ceil_s_s(FPURegister dst, FPURegister src) {
RoundFloat(dst, src, mode_ceil,
[](TurboAssembler* tasm, FPURegister dst, FPURegister src) {
tasm->ceil_w_s(dst, src);
});
}
void TurboAssembler::Trunc_s_s(FPURegister dst, FPURegister src) {
RoundFloat(dst, src, mode_trunc,
[](TurboAssembler* tasm, FPURegister dst, FPURegister src) {
tasm->trunc_w_s(dst, src);
});
}
void TurboAssembler::Round_s_s(FPURegister dst, FPURegister src) {
RoundFloat(dst, src, mode_round,
[](TurboAssembler* tasm, FPURegister dst, FPURegister src) {
tasm->round_w_s(dst, src);
});
}
void TurboAssembler::MSARoundW(MSARegister dst, MSARegister src,
FPURoundingMode mode) {
BlockTrampolinePoolScope block_trampoline_pool(this);
Register scratch = t8;
Register scratch2 = at;
cfcmsa(scratch, MSACSR);
if (mode == kRoundToNearest) {
scratch2 = zero_reg;
} else {
li(scratch2, Operand(mode));
}
ctcmsa(MSACSR, scratch2);
frint_w(dst, src);
ctcmsa(MSACSR, scratch);
}
void TurboAssembler::MSARoundD(MSARegister dst, MSARegister src,
FPURoundingMode mode) {
BlockTrampolinePoolScope block_trampoline_pool(this);
Register scratch = t8;
Register scratch2 = at;
cfcmsa(scratch, MSACSR);
if (mode == kRoundToNearest) {
scratch2 = zero_reg;
} else {
li(scratch2, Operand(mode));
}
ctcmsa(MSACSR, scratch2);
frint_d(dst, src);
ctcmsa(MSACSR, scratch);
}
void MacroAssembler::Madd_s(FPURegister fd, FPURegister fr, FPURegister fs,
FPURegister ft, FPURegister scratch) {
DCHECK(fr != scratch && fs != scratch && ft != scratch);
mul_s(scratch, fs, ft);
add_s(fd, fr, scratch);
}
void MacroAssembler::Madd_d(FPURegister fd, FPURegister fr, FPURegister fs,
FPURegister ft, FPURegister scratch) {
DCHECK(fr != scratch && fs != scratch && ft != scratch);
mul_d(scratch, fs, ft);
add_d(fd, fr, scratch);
}
void MacroAssembler::Msub_s(FPURegister fd, FPURegister fr, FPURegister fs,
FPURegister ft, FPURegister scratch) {
DCHECK(fr != scratch && fs != scratch && ft != scratch);
mul_s(scratch, fs, ft);
sub_s(fd, scratch, fr);
}
void MacroAssembler::Msub_d(FPURegister fd, FPURegister fr, FPURegister fs,
FPURegister ft, FPURegister scratch) {
DCHECK(fr != scratch && fs != scratch && ft != scratch);
mul_d(scratch, fs, ft);
sub_d(fd, scratch, fr);
}
void TurboAssembler::CompareF(SecondaryField sizeField, FPUCondition cc,
FPURegister cmp1, FPURegister cmp2) {
if (kArchVariant == kMips64r6) {
sizeField = sizeField == D ? L : W;
DCHECK(cmp1 != kDoubleCompareReg && cmp2 != kDoubleCompareReg);
cmp(cc, sizeField, kDoubleCompareReg, cmp1, cmp2);
} else {
c(cc, sizeField, cmp1, cmp2);
}
}
void TurboAssembler::CompareIsNanF(SecondaryField sizeField, FPURegister cmp1,
FPURegister cmp2) {
CompareF(sizeField, UN, cmp1, cmp2);
}
void TurboAssembler::BranchTrueShortF(Label* target, BranchDelaySlot bd) {
if (kArchVariant == kMips64r6) {
bc1nez(target, kDoubleCompareReg);
} else {
bc1t(target);
}
if (bd == PROTECT) {
nop();
}
}
void TurboAssembler::BranchFalseShortF(Label* target, BranchDelaySlot bd) {
if (kArchVariant == kMips64r6) {
bc1eqz(target, kDoubleCompareReg);
} else {
bc1f(target);
}
if (bd == PROTECT) {
nop();
}
}
void TurboAssembler::BranchTrueF(Label* target, BranchDelaySlot bd) {
bool long_branch =
target->is_bound() ? !is_near(target) : is_trampoline_emitted();
if (long_branch) {
Label skip;
BranchFalseShortF(&skip);
BranchLong(target, bd);
bind(&skip);
} else {
BranchTrueShortF(target, bd);
}
}
void TurboAssembler::BranchFalseF(Label* target, BranchDelaySlot bd) {
bool long_branch =
target->is_bound() ? !is_near(target) : is_trampoline_emitted();
if (long_branch) {
Label skip;
BranchTrueShortF(&skip);
BranchLong(target, bd);
bind(&skip);
} else {
BranchFalseShortF(target, bd);
}
}
void TurboAssembler::BranchMSA(Label* target, MSABranchDF df,
MSABranchCondition cond, MSARegister wt,
BranchDelaySlot bd) {
{
BlockTrampolinePoolScope block_trampoline_pool(this);
if (target) {
bool long_branch =
target->is_bound() ? !is_near(target) : is_trampoline_emitted();
if (long_branch) {
Label skip;
MSABranchCondition neg_cond = NegateMSABranchCondition(cond);
BranchShortMSA(df, &skip, neg_cond, wt, bd);
BranchLong(target, bd);
bind(&skip);
} else {
BranchShortMSA(df, target, cond, wt, bd);
}
}
}
}
void TurboAssembler::BranchShortMSA(MSABranchDF df, Label* target,
MSABranchCondition cond, MSARegister wt,
BranchDelaySlot bd) {
if (IsEnabled(MIPS_SIMD)) {
BlockTrampolinePoolScope block_trampoline_pool(this);
if (target) {
switch (cond) {
case all_not_zero:
switch (df) {
case MSA_BRANCH_D:
bnz_d(wt, target);
break;
case MSA_BRANCH_W:
bnz_w(wt, target);
break;
case MSA_BRANCH_H:
bnz_h(wt, target);
break;
case MSA_BRANCH_B:
default:
bnz_b(wt, target);
}
break;
case one_elem_not_zero:
bnz_v(wt, target);
break;
case one_elem_zero:
switch (df) {
case MSA_BRANCH_D:
bz_d(wt, target);
break;
case MSA_BRANCH_W:
bz_w(wt, target);
break;
case MSA_BRANCH_H:
bz_h(wt, target);
break;
case MSA_BRANCH_B:
default:
bz_b(wt, target);
}
break;
case all_zero:
bz_v(wt, target);
break;
default:
UNREACHABLE();
}
}
} else {
UNREACHABLE();
}
if (bd == PROTECT) {
nop();
}
}
void TurboAssembler::FmoveLow(FPURegister dst, Register src_low) {
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
DCHECK(src_low != scratch);
mfhc1(scratch, dst);
mtc1(src_low, dst);
mthc1(scratch, dst);
}
void TurboAssembler::Move(FPURegister dst, uint32_t src) {
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
li(scratch, Operand(static_cast<int32_t>(src)));
mtc1(scratch, dst);
}
void TurboAssembler::Move(FPURegister dst, uint64_t src) {
// Handle special values first.
if (src == bit_cast<uint64_t>(0.0) && has_double_zero_reg_set_) {
mov_d(dst, kDoubleRegZero);
} else if (src == bit_cast<uint64_t>(-0.0) && has_double_zero_reg_set_) {
Neg_d(dst, kDoubleRegZero);
} else {
uint32_t lo = src & 0xFFFFFFFF;
uint32_t hi = src >> 32;
// Move the low part of the double into the lower of the corresponding FPU
// register of FPU register pair.
if (lo != 0) {
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
li(scratch, Operand(lo));
mtc1(scratch, dst);
} else {
mtc1(zero_reg, dst);
}
// Move the high part of the double into the higher of the corresponding FPU
// register of FPU register pair.
if (hi != 0) {
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
li(scratch, Operand(hi));
mthc1(scratch, dst);
} else {
mthc1(zero_reg, dst);
}
if (dst == kDoubleRegZero) has_double_zero_reg_set_ = true;
}
}
void TurboAssembler::Movz(Register rd, Register rs, Register rt) {
if (kArchVariant == kMips64r6) {
Label done;
Branch(&done, ne, rt, Operand(zero_reg));
mov(rd, rs);
bind(&done);
} else {
movz(rd, rs, rt);
}
}
void TurboAssembler::Movn(Register rd, Register rs, Register rt) {
if (kArchVariant == kMips64r6) {
Label done;
Branch(&done, eq, rt, Operand(zero_reg));
mov(rd, rs);
bind(&done);
} else {
movn(rd, rs, rt);
}
}
void TurboAssembler::LoadZeroOnCondition(Register rd, Register rs,
const Operand& rt, Condition cond) {
BlockTrampolinePoolScope block_trampoline_pool(this);
switch (cond) {
case cc_always:
mov(rd, zero_reg);
break;
case eq:
if (rs == zero_reg) {
if (rt.is_reg()) {
LoadZeroIfConditionZero(rd, rt.rm());
} else {
if (rt.immediate() == 0) {
mov(rd, zero_reg);
} else {
nop();
}
}
} else if (IsZero(rt)) {
LoadZeroIfConditionZero(rd, rs);
} else {
Dsubu(t9, rs, rt);
LoadZeroIfConditionZero(rd, t9);
}
break;
case ne:
if (rs == zero_reg) {
if (rt.is_reg()) {
LoadZeroIfConditionNotZero(rd, rt.rm());
} else {
if (rt.immediate() != 0) {
mov(rd, zero_reg);
} else {
nop();
}
}
} else if (IsZero(rt)) {
LoadZeroIfConditionNotZero(rd, rs);
} else {
Dsubu(t9, rs, rt);
LoadZeroIfConditionNotZero(rd, t9);
}
break;
// Signed comparison.
case greater:
Sgt(t9, rs, rt);
LoadZeroIfConditionNotZero(rd, t9);
break;
case greater_equal:
Sge(t9, rs, rt);
LoadZeroIfConditionNotZero(rd, t9);
// rs >= rt
break;
case less:
Slt(t9, rs, rt);
LoadZeroIfConditionNotZero(rd, t9);
// rs < rt
break;
case less_equal:
Sle(t9, rs, rt);
LoadZeroIfConditionNotZero(rd, t9);
// rs <= rt
break;
// Unsigned comparison.
case Ugreater:
Sgtu(t9, rs, rt);
LoadZeroIfConditionNotZero(rd, t9);
// rs > rt
break;
case Ugreater_equal:
Sgeu(t9, rs, rt);
LoadZeroIfConditionNotZero(rd, t9);
// rs >= rt
break;
case Uless:
Sltu(t9, rs, rt);
LoadZeroIfConditionNotZero(rd, t9);
// rs < rt
break;
case Uless_equal:
Sleu(t9, rs, rt);
LoadZeroIfConditionNotZero(rd, t9);
// rs <= rt
break;
default:
UNREACHABLE();
}
}
void TurboAssembler::LoadZeroIfConditionNotZero(Register dest,
Register condition) {
if (kArchVariant == kMips64r6) {
seleqz(dest, dest, condition);
} else {
Movn(dest, zero_reg, condition);
}
}
void TurboAssembler::LoadZeroIfConditionZero(Register dest,
Register condition) {
if (kArchVariant == kMips64r6) {
selnez(dest, dest, condition);
} else {
Movz(dest, zero_reg, condition);
}
}
void TurboAssembler::LoadZeroIfFPUCondition(Register dest) {
if (kArchVariant == kMips64r6) {
dmfc1(kScratchReg, kDoubleCompareReg);
LoadZeroIfConditionNotZero(dest, kScratchReg);
} else {
Movt(dest, zero_reg);
}
}
void TurboAssembler::LoadZeroIfNotFPUCondition(Register dest) {
if (kArchVariant == kMips64r6) {
dmfc1(kScratchReg, kDoubleCompareReg);
LoadZeroIfConditionZero(dest, kScratchReg);
} else {
Movf(dest, zero_reg);
}
}
void TurboAssembler::Movt(Register rd, Register rs, uint16_t cc) {
movt(rd, rs, cc);
}
void TurboAssembler::Movf(Register rd, Register rs, uint16_t cc) {
movf(rd, rs, cc);
}
void TurboAssembler::Clz(Register rd, Register rs) { clz(rd, rs); }
void TurboAssembler::Dclz(Register rd, Register rs) { dclz(rd, rs); }
void TurboAssembler::Ctz(Register rd, Register rs) {
if (kArchVariant == kMips64r6) {
// We don't have an instruction to count the number of trailing zeroes.
// Start by flipping the bits end-for-end so we can count the number of
// leading zeroes instead.
rotr(rd, rs, 16);
wsbh(rd, rd);
bitswap(rd, rd);
Clz(rd, rd);
} else {
// Convert trailing zeroes to trailing ones, and bits to their left
// to zeroes.
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
Daddu(scratch, rs, -1);
Xor(rd, scratch, rs);
And(rd, rd, scratch);
// Count number of leading zeroes.
Clz(rd, rd);
// Subtract number of leading zeroes from 32 to get number of trailing
// ones. Remember that the trailing ones were formerly trailing zeroes.
li(scratch, 32);
Subu(rd, scratch, rd);
}
}
void TurboAssembler::Dctz(Register rd, Register rs) {
if (kArchVariant == kMips64r6) {
// We don't have an instruction to count the number of trailing zeroes.
// Start by flipping the bits end-for-end so we can count the number of
// leading zeroes instead.
dsbh(rd, rs);
dshd(rd, rd);
dbitswap(rd, rd);
dclz(rd, rd);
} else {
// Convert trailing zeroes to trailing ones, and bits to their left
// to zeroes.
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
Daddu(scratch, rs, -1);
Xor(rd, scratch, rs);
And(rd, rd, scratch);
// Count number of leading zeroes.
dclz(rd, rd);
// Subtract number of leading zeroes from 64 to get number of trailing
// ones. Remember that the trailing ones were formerly trailing zeroes.
li(scratch, 64);
Dsubu(rd, scratch, rd);
}
}
void TurboAssembler::Popcnt(Register rd, Register rs) {
// https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
//
// A generalization of the best bit counting method to integers of
// bit-widths up to 128 (parameterized by type T) is this:
//
// v = v - ((v >> 1) & (T)~(T)0/3); // temp
// v = (v & (T)~(T)0/15*3) + ((v >> 2) & (T)~(T)0/15*3); // temp
// v = (v + (v >> 4)) & (T)~(T)0/255*15; // temp
// c = (T)(v * ((T)~(T)0/255)) >> (sizeof(T) - 1) * BITS_PER_BYTE; //count
//
// For comparison, for 32-bit quantities, this algorithm can be executed
// using 20 MIPS instructions (the calls to LoadConst32() generate two
// machine instructions each for the values being used in this algorithm).
// A(n unrolled) loop-based algorithm requires 25 instructions.
//
// For a 64-bit operand this can be performed in 24 instructions compared
// to a(n unrolled) loop based algorithm which requires 38 instructions.
//
// There are algorithms which are faster in the cases where very few
// bits are set but the algorithm here attempts to minimize the total
// number of instructions executed even when a large number of bits
// are set.
uint32_t B0 = 0x55555555; // (T)~(T)0/3
uint32_t B1 = 0x33333333; // (T)~(T)0/15*3
uint32_t B2 = 0x0F0F0F0F; // (T)~(T)0/255*15
uint32_t value = 0x01010101; // (T)~(T)0/255
uint32_t shift = 24; // (sizeof(T) - 1) * BITS_PER_BYTE
UseScratchRegisterScope temps(this);
BlockTrampolinePoolScope block_trampoline_pool(this);
Register scratch = temps.Acquire();
Register scratch2 = t8;
srl(scratch, rs, 1);
li(scratch2, B0);
And(scratch, scratch, scratch2);
Subu(scratch, rs, scratch);
li(scratch2, B1);
And(rd, scratch, scratch2);
srl(scratch, scratch, 2);
And(scratch, scratch, scratch2);
Addu(scratch, rd, scratch);
srl(rd, scratch, 4);
Addu(rd, rd, scratch);
li(scratch2, B2);
And(rd, rd, scratch2);
li(scratch, value);
Mul(rd, rd, scratch);
srl(rd, rd, shift);
}
void TurboAssembler::Dpopcnt(Register rd, Register rs) {
uint64_t B0 = 0x5555555555555555l; // (T)~(T)0/3
uint64_t B1 = 0x3333333333333333l; // (T)~(T)0/15*3
uint64_t B2 = 0x0F0F0F0F0F0F0F0Fl; // (T)~(T)0/255*15
uint64_t value = 0x0101010101010101l; // (T)~(T)0/255
uint64_t shift = 24; // (sizeof(T) - 1) * BITS_PER_BYTE
UseScratchRegisterScope temps(this);
BlockTrampolinePoolScope block_trampoline_pool(this);
Register scratch = temps.Acquire();
Register scratch2 = t8;
dsrl(scratch, rs, 1);
li(scratch2, B0);
And(scratch, scratch, scratch2);
Dsubu(scratch, rs, scratch);
li(scratch2, B1);
And(rd, scratch, scratch2);
dsrl(scratch, scratch, 2);
And(scratch, scratch, scratch2);
Daddu(scratch, rd, scratch);
dsrl(rd, scratch, 4);
Daddu(rd, rd, scratch);
li(scratch2, B2);
And(rd, rd, scratch2);
li(scratch, value);
Dmul(rd, rd, scratch);
dsrl32(rd, rd, shift);
}
void MacroAssembler::EmitFPUTruncate(
FPURoundingMode rounding_mode, Register result, DoubleRegister double_input,
Register scratch, DoubleRegister double_scratch, Register except_flag,
CheckForInexactConversion check_inexact) {
DCHECK(result != scratch);
DCHECK(double_input != double_scratch);
DCHECK(except_flag != scratch);
Label done;
// Clear the except flag (0 = no exception)
mov(except_flag, zero_reg);
// Test for values that can be exactly represented as a signed 32-bit integer.
cvt_w_d(double_scratch, double_input);
mfc1(result, double_scratch);
cvt_d_w(double_scratch, double_scratch);
CompareF64(EQ, double_input, double_scratch);
BranchTrueShortF(&done);
int32_t except_mask = kFCSRFlagMask; // Assume interested in all exceptions.
if (check_inexact == kDontCheckForInexactConversion) {
// Ignore inexact exceptions.
except_mask &= ~kFCSRInexactFlagMask;
}
// Save FCSR.
cfc1(scratch, FCSR);
// Disable FPU exceptions.
ctc1(zero_reg, FCSR);
// Do operation based on rounding mode.
switch (rounding_mode) {
case kRoundToNearest:
Round_w_d(double_scratch, double_input);
break;
case kRoundToZero:
Trunc_w_d(double_scratch, double_input);
break;
case kRoundToPlusInf:
Ceil_w_d(double_scratch, double_input);
break;
case kRoundToMinusInf:
Floor_w_d(double_scratch, double_input);
break;
} // End of switch-statement.
// Retrieve FCSR.
cfc1(except_flag, FCSR);
// Restore FCSR.
ctc1(scratch, FCSR);
// Move the converted value into the result register.
mfc1(result, double_scratch);
// Check for fpu exceptions.
And(except_flag, except_flag, Operand(except_mask));
bind(&done);
}
void TurboAssembler::TryInlineTruncateDoubleToI(Register result,
DoubleRegister double_input,
Label* done) {
DoubleRegister single_scratch = kScratchDoubleReg.low();
UseScratchRegisterScope temps(this);
BlockTrampolinePoolScope block_trampoline_pool(this);
Register scratch = temps.Acquire();
Register scratch2 = t9;
// Clear cumulative exception flags and save the FCSR.
cfc1(scratch2, FCSR);
ctc1(zero_reg, FCSR);
// Try a conversion to a signed integer.
trunc_w_d(single_scratch, double_input);
mfc1(result, single_scratch);
// Retrieve and restore the FCSR.
cfc1(scratch, FCSR);
ctc1(scratch2, FCSR);
// Check for overflow and NaNs.
And(scratch, scratch,
kFCSROverflowFlagMask | kFCSRUnderflowFlagMask | kFCSRInvalidOpFlagMask);
// If we had no exceptions we are done.
Branch(done, eq, scratch, Operand(zero_reg));
}
void TurboAssembler::TruncateDoubleToI(Isolate* isolate, Zone* zone,
Register result,
DoubleRegister double_input,
StubCallMode stub_mode) {
Label done;
TryInlineTruncateDoubleToI(result, double_input, &done);
// If we fell through then inline version didn't succeed - call stub instead.
push(ra);
Dsubu(sp, sp, Operand(kDoubleSize)); // Put input on stack.
Sdc1(double_input, MemOperand(sp, 0));
if (stub_mode == StubCallMode::kCallWasmRuntimeStub) {
Call(wasm::WasmCode::kDoubleToI, RelocInfo::WASM_STUB_CALL);
} else {
Call(BUILTIN_CODE(isolate, DoubleToI), RelocInfo::CODE_TARGET);
}
Ld(result, MemOperand(sp, 0));
Daddu(sp, sp, Operand(kDoubleSize));
pop(ra);
bind(&done);
}
// Emulated condtional branches do not emit a nop in the branch delay slot.
//
// BRANCH_ARGS_CHECK checks that conditional jump arguments are correct.
#define BRANCH_ARGS_CHECK(cond, rs, rt) \
DCHECK((cond == cc_always && rs == zero_reg && rt.rm() == zero_reg) || \
(cond != cc_always && (rs != zero_reg || rt.rm() != zero_reg)))
void TurboAssembler::Branch(int32_t offset, BranchDelaySlot bdslot) {
DCHECK_EQ(kArchVariant, kMips64r6 ? is_int26(offset) : is_int16(offset));
BranchShort(offset, bdslot);
}
void TurboAssembler::Branch(int32_t offset, Condition cond, Register rs,
const Operand& rt, BranchDelaySlot bdslot) {
bool is_near = BranchShortCheck(offset, nullptr, cond, rs, rt, bdslot);
DCHECK(is_near);
USE(is_near);
}
void TurboAssembler::Branch(Label* L, BranchDelaySlot bdslot) {
if (L->is_bound()) {
if (is_near_branch(L)) {
BranchShort(L, bdslot);
} else {
BranchLong(L, bdslot);
}
} else {
if (is_trampoline_emitted()) {
BranchLong(L, bdslot);
} else {
BranchShort(L, bdslot);
}
}
}
void TurboAssembler::Branch(Label* L, Condition cond, Register rs,
const Operand& rt, BranchDelaySlot bdslot) {
if (L->is_bound()) {
if (!BranchShortCheck(0, L, cond, rs, rt, bdslot)) {
if (cond != cc_always) {
Label skip;
Condition neg_cond = NegateCondition(cond);
BranchShort(&skip, neg_cond, rs, rt);
BranchLong(L, bdslot);
bind(&skip);
} else {
BranchLong(L, bdslot);
}
}
} else {
if (is_trampoline_emitted()) {
if (cond != cc_always) {
Label skip;
Condition neg_cond = NegateCondition(cond);
BranchShort(&skip, neg_cond, rs, rt);
BranchLong(L, bdslot);
bind(&skip);
} else {
BranchLong(L, bdslot);
}
} else {
BranchShort(L, cond, rs, rt, bdslot);
}
}
}
void TurboAssembler::Branch(Label* L, Condition cond, Register rs,
RootIndex index, BranchDelaySlot bdslot) {
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
LoadRoot(scratch, index);
Branch(L, cond, rs, Operand(scratch), bdslot);
}
void TurboAssembler::BranchShortHelper(int16_t offset, Label* L,
BranchDelaySlot bdslot) {
DCHECK(L == nullptr || offset == 0);
offset = GetOffset(offset, L, OffsetSize::kOffset16);
b(offset);
// Emit a nop in the branch delay slot if required.
if (bdslot == PROTECT) nop();
}
void TurboAssembler::BranchShortHelperR6(int32_t offset, Label* L) {
DCHECK(L == nullptr || offset == 0);
offset = GetOffset(offset, L, OffsetSize::kOffset26);
bc(offset);
}
void TurboAssembler::BranchShort(int32_t offset, BranchDelaySlot bdslot) {
if (kArchVariant == kMips64r6 && bdslot == PROTECT) {
DCHECK(is_int26(offset));
BranchShortHelperR6(offset, nullptr);
} else {
DCHECK(is_int16(offset));
BranchShortHelper(offset, nullptr, bdslot);
}
}
void TurboAssembler::BranchShort(Label* L, BranchDelaySlot bdslot) {
if (kArchVariant == kMips64r6 && bdslot == PROTECT) {
BranchShortHelperR6(0, L);
} else {
BranchShortHelper(0, L, bdslot);
}
}
int32_t TurboAssembler::GetOffset(int32_t offset, Label* L, OffsetSize bits) {
if (L) {
offset = branch_offset_helper(L, bits) >> 2;
} else {
DCHECK(is_intn(offset, bits));
}
return offset;
}
Register TurboAssembler::GetRtAsRegisterHelper(const Operand& rt,
Register scratch) {
Register r2 = no_reg;
if (rt.is_reg()) {
r2 = rt.rm();
} else {
r2 = scratch;
li(r2, rt);
}
return r2;
}
bool TurboAssembler::CalculateOffset(Label* L, int32_t* offset,
OffsetSize bits) {
if (!is_near(L, bits)) return false;
*offset = GetOffset(*offset, L, bits);
return true;
}
bool TurboAssembler::CalculateOffset(Label* L, int32_t* offset, OffsetSize bits,
Register* scratch, const Operand& rt) {
if (!is_near(L, bits)) return false;
*scratch = GetRtAsRegisterHelper(rt, *scratch);
*offset = GetOffset(*offset, L, bits);
return true;
}
bool TurboAssembler::BranchShortHelperR6(int32_t offset, Label* L,
Condition cond, Register rs,
const Operand& rt) {
DCHECK(L == nullptr || offset == 0);
UseScratchRegisterScope temps(this);
BlockTrampolinePoolScope block_trampoline_pool(this);
Register scratch = temps.hasAvailable() ? temps.Acquire() : t8;
// Be careful to always use shifted_branch_offset only just before the
// branch instruction, as the location will be remember for patching the
// target.
{
BlockTrampolinePoolScope block_trampoline_pool(this);
switch (cond) {
case cc_always:
if (!CalculateOffset(L, &offset, OffsetSize::kOffset26)) return false;
bc(offset);
break;
case eq:
if (rt.is_reg() && rs.code() == rt.rm().code()) {
// Pre R6 beq is used here to make the code patchable. Otherwise bc
// should be used which has no condition field so is not patchable.
if (!CalculateOffset(L, &offset, OffsetSize::kOffset16, &scratch, rt))
return false;
beq(rs, scratch, offset);
nop();
} else if (IsZero(rt)) {
if (!CalculateOffset(L, &offset, OffsetSize::kOffset21)) return false;
beqzc(rs, offset);
} else {
// We don't want any other register but scratch clobbered.
if (!CalculateOffset(L, &offset, OffsetSize::kOffset16, &scratch, rt))
return false;
beqc(rs, scratch, offset);
}
break;
case ne:
if (rt.is_reg() && rs.code() == rt.rm().code()) {
// Pre R6 bne is used here to make the code patchable. Otherwise we
// should not generate any instruction.
if (!CalculateOffset(L, &offset, OffsetSize::kOffset16, &scratch, rt))
return false;
bne(rs, scratch, offset);
nop();
} else if (IsZero(rt)) {
if (!CalculateOffset(L, &offset, OffsetSize::kOffset21)) return false;
bnezc(rs, offset);
} else {
// We don't want any other register but scratch clobbered.
if (!CalculateOffset(L, &offset, OffsetSize::kOffset16, &scratch, rt))
return false;
bnec(rs, scratch, offset);
}
break;
// Signed comparison.
case greater:
// rs > rt
if (rt.is_reg() && rs.code() == rt.rm().code()) {
break; // No code needs to be emitted.
} else if (rs == zero_reg) {
if (!CalculateOffset(L, &offset, OffsetSize::kOffset16, &scratch, rt))
return false;
bltzc(scratch, offset);
} else if (IsZero(rt)) {
if (!CalculateOffset(L, &offset, OffsetSize::kOffset16)) return false;
bgtzc(rs, offset);
} else {
if (!CalculateOffset(L, &offset, OffsetSize::kOffset16, &scratch, rt))
return false;
DCHECK(rs != scratch);
bltc(scratch, rs, offset);
}
break;
case greater_equal:
// rs >= rt
if (rt.is_reg() && rs.code() == rt.rm().code()) {
if (!CalculateOffset(L, &offset, OffsetSize::kOffset26)) return false;
bc(offset);
} else if (rs == zero_reg) {
if (!CalculateOffset(L, &offset, OffsetSize::kOffset16, &scratch, rt))
return false;
blezc(scratch, offset);
} else if (IsZero(rt)) {
if (!CalculateOffset(L, &offset, OffsetSize::kOffset16)) return false;
bgezc(rs, offset);
} else {
if (!CalculateOffset(L, &offset, OffsetSize::kOffset16, &scratch, rt))
return false;
DCHECK(rs != scratch);
bgec(rs, scratch, offset);
}
break;
case less:
// rs < rt
if (rt.is_reg() && rs.code() == rt.rm().code()) {
break; // No code needs to be emitted.
} else if (rs == zero_reg) {
if (!CalculateOffset(L, &offset, OffsetSize::kOffset16, &scratch, rt))
return false;
bgtzc(scratch, offset);
} else if (IsZero(rt)) {
if (!CalculateOffset(L, &offset, OffsetSize::kOffset16)) return false;
bltzc(rs, offset);
} else {
if (!CalculateOffset(L, &offset, OffsetSize::kOffset16, &scratch, rt))
return false;
DCHECK(rs != scratch);
bltc(rs, scratch, offset);
}
break;
case less_equal:
// rs <= rt
if (rt.is_reg() && rs.code() == rt.rm().code()) {
if (!CalculateOffset(L, &offset, OffsetSize::kOffset26)) return false;
bc(offset);
} else if (rs == zero_reg) {
if (!CalculateOffset(L, &offset, OffsetSize::kOffset16, &scratch, rt))
return false;
bgezc(scratch, offset);
} else if (IsZero(rt)) {
if (!CalculateOffset(L, &offset, OffsetSize::kOffset16)) return false;
blezc(rs, offset);
} else {
if (!CalculateOffset(L, &offset, OffsetSize::kOffset16, &scratch, rt))
return false;
DCHECK(rs != scratch);
bgec(scratch, rs, offset);
}
break;
// Unsigned comparison.
case Ugreater:
// rs > rt
if (rt.is_reg() && rs.code() == rt.rm().code()) {
break; // No code needs to be emitted.
} else if (rs == zero_reg) {
if (!CalculateOffset(L, &offset, OffsetSize::kOffset21, &scratch, rt))
return false;
bnezc(scratch, offset);
} else if (IsZero(rt)) {
if (!CalculateOffset(L, &offset, OffsetSize::kOffset21)) return false;
bnezc(rs, offset);
} else {
if (!CalculateOffset(L, &offset, OffsetSize::kOffset16, &scratch, rt))
return false;
DCHECK(rs != scratch);
bltuc(scratch, rs, offset);
}
break;
case Ugreater_equal:
// rs >= rt
if (rt.is_reg() && rs.code() == rt.rm().code()) {
if (!CalculateOffset(L, &offset, OffsetSize::kOffset26)) return false;
bc(offset);
} else if (rs == zero_reg) {
if (!CalculateOffset(L, &offset, OffsetSize::kOffset21, &scratch, rt))
return false;
beqzc(scratch, offset);
} else if (IsZero(rt)) {
if (!CalculateOffset(L, &offset, OffsetSize::kOffset26)) return false;
bc(offset);
} else {
if (!CalculateOffset(L, &offset, OffsetSize::kOffset16, &scratch, rt))
return false;
DCHECK(rs != scratch);
bgeuc(rs, scratch, offset);
}
break;
case Uless:
// rs < rt
if (rt.is_reg() && rs.code() == rt.rm().code()) {
break; // No code needs to be emitted.
} else if (rs == zero_reg) {
if (!CalculateOffset(L, &offset, OffsetSize::kOffset21, &scratch, rt))
return false;
bnezc(scratch, offset);
} else if (IsZero(rt)) {
break; // No code needs to be emitted.
} else {
if (!CalculateOffset(L, &offset, OffsetSize::kOffset16, &scratch, rt))
return false;
DCHECK(rs != scratch);
bltuc(rs, scratch, offset);
}
break;
case Uless_equal:
// rs <= rt
if (rt.is_reg() && rs.code() == rt.rm().code()) {
if (!CalculateOffset(L, &offset, OffsetSize::kOffset26)) return false;
bc(offset);
} else if (rs == zero_reg) {
if (!CalculateOffset(L, &offset, OffsetSize::kOffset26, &scratch, rt))
return false;
bc(offset);
} else if (IsZero(rt)) {
if (!CalculateOffset(L, &offset, OffsetSize::kOffset21)) return false;
beqzc(rs, offset);
} else {
if (!CalculateOffset(L, &offset, OffsetSize::kOffset16, &scratch, rt))
return false;
DCHECK(rs != scratch);
bgeuc(scratch, rs, offset);
}
break;
default:
UNREACHABLE();
}
}
CheckTrampolinePoolQuick(1);
return true;
}
bool TurboAssembler::BranchShortHelper(int16_t offset, Label* L, Condition cond,
Register rs, const Operand& rt,
BranchDelaySlot bdslot) {
DCHECK(L == nullptr || offset == 0);
if (!is_near(L, OffsetSize::kOffset16)) return false;
UseScratchRegisterScope temps(this);
BlockTrampolinePoolScope block_trampoline_pool(this);
Register scratch = temps.hasAvailable() ? temps.Acquire() : t8;
int32_t offset32;
// Be careful to always use shifted_branch_offset only just before the
// branch instruction, as the location will be remember for patching the
// target.
{
BlockTrampolinePoolScope block_trampoline_pool(this);
switch (cond) {
case cc_always:
offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
b(offset32);
break;
case eq:
if (IsZero(rt)) {
offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
beq(rs, zero_reg, offset32);
} else {
// We don't want any other register but scratch clobbered.
scratch = GetRtAsRegisterHelper(rt, scratch);
offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
beq(rs, scratch, offset32);
}
break;
case ne:
if (IsZero(rt)) {
offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
bne(rs, zero_reg, offset32);
} else {
// We don't want any other register but scratch clobbered.
scratch = GetRtAsRegisterHelper(rt, scratch);
offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
bne(rs, scratch, offset32);
}
break;
// Signed comparison.
case greater:
if (IsZero(rt)) {
offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
bgtz(rs, offset32);
} else {
Slt(scratch, GetRtAsRegisterHelper(rt, scratch), rs);
offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
bne(scratch, zero_reg, offset32);
}
break;
case greater_equal:
if (IsZero(rt)) {
offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
bgez(rs, offset32);
} else {
Slt(scratch, rs, rt);
offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
beq(scratch, zero_reg, offset32);
}
break;
case less:
if (IsZero(rt)) {
offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
bltz(rs, offset32);
} else {
Slt(scratch, rs, rt);
offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
bne(scratch, zero_reg, offset32);
}
break;
case less_equal:
if (IsZero(rt)) {
offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
blez(rs, offset32);
} else {
Slt(scratch, GetRtAsRegisterHelper(rt, scratch), rs);
offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
beq(scratch, zero_reg, offset32);
}
break;
// Unsigned comparison.
case Ugreater:
if (IsZero(rt)) {
offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
bne(rs, zero_reg, offset32);
} else {
Sltu(scratch, GetRtAsRegisterHelper(rt, scratch), rs);
offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
bne(scratch, zero_reg, offset32);
}
break;
case Ugreater_equal:
if (IsZero(rt)) {
offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
b(offset32);
} else {
Sltu(scratch, rs, rt);
offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
beq(scratch, zero_reg, offset32);
}
break;
case Uless:
if (IsZero(rt)) {
return true; // No code needs to be emitted.
} else {
Sltu(scratch, rs, rt);
offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
bne(scratch, zero_reg, offset32);
}
break;
case Uless_equal:
if (IsZero(rt)) {
offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
beq(rs, zero_reg, offset32);
} else {
Sltu(scratch, GetRtAsRegisterHelper(rt, scratch), rs);
offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
beq(scratch, zero_reg, offset32);
}
break;
default:
UNREACHABLE();
}
}
// Emit a nop in the branch delay slot if required.
if (bdslot == PROTECT) nop();
return true;
}
bool TurboAssembler::BranchShortCheck(int32_t offset, Label* L, Condition cond,
Register rs, const Operand& rt,
BranchDelaySlot bdslot) {
BRANCH_ARGS_CHECK(cond, rs, rt);
if (!L) {
if (kArchVariant == kMips64r6 && bdslot == PROTECT) {
DCHECK(is_int26(offset));
return BranchShortHelperR6(offset, nullptr, cond, rs, rt);
} else {
DCHECK(is_int16(offset));
return BranchShortHelper(offset, nullptr, cond, rs, rt, bdslot);
}
} else {
DCHECK_EQ(offset, 0);
if (kArchVariant == kMips64r6 && bdslot == PROTECT) {
return BranchShortHelperR6(0, L, cond, rs, rt);
} else {
return BranchShortHelper(0, L, cond, rs, rt, bdslot);
}
}
return false;
}
void TurboAssembler::BranchShort(int32_t offset, Condition cond, Register rs,
const Operand& rt, BranchDelaySlot bdslot) {
BranchShortCheck(offset, nullptr, cond, rs, rt, bdslot);
}
void TurboAssembler::BranchShort(Label* L, Condition cond, Register rs,
const Operand& rt, BranchDelaySlot bdslot) {
BranchShortCheck(0, L, cond, rs, rt, bdslot);
}
void TurboAssembler::BranchAndLink(int32_t offset, BranchDelaySlot bdslot) {
BranchAndLinkShort(offset, bdslot);
}
void TurboAssembler::BranchAndLink(int32_t offset, Condition cond, Register rs,
const Operand& rt, BranchDelaySlot bdslot) {
bool is_near = BranchAndLinkShortCheck(offset, nullptr, cond, rs, rt, bdslot);
DCHECK(is_near);
USE(is_near);
}
void TurboAssembler::BranchAndLink(Label* L, BranchDelaySlot bdslot) {
if (L->is_bound()) {
if (is_near_branch(L)) {
BranchAndLinkShort(L, bdslot);
} else {
BranchAndLinkLong(L, bdslot);
}
} else {
if (is_trampoline_emitted()) {
BranchAndLinkLong(L, bdslot);
} else {
BranchAndLinkShort(L, bdslot);
}
}
}
void TurboAssembler::BranchAndLink(Label* L, Condition cond, Register rs,
const Operand& rt, BranchDelaySlot bdslot) {
if (L->is_bound()) {
if (!BranchAndLinkShortCheck(0, L, cond, rs, rt, bdslot)) {
Label skip;
Condition neg_cond = NegateCondition(cond);
BranchShort(&skip, neg_cond, rs, rt);
BranchAndLinkLong(L, bdslot);
bind(&skip);
}
} else {
if (is_trampoline_emitted()) {
Label skip;
Condition neg_cond = NegateCondition(cond);
BranchShort(&skip, neg_cond, rs, rt);
BranchAndLinkLong(L, bdslot);
bind(&skip);
} else {
BranchAndLinkShortCheck(0, L, cond, rs, rt, bdslot);
}
}
}
void TurboAssembler::BranchAndLinkShortHelper(int16_t offset, Label* L,
BranchDelaySlot bdslot) {
DCHECK(L == nullptr || offset == 0);
offset = GetOffset(offset, L, OffsetSize::kOffset16);
bal(offset);
// Emit a nop in the branch delay slot if required.
if (bdslot == PROTECT) nop();
}
void TurboAssembler::BranchAndLinkShortHelperR6(int32_t offset, Label* L) {
DCHECK(L == nullptr || offset == 0);
offset = GetOffset(offset, L, OffsetSize::kOffset26);
balc(offset);
}
void TurboAssembler::BranchAndLinkShort(int32_t offset,
BranchDelaySlot bdslot) {
if (kArchVariant == kMips64r6 && bdslot == PROTECT) {
DCHECK(is_int26(offset));
BranchAndLinkShortHelperR6(offset, nullptr);
} else {
DCHECK(is_int16(offset));
BranchAndLinkShortHelper(offset, nullptr, bdslot);
}
}
void TurboAssembler::BranchAndLinkShort(Label* L, BranchDelaySlot bdslot) {
if (kArchVariant == kMips64r6 && bdslot == PROTECT) {
BranchAndLinkShortHelperR6(0, L);
} else {
BranchAndLinkShortHelper(0, L, bdslot);
}
}
bool TurboAssembler::BranchAndLinkShortHelperR6(int32_t offset, Label* L,
Condition cond, Register rs,
const Operand& rt) {
DCHECK(L == nullptr || offset == 0);
UseScratchRegisterScope temps(this);
Register scratch = temps.hasAvailable() ? temps.Acquire() : t8;
OffsetSize bits = OffsetSize::kOffset16;
BlockTrampolinePoolScope block_trampoline_pool(this);
DCHECK((cond == cc_always && is_int26(offset)) || is_int16(offset));
switch (cond) {
case cc_always:
if (!CalculateOffset(L, &offset, OffsetSize::kOffset26)) return false;
balc(offset);
break;
case eq:
if (!is_near(L, bits)) return false;
Subu(scratch, rs, rt);
offset = GetOffset(offset, L, bits);
beqzalc(scratch, offset);
break;
case ne:
if (!is_near(L, bits)) return false;
Subu(scratch, rs, rt);
offset = GetOffset(offset, L, bits);
bnezalc(scratch, offset);
break;
// Signed comparison.
case greater:
// rs > rt
if (rs.code() == rt.rm().code()) {
break; // No code needs to be emitted.
} else if (rs == zero_reg) {
if (!CalculateOffset(L, &offset, OffsetSize::kOffset16, &scratch, rt))
return false;
bltzalc(scratch, offset);
} else if (IsZero(rt)) {
if (!CalculateOffset(L, &offset, OffsetSize::kOffset16)) return false;
bgtzalc(rs, offset);
} else {
if (!is_near(L, bits)) return false;
Slt(scratch, GetRtAsRegisterHelper(rt, scratch), rs);
offset = GetOffset(offset, L, bits);
bnezalc(scratch, offset);
}
break;
case greater_equal:
// rs >= rt
if (rs.code() == rt.rm().code()) {
if (!CalculateOffset(L, &offset, OffsetSize::kOffset26)) return false;
balc(offset);
} else if (rs == zero_reg) {
if (!CalculateOffset(L, &offset, OffsetSize::kOffset16, &scratch, rt))
return false;
blezalc(scratch, offset);
} else if (IsZero(rt)) {
if (!CalculateOffset(L, &offset, OffsetSize::kOffset16)) return false;
bgezalc(rs, offset);
} else {
if (!is_near(L, bits)) return false;
Slt(scratch, rs, rt);
offset = GetOffset(offset, L, bits);
beqzalc(scratch, offset);
}
break;
case less:
// rs < rt
if (rs.code() == rt.rm().code()) {
break; // No code needs to be emitted.
} else if (rs == zero_reg) {
if (!CalculateOffset(L, &offset, OffsetSize::kOffset16, &scratch, rt))
return false;
bgtzalc(scratch, offset);
} else if (IsZero(rt)) {
if (!CalculateOffset(L, &offset, OffsetSize::kOffset16)) return false;
bltzalc(rs, offset);
} else {
if (!is_near(L, bits)) return false;
Slt(scratch, rs, rt);
offset = GetOffset(offset, L, bits);
bnezalc(scratch, offset);
}
break;
case less_equal:
// rs <= r2
if (rs.code() == rt.rm().code()) {
if (!CalculateOffset(L, &offset, OffsetSize::kOffset26)) return false;
balc(offset);
} else if (rs == zero_reg) {
if (!CalculateOffset(L, &offset, OffsetSize::kOffset16, &scratch, rt))
return false;
bgezalc(scratch, offset);
} else if (IsZero(rt)) {
if (!CalculateOffset(L, &offset, OffsetSize::kOffset16)) return false;
blezalc(rs, offset);
} else {
if (!is_near(L, bits)) return false;
Slt(scratch, GetRtAsRegisterHelper(rt, scratch), rs);
offset = GetOffset(offset, L, bits);
beqzalc(scratch, offset);
}
break;
// Unsigned comparison.
case Ugreater:
// rs > r2
if (!is_near(L, bits)) return false;
Sltu(scratch, GetRtAsRegisterHelper(rt, scratch), rs);
offset = GetOffset(offset, L, bits);
bnezalc(scratch, offset);
break;
case Ugreater_equal:
// rs >= r2
if (!is_near(L, bits)) return false;
Sltu(scratch, rs, rt);
offset = GetOffset(offset, L, bits);
beqzalc(scratch, offset);
break;
case Uless:
// rs < r2
if (!is_near(L, bits)) return false;
Sltu(scratch, rs, rt);
offset = GetOffset(offset, L, bits);
bnezalc(scratch, offset);
break;
case Uless_equal:
// rs <= r2
if (!is_near(L, bits)) return false;
Sltu(scratch, GetRtAsRegisterHelper(rt, scratch), rs);
offset = GetOffset(offset, L, bits);
beqzalc(scratch, offset);
break;
default:
UNREACHABLE();
}
return true;
}
// Pre r6 we need to use a bgezal or bltzal, but they can't be used directly
// with the slt instructions. We could use sub or add instead but we would miss
// overflow cases, so we keep slt and add an intermediate third instruction.
bool TurboAssembler::BranchAndLinkShortHelper(int16_t offset, Label* L,
Condition cond, Register rs,
const Operand& rt,
BranchDelaySlot bdslot) {
DCHECK(L == nullptr || offset == 0);
if (!is_near(L, OffsetSize::kOffset16)) return false;
Register scratch = t8;
BlockTrampolinePoolScope block_trampoline_pool(this);
switch (cond) {
case cc_always:
offset = GetOffset(offset, L, OffsetSize::kOffset16);
bal(offset);
break;
case eq:
bne(rs, GetRtAsRegisterHelper(rt, scratch), 2);
nop();
offset = GetOffset(offset, L, OffsetSize::kOffset16);
bal(offset);
break;
case ne:
beq(rs, GetRtAsRegisterHelper(rt, scratch), 2);
nop();
offset = GetOffset(offset, L, OffsetSize::kOffset16);
bal(offset);
break;
// Signed comparison.
case greater:
Slt(scratch, GetRtAsRegisterHelper(rt, scratch), rs);
addiu(scratch, scratch, -1);
offset = GetOffset(offset, L, OffsetSize::kOffset16);
bgezal(scratch, offset);
break;
case greater_equal:
Slt(scratch, rs, rt);
addiu(scratch, scratch, -1);
offset = GetOffset(offset, L, OffsetSize::kOffset16);
bltzal(scratch, offset);
break;
case less:
Slt(scratch, rs, rt);
addiu(scratch, scratch, -1);
offset = GetOffset(offset, L, OffsetSize::kOffset16);
bgezal(scratch, offset);
break;
case less_equal:
Slt(scratch, GetRtAsRegisterHelper(rt, scratch), rs);
addiu(scratch, scratch, -1);
offset = GetOffset(offset, L, OffsetSize::kOffset16);
bltzal(scratch, offset);
break;
// Unsigned comparison.
case Ugreater:
Sltu(scratch, GetRtAsRegisterHelper(rt, scratch), rs);
addiu(scratch, scratch, -1);
offset = GetOffset(offset, L, OffsetSize::kOffset16);
bgezal(scratch, offset);
break;
case Ugreater_equal:
Sltu(scratch, rs, rt);
addiu(scratch, scratch, -1);
offset = GetOffset(offset, L, OffsetSize::kOffset16);
bltzal(scratch, offset);
break;
case Uless:
Sltu(scratch, rs, rt);
addiu(scratch, scratch, -1);
offset = GetOffset(offset, L, OffsetSize::kOffset16);
bgezal(scratch, offset);
break;
case Uless_equal:
Sltu(scratch, GetRtAsRegisterHelper(rt, scratch), rs);
addiu(scratch, scratch, -1);
offset = GetOffset(offset, L, OffsetSize::kOffset16);
bltzal(scratch, offset);
break;
default:
UNREACHABLE();
}
// Emit a nop in the branch delay slot if required.
if (bdslot == PROTECT) nop();
return true;
}
bool TurboAssembler::BranchAndLinkShortCheck(int32_t offset, Label* L,
Condition cond, Register rs,
const Operand& rt,
BranchDelaySlot bdslot) {
BRANCH_ARGS_CHECK(cond, rs, rt);
if (!L) {
if (kArchVariant == kMips64r6 && bdslot == PROTECT) {
DCHECK(is_int26(offset));
return BranchAndLinkShortHelperR6(offset, nullptr, cond, rs, rt);
} else {
DCHECK(is_int16(offset));
return BranchAndLinkShortHelper(offset, nullptr, cond, rs, rt, bdslot);
}
} else {
DCHECK_EQ(offset, 0);
if (kArchVariant == kMips64r6 && bdslot == PROTECT) {
return BranchAndLinkShortHelperR6(0, L, cond, rs, rt);
} else {
return BranchAndLinkShortHelper(0, L, cond, rs, rt, bdslot);
}
}
return false;
}
void TurboAssembler::LoadFromConstantsTable(Register destination,
int constant_index) {
DCHECK(RootsTable::IsImmortalImmovable(RootIndex::kBuiltinsConstantsTable));
LoadRoot(destination, RootIndex::kBuiltinsConstantsTable);
Ld(destination,
FieldMemOperand(destination,
FixedArray::kHeaderSize + constant_index * kPointerSize));
}
void TurboAssembler::LoadRootRelative(Register destination, int32_t offset) {
Ld(destination, MemOperand(kRootRegister, offset));
}
void TurboAssembler::LoadRootRegisterOffset(Register destination,
intptr_t offset) {
if (offset == 0) {
Move(destination, kRootRegister);
} else {
Daddu(destination, kRootRegister, Operand(offset));
}
}
void TurboAssembler::Jump(Register target, Condition cond, Register rs,
const Operand& rt, BranchDelaySlot bd) {
BlockTrampolinePoolScope block_trampoline_pool(this);
if (kArchVariant == kMips64r6 && bd == PROTECT) {
if (cond == cc_always) {
jic(target, 0);
} else {
BRANCH_ARGS_CHECK(cond, rs, rt);
Branch(2, NegateCondition(cond), rs, rt);
jic(target, 0);
}
} else {
if (cond == cc_always) {
jr(target);
} else {
BRANCH_ARGS_CHECK(cond, rs, rt);
Branch(2, NegateCondition(cond), rs, rt);
jr(target);
}
// Emit a nop in the branch delay slot if required.
if (bd == PROTECT) nop();
}
}
void TurboAssembler::Jump(intptr_t target, RelocInfo::Mode rmode,
Condition cond, Register rs, const Operand& rt,
BranchDelaySlot bd) {
Label skip;
if (cond != cc_always) {
Branch(USE_DELAY_SLOT, &skip, NegateCondition(cond), rs, rt);
}
// The first instruction of 'li' may be placed in the delay slot.
// This is not an issue, t9 is expected to be clobbered anyway.
{
BlockTrampolinePoolScope block_trampoline_pool(this);
li(t9, Operand(target, rmode));
Jump(t9, al, zero_reg, Operand(zero_reg), bd);
bind(&skip);
}
}
void TurboAssembler::Jump(Address target, RelocInfo::Mode rmode, Condition cond,
Register rs, const Operand& rt, BranchDelaySlot bd) {
DCHECK(!RelocInfo::IsCodeTarget(rmode));
Jump(static_cast<intptr_t>(target), rmode, cond, rs, rt, bd);
}
void TurboAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode,
Condition cond, Register rs, const Operand& rt,
BranchDelaySlot bd) {
DCHECK(RelocInfo::IsCodeTarget(rmode));
BlockTrampolinePoolScope block_trampoline_pool(this);
if (root_array_available_ && options().isolate_independent_code) {
IndirectLoadConstant(t9, code);
Daddu(t9, t9, Operand(Code::kHeaderSize - kHeapObjectTag));
Jump(t9, cond, rs, rt, bd);
return;
} else if (options().inline_offheap_trampolines) {
int builtin_index = Builtins::kNoBuiltinId;
if (isolate()->builtins()->IsBuiltinHandle(code, &builtin_index) &&
Builtins::IsIsolateIndependent(builtin_index)) {
// Inline the trampoline.
RecordCommentForOffHeapTrampoline(builtin_index);
CHECK_NE(builtin_index, Builtins::kNoBuiltinId);
EmbeddedData d = EmbeddedData::FromBlob();
Address entry = d.InstructionStartOfBuiltin(builtin_index);
li(t9, Operand(entry, RelocInfo::OFF_HEAP_TARGET));
Jump(t9, cond, rs, rt, bd);
return;
}
}
Jump(static_cast<intptr_t>(code.address()), rmode, cond, rs, rt, bd);
}
void TurboAssembler::Jump(const ExternalReference& reference) {
li(t9, reference);
Jump(t9);
}
// Note: To call gcc-compiled C code on mips, you must call through t9.
void TurboAssembler::Call(Register target, Condition cond, Register rs,
const Operand& rt, BranchDelaySlot bd) {
BlockTrampolinePoolScope block_trampoline_pool(this);
if (kArchVariant == kMips64r6 && bd == PROTECT) {
if (cond == cc_always) {
jialc(target, 0);
} else {
BRANCH_ARGS_CHECK(cond, rs, rt);
Branch(2, NegateCondition(cond), rs, rt);
jialc(target, 0);
}
} else {
if (cond == cc_always) {
jalr(target);
} else {
BRANCH_ARGS_CHECK(cond, rs, rt);
Branch(2, NegateCondition(cond), rs, rt);
jalr(target);
}
// Emit a nop in the branch delay slot if required.
if (bd == PROTECT) nop();
}
set_last_call_pc_(pc_);
}
void MacroAssembler::JumpIfIsInRange(Register value, unsigned lower_limit,
unsigned higher_limit,
Label* on_in_range) {
if (lower_limit != 0) {
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
Dsubu(scratch, value, Operand(lower_limit));
Branch(on_in_range, ls, scratch, Operand(higher_limit - lower_limit));
} else {
Branch(on_in_range, ls, value, Operand(higher_limit - lower_limit));
}
}
void TurboAssembler::Call(Address target, RelocInfo::Mode rmode, Condition cond,
Register rs, const Operand& rt, BranchDelaySlot bd) {
BlockTrampolinePoolScope block_trampoline_pool(this);
li(t9, Operand(static_cast<int64_t>(target), rmode), ADDRESS_LOAD);
Call(t9, cond, rs, rt, bd);
}
void TurboAssembler::Call(Handle<Code> code, RelocInfo::Mode rmode,
Condition cond, Register rs, const Operand& rt,
BranchDelaySlot bd) {
BlockTrampolinePoolScope block_trampoline_pool(this);
if (root_array_available_ && options().isolate_independent_code) {
IndirectLoadConstant(t9, code);
Daddu(t9, t9, Operand(Code::kHeaderSize - kHeapObjectTag));
Call(t9, cond, rs, rt, bd);
return;
} else if (options().inline_offheap_trampolines) {
int builtin_index = Builtins::kNoBuiltinId;
if (isolate()->builtins()->IsBuiltinHandle(code, &builtin_index) &&
Builtins::IsIsolateIndependent(builtin_index)) {
// Inline the trampoline.
RecordCommentForOffHeapTrampoline(builtin_index);
CHECK_NE(builtin_index, Builtins::kNoBuiltinId);
EmbeddedData d = EmbeddedData::FromBlob();
Address entry = d.InstructionStartOfBuiltin(builtin_index);
li(t9, Operand(entry, RelocInfo::OFF_HEAP_TARGET));
Call(t9, cond, rs, rt, bd);
return;
}
}
DCHECK(RelocInfo::IsCodeTarget(rmode));
DCHECK(code->IsExecutable());
Call(code.address(), rmode, cond, rs, rt, bd);
}
void TurboAssembler::LoadEntryFromBuiltinIndex(Register builtin_index) {
STATIC_ASSERT(kSystemPointerSize == 8);
STATIC_ASSERT(kSmiTagSize == 1);
STATIC_ASSERT(kSmiTag == 0);
// The builtin_index register contains the builtin index as a Smi.
SmiUntag(builtin_index, builtin_index);
Dlsa(builtin_index, kRootRegister, builtin_index, kSystemPointerSizeLog2);
Ld(builtin_index,
MemOperand(builtin_index, IsolateData::builtin_entry_table_offset()));
}
void TurboAssembler::CallBuiltinByIndex(Register builtin_index) {
LoadEntryFromBuiltinIndex(builtin_index);
Call(builtin_index);
}
void TurboAssembler::PatchAndJump(Address target) {
if (kArchVariant != kMips64r6) {
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
mov(scratch, ra);
bal(1); // jump to ld
nop(); // in the delay slot
ld(t9, MemOperand(ra, kInstrSize * 3)); // ra == pc_
jr(t9);
mov(ra, scratch); // in delay slot
DCHECK_EQ(reinterpret_cast<uint64_t>(pc_) % 8, 0);
*reinterpret_cast<uint64_t*>(pc_) = target; // pc_ should be align.
pc_ += sizeof(uint64_t);
} else {
// TODO(mips r6): Implement.
UNIMPLEMENTED();
}
}
void TurboAssembler::StoreReturnAddressAndCall(Register target) {
// This generates the final instruction sequence for calls to C functions
// once an exit frame has been constructed.
//
// Note that this assumes the caller code (i.e. the Code object currently
// being generated) is immovable or that the callee function cannot trigger
// GC, since the callee function will return to it.
// Compute the return address in lr to return to after the jump below. The pc
// is already at '+ 8' from the current instruction; but return is after three
// instructions, so add another 4 to pc to get the return address.
Assembler::BlockTrampolinePoolScope block_trampoline_pool(this);
static constexpr int kNumInstructionsToJump = 4;
Label find_ra;
// Adjust the value in ra to point to the correct return location, 2nd
// instruction past the real call into C code (the jalr(t9)), and push it.
// This is the return address of the exit frame.
if (kArchVariant >= kMips64r6) {
addiupc(ra, kNumInstructionsToJump + 1);
} else {
// This no-op-and-link sequence saves PC + 8 in ra register on pre-r6 MIPS
nal(); // nal has branch delay slot.
Daddu(ra, ra, kNumInstructionsToJump * kInstrSize);
}
bind(&find_ra);
// This spot was reserved in EnterExitFrame.
Sd(ra, MemOperand(sp));
// Stack space reservation moved to the branch delay slot below.
// Stack is still aligned.
// Call the C routine.
mov(t9, target); // Function pointer to t9 to conform to ABI for PIC.
jalr(t9);
// Set up sp in the delay slot.
daddiu(sp, sp, -kCArgsSlotsSize);
// Make sure the stored 'ra' points to this position.
DCHECK_EQ(kNumInstructionsToJump, InstructionsGeneratedSince(&find_ra));
}
void TurboAssembler::Ret(Condition cond, Register rs, const Operand& rt,
BranchDelaySlot bd) {
Jump(ra, cond, rs, rt, bd);
}
void TurboAssembler::BranchLong(Label* L, BranchDelaySlot bdslot) {
if (kArchVariant == kMips64r6 && bdslot == PROTECT &&
(!L->is_bound() || is_near_r6(L))) {
BranchShortHelperR6(0, L);
} else {
// Generate position independent long branch.
BlockTrampolinePoolScope block_trampoline_pool(this);
int64_t imm64 = branch_long_offset(L);
DCHECK(is_int32(imm64));
int32_t imm32 = static_cast<int32_t>(imm64);
or_(t8, ra, zero_reg);
nal(); // Read PC into ra register.
lui(t9, (imm32 & kHiMaskOf32) >> kLuiShift); // Branch delay slot.
ori(t9, t9, (imm32 & kImm16Mask));
daddu(t9, ra, t9);
if (bdslot == USE_DELAY_SLOT) {
or_(ra, t8, zero_reg);
}
jr(t9);
// Emit a or_ in the branch delay slot if it's protected.
if (bdslot == PROTECT) or_(ra, t8, zero_reg);
}
}
void TurboAssembler::BranchAndLinkLong(Label* L, BranchDelaySlot bdslot) {
if (kArchVariant == kMips64r6 && bdslot == PROTECT &&
(!L->is_bound() || is_near_r6(L))) {
BranchAndLinkShortHelperR6(0, L);
} else {
// Generate position independent long branch and link.
BlockTrampolinePoolScope block_trampoline_pool(this);
int64_t imm64 = branch_long_offset(L);
DCHECK(is_int32(imm64));
int32_t imm32 = static_cast<int32_t>(imm64);
lui(t8, (imm32 & kHiMaskOf32) >> kLuiShift);
nal(); // Read PC into ra register.
ori(t8, t8, (imm32 & kImm16Mask)); // Branch delay slot.
daddu(t8, ra, t8);
jalr(t8);
// Emit a nop in the branch delay slot if required.
if (bdslot == PROTECT) nop();
}
}
void TurboAssembler::DropAndRet(int drop) {
int32_t drop_size = drop * kSystemPointerSize;
DCHECK(is_int31(drop_size));
if (is_int16(drop_size)) {
Ret(USE_DELAY_SLOT);
daddiu(sp, sp, drop_size);
} else {
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
li(scratch, drop_size);
Ret(USE_DELAY_SLOT);
daddu(sp, sp, scratch);
}
}
void TurboAssembler::DropAndRet(int drop, Condition cond, Register r1,
const Operand& r2) {
// Both Drop and Ret need to be conditional.
Label skip;
if (cond != cc_always) {
Branch(&skip, NegateCondition(cond), r1, r2);
}
Drop(drop);
Ret();
if (cond != cc_always) {
bind(&skip);
}
}
void TurboAssembler::Drop(int count, Condition cond, Register reg,
const Operand& op) {
if (count <= 0) {
return;
}
Label skip;
if (cond != al) {
Branch(&skip, NegateCondition(cond), reg, op);
}
Daddu(sp, sp, Operand(count * kPointerSize));
if (cond != al) {
bind(&skip);
}
}
void MacroAssembler::Swap(Register reg1, Register reg2, Register scratch) {
if (scratch == no_reg) {
Xor(reg1, reg1, Operand(reg2));
Xor(reg2, reg2, Operand(reg1));
Xor(reg1, reg1, Operand(reg2));
} else {
mov(scratch, reg1);
mov(reg1, reg2);
mov(reg2, scratch);
}
}
void TurboAssembler::Call(Label* target) { BranchAndLink(target); }
void TurboAssembler::LoadAddress(Register dst, Label* target) {
uint64_t address = jump_address(target);
li(dst, address);
}
void TurboAssembler::Push(Smi smi) {
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
li(scratch, Operand(smi));
push(scratch);
}
void TurboAssembler::Push(Handle<HeapObject> handle) {
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
li(scratch, Operand(handle));
push(scratch);
}
void TurboAssembler::PushArray(Register array, Register size, Register scratch,
Register scratch2, PushArrayOrder order) {
DCHECK(!AreAliased(array, size, scratch, scratch2));
Label loop, entry;
if (order == PushArrayOrder::kReverse) {
mov(scratch, zero_reg);
jmp(&entry);
bind(&loop);
Dlsa(scratch2, array, scratch, kPointerSizeLog2);
Ld(scratch2, MemOperand(scratch2));
push(scratch2);
Daddu(scratch, scratch, Operand(1));
bind(&entry);
Branch(&loop, less, scratch, Operand(size));
} else {
mov(scratch, size);
jmp(&entry);
bind(&loop);
Dlsa(scratch2, array, scratch, kPointerSizeLog2);
Ld(scratch2, MemOperand(scratch2));
push(scratch2);
bind(&entry);
Daddu(scratch, scratch, Operand(-1));
Branch(&loop, greater_equal, scratch, Operand(zero_reg));
}
}
void MacroAssembler::MaybeDropFrames() {
// Check whether we need to drop frames to restart a function on the stack.
li(a1, ExternalReference::debug_restart_fp_address(isolate()));
Ld(a1, MemOperand(a1));
Jump(BUILTIN_CODE(isolate(), FrameDropperTrampoline), RelocInfo::CODE_TARGET,
ne, a1, Operand(zero_reg));
}
// ---------------------------------------------------------------------------
// Exception handling.
void MacroAssembler::PushStackHandler() {
// Adjust this code if not the case.
STATIC_ASSERT(StackHandlerConstants::kSize == 2 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
Push(Smi::zero()); // Padding.
// Link the current handler as the next handler.
li(t2,
ExternalReference::Create(IsolateAddressId::kHandlerAddress, isolate()));
Ld(t1, MemOperand(t2));
push(t1);
// Set this new handler as the current one.
Sd(sp, MemOperand(t2));
}
void MacroAssembler::PopStackHandler() {
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
pop(a1);
Daddu(sp, sp,
Operand(
static_cast<int64_t>(StackHandlerConstants::kSize - kPointerSize)));
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
li(scratch,
ExternalReference::Create(IsolateAddressId::kHandlerAddress, isolate()));
Sd(a1, MemOperand(scratch));
}
void TurboAssembler::FPUCanonicalizeNaN(const DoubleRegister dst,
const DoubleRegister src) {
sub_d(dst, src, kDoubleRegZero);
}
void TurboAssembler::MovFromFloatResult(const DoubleRegister dst) {
if (IsMipsSoftFloatABI) {
if (kArchEndian == kLittle) {
Move(dst, v0, v1);
} else {
Move(dst, v1, v0);
}
} else {
Move(dst, f0); // Reg f0 is o32 ABI FP return value.
}
}
void TurboAssembler::MovFromFloatParameter(const DoubleRegister dst) {
if (IsMipsSoftFloatABI) {
if (kArchEndian == kLittle) {
Move(dst, a0, a1);
} else {
Move(dst, a1, a0);
}
} else {
Move(dst, f12); // Reg f12 is n64 ABI FP first argument value.
}
}
void TurboAssembler::MovToFloatParameter(DoubleRegister src) {
if (!IsMipsSoftFloatABI) {
Move(f12, src);
} else {
if (kArchEndian == kLittle) {
Move(a0, a1, src);
} else {
Move(a1, a0, src);
}
}
}
void TurboAssembler::MovToFloatResult(DoubleRegister src) {
if (!IsMipsSoftFloatABI) {
Move(f0, src);
} else {
if (kArchEndian == kLittle) {
Move(v0, v1, src);
} else {
Move(v1, v0, src);
}
}
}
void TurboAssembler::MovToFloatParameters(DoubleRegister src1,
DoubleRegister src2) {
if (!IsMipsSoftFloatABI) {
const DoubleRegister fparg2 = f13;
if (src2 == f12) {
DCHECK(src1 != fparg2);
Move(fparg2, src2);
Move(f12, src1);
} else {
Move(f12, src1);
Move(fparg2, src2);
}
} else {
if (kArchEndian == kLittle) {
Move(a0, a1, src1);
Move(a2, a3, src2);
} else {
Move(a1, a0, src1);
Move(a3, a2, src2);
}
}
}
// -----------------------------------------------------------------------------
// JavaScript invokes.
void TurboAssembler::PrepareForTailCall(Register callee_args_count,
Register caller_args_count,
Register scratch0, Register scratch1) {
// Calculate the end of destination area where we will put the arguments
// after we drop current frame. We add kPointerSize to count the receiver
// argument which is not included into formal parameters count.
Register dst_reg = scratch0;
Dlsa(dst_reg, fp, caller_args_count, kPointerSizeLog2);
Daddu(dst_reg, dst_reg,
Operand(StandardFrameConstants::kCallerSPOffset + kPointerSize));
Register src_reg = caller_args_count;
// Calculate the end of source area. +kPointerSize is for the receiver.
Dlsa(src_reg, sp, callee_args_count, kPointerSizeLog2);
Daddu(src_reg, src_reg, Operand(kPointerSize));
if (FLAG_debug_code) {
Check(lo, AbortReason::kStackAccessBelowStackPointer, src_reg,
Operand(dst_reg));
}
// Restore caller's frame pointer and return address now as they will be
// overwritten by the copying loop.
Ld(ra, MemOperand(fp, StandardFrameConstants::kCallerPCOffset));
Ld(fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
// Now copy callee arguments to the caller frame going backwards to avoid
// callee arguments corruption (source and destination areas could overlap).
// Both src_reg and dst_reg are pointing to the word after the one to copy,
// so they must be pre-decremented in the loop.
Register tmp_reg = scratch1;
Label loop, entry;
Branch(&entry);
bind(&loop);
Dsubu(src_reg, src_reg, Operand(kPointerSize));
Dsubu(dst_reg, dst_reg, Operand(kPointerSize));
Ld(tmp_reg, MemOperand(src_reg));
Sd(tmp_reg, MemOperand(dst_reg));
bind(&entry);
Branch(&loop, ne, sp, Operand(src_reg));
// Leave current frame.
mov(sp, dst_reg);
}
void MacroAssembler::LoadStackLimit(Register destination, StackLimitKind kind) {
DCHECK(root_array_available());
Isolate* isolate = this->isolate();
ExternalReference limit =
kind == StackLimitKind::kRealStackLimit
? ExternalReference::address_of_real_jslimit(isolate)
: ExternalReference::address_of_jslimit(isolate);
DCHECK(TurboAssembler::IsAddressableThroughRootRegister(isolate, limit));
intptr_t offset =
TurboAssembler::RootRegisterOffsetForExternalReference(isolate, limit);
CHECK(is_int32(offset));
Ld(destination, MemOperand(kRootRegister, static_cast<int32_t>(offset)));
}
void MacroAssembler::StackOverflowCheck(Register num_args, Register scratch1,
Register scratch2,
Label* stack_overflow) {
// Check the stack for overflow. We are not trying to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
LoadStackLimit(scratch1, StackLimitKind::kRealStackLimit);
// Make scratch1 the space we have left. The stack might already be overflowed
// here which will cause scratch1 to become negative.
dsubu(scratch1, sp, scratch1);
// Check if the arguments will overflow the stack.
dsll(scratch2, num_args, kPointerSizeLog2);
// Signed comparison.
Branch(stack_overflow, le, scratch1, Operand(scratch2));
}
void MacroAssembler::InvokePrologue(Register expected_parameter_count,
Register actual_parameter_count,
Label* done, InvokeFlag flag) {
Label regular_invoke;
// a0: actual arguments count
// a1: function (passed through to callee)
// a2: expected arguments count
DCHECK_EQ(actual_parameter_count, a0);
DCHECK_EQ(expected_parameter_count, a2);
#ifdef V8_NO_ARGUMENTS_ADAPTOR
// If the expected parameter count is equal to the adaptor sentinel, no need
// to push undefined value as arguments.
Branch(&regular_invoke, eq, expected_parameter_count,
Operand(kDontAdaptArgumentsSentinel));
// If overapplication or if the actual argument count is equal to the
// formal parameter count, no need to push extra undefined values.
Dsubu(expected_parameter_count, expected_parameter_count,
actual_parameter_count);
Branch(&regular_invoke, le, expected_parameter_count, Operand(zero_reg));
Label stack_overflow;
StackOverflowCheck(expected_parameter_count, t0, t1, &stack_overflow);
// Underapplication. Move the arguments already in the stack, including the
// receiver and the return address.
{
Label copy;
Register src = a6, dest = a7;
mov(src, sp);
dsll(t0, expected_parameter_count, kSystemPointerSizeLog2);
Dsubu(sp, sp, Operand(t0));
// Update stack pointer.
mov(dest, sp);
mov(t0, actual_parameter_count);
bind(&copy);
Ld(t1, MemOperand(src, 0));
Sd(t1, MemOperand(dest, 0));
Dsubu(t0, t0, Operand(1));
Daddu(src, src, Operand(kSystemPointerSize));
Daddu(dest, dest, Operand(kSystemPointerSize));
Branch(&copy, ge, t0, Operand(zero_reg));
}
// Fill remaining expected arguments with undefined values.
LoadRoot(t0, RootIndex::kUndefinedValue);
{
Label loop;
bind(&loop);
Sd(t0, MemOperand(a7, 0));
Dsubu(expected_parameter_count, expected_parameter_count, Operand(1));
Daddu(a7, a7, Operand(kSystemPointerSize));
Branch(&loop, gt, expected_parameter_count, Operand(zero_reg));
}
b(&regular_invoke);
nop();
bind(&stack_overflow);
{
FrameScope frame(this,
has_frame() ? StackFrame::NONE : StackFrame::INTERNAL);
CallRuntime(Runtime::kThrowStackOverflow);
break_(0xCC);
}
#else
// Check whether the expected and actual arguments count match. The registers
// are set up according to contract with ArgumentsAdaptorTrampoline:
Branch(&regular_invoke, eq, expected_parameter_count,
Operand(actual_parameter_count));
Handle<Code> adaptor = BUILTIN_CODE(isolate(), ArgumentsAdaptorTrampoline);
if (flag == CALL_FUNCTION) {
Call(adaptor);
Branch(done);
} else {
Jump(adaptor, RelocInfo::CODE_TARGET);
}
#endif
bind(&regular_invoke);
}
void MacroAssembler::CheckDebugHook(Register fun, Register new_target,
Register expected_parameter_count,
Register actual_parameter_count) {
Label skip_hook;
li(t0, ExternalReference::debug_hook_on_function_call_address(isolate()));
Lb(t0, MemOperand(t0));
Branch(&skip_hook, eq, t0, Operand(zero_reg));
{
// Load receiver to pass it later to DebugOnFunctionCall hook.
LoadReceiver(t0, actual_parameter_count);
FrameScope frame(this,
has_frame() ? StackFrame::NONE : StackFrame::INTERNAL);
SmiTag(expected_parameter_count);
Push(expected_parameter_count);
SmiTag(actual_parameter_count);
Push(actual_parameter_count);
if (new_target.is_valid()) {
Push(new_target);
}
Push(fun);
Push(fun);
Push(t0);
CallRuntime(Runtime::kDebugOnFunctionCall);
Pop(fun);
if (new_target.is_valid()) {
Pop(new_target);
}
Pop(actual_parameter_count);
SmiUntag(actual_parameter_count);
Pop(expected_parameter_count);
SmiUntag(expected_parameter_count);
}
bind(&skip_hook);
}
void MacroAssembler::InvokeFunctionCode(Register function, Register new_target,
Register expected_parameter_count,
Register actual_parameter_count,
InvokeFlag flag) {
// You can't call a function without a valid frame.
DCHECK_IMPLIES(flag == CALL_FUNCTION, has_frame());
DCHECK_EQ(function, a1);
DCHECK_IMPLIES(new_target.is_valid(), new_target == a3);
// On function call, call into the debugger if necessary.
CheckDebugHook(function, new_target, expected_parameter_count,
actual_parameter_count);
// Clear the new.target register if not given.
if (!new_target.is_valid()) {
LoadRoot(a3, RootIndex::kUndefinedValue);
}
Label done;
InvokePrologue(expected_parameter_count, actual_parameter_count, &done, flag);
// We call indirectly through the code field in the function to
// allow recompilation to take effect without changing any of the
// call sites.
Register code = kJavaScriptCallCodeStartRegister;
Ld(code, FieldMemOperand(function, JSFunction::kCodeOffset));
if (flag == CALL_FUNCTION) {
Daddu(code, code, Operand(Code::kHeaderSize - kHeapObjectTag));
Call(code);
} else {
DCHECK(flag == JUMP_FUNCTION);
Daddu(code, code, Operand(Code::kHeaderSize - kHeapObjectTag));
Jump(code);
}
// Continue here if InvokePrologue does handle the invocation due to
// mismatched parameter counts.
bind(&done);
}
void MacroAssembler::InvokeFunctionWithNewTarget(
Register function, Register new_target, Register actual_parameter_count,
InvokeFlag flag) {
// You can't call a function without a valid frame.
DCHECK_IMPLIES(flag == CALL_FUNCTION, has_frame());
// Contract with called JS functions requires that function is passed in a1.
DCHECK_EQ(function, a1);
Register expected_parameter_count = a2;
Register temp_reg = t0;
Ld(temp_reg, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
Ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
// The argument count is stored as uint16_t
Lhu(expected_parameter_count,
FieldMemOperand(temp_reg,
SharedFunctionInfo::kFormalParameterCountOffset));
InvokeFunctionCode(a1, new_target, expected_parameter_count,
actual_parameter_count, flag);
}
void MacroAssembler::InvokeFunction(Register function,
Register expected_parameter_count,
Register actual_parameter_count,
InvokeFlag flag) {
// You can't call a function without a valid frame.
DCHECK_IMPLIES(flag == CALL_FUNCTION, has_frame());
// Contract with called JS functions requires that function is passed in a1.
DCHECK_EQ(function, a1);
// Get the function and setup the context.
Ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
InvokeFunctionCode(a1, no_reg, expected_parameter_count,
actual_parameter_count, flag);
}
// ---------------------------------------------------------------------------
// Support functions.
void MacroAssembler::GetObjectType(Register object, Register map,
Register type_reg) {
LoadMap(map, object);
Lhu(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
}
// -----------------------------------------------------------------------------
// Runtime calls.
void TurboAssembler::DaddOverflow(Register dst, Register left,
const Operand& right, Register overflow) {
BlockTrampolinePoolScope block_trampoline_pool(this);
Register right_reg = no_reg;
Register scratch = t8;
if (!right.is_reg()) {
li(at, Operand(right));
right_reg = at;
} else {
right_reg = right.rm();
}
DCHECK(left != scratch && right_reg != scratch && dst != scratch &&
overflow != scratch);
DCHECK(overflow != left && overflow != right_reg);
if (dst == left || dst == right_reg) {
daddu(scratch, left, right_reg);
xor_(overflow, scratch, left);
xor_(at, scratch, right_reg);
and_(overflow, overflow, at);
mov(dst, scratch);
} else {
daddu(dst, left, right_reg);
xor_(overflow, dst, left);
xor_(at, dst, right_reg);
and_(overflow, overflow, at);
}
}
void TurboAssembler::DsubOverflow(Register dst, Register left,
const Operand& right, Register overflow) {
BlockTrampolinePoolScope block_trampoline_pool(this);
Register right_reg = no_reg;
Register scratch = t8;
if (!right.is_reg()) {
li(at, Operand(right));
right_reg = at;
} else {
right_reg = right.rm();
}
DCHECK(left != scratch && right_reg != scratch && dst != scratch &&
overflow != scratch);
DCHECK(overflow != left && overflow != right_reg);
if (dst == left || dst == right_reg) {
dsubu(scratch, left, right_reg);
xor_(overflow, left, scratch);
xor_(at, left, right_reg);
and_(overflow, overflow, at);
mov(dst, scratch);
} else {
dsubu(dst, left, right_reg);
xor_(overflow, left, dst);
xor_(at, left, right_reg);
and_(overflow, overflow, at);
}
}
void TurboAssembler::MulOverflow(Register dst, Register left,
const Operand& right, Register overflow) {
BlockTrampolinePoolScope block_trampoline_pool(this);
Register right_reg = no_reg;
Register scratch = t8;
if (!right.is_reg()) {
li(at, Operand(right));
right_reg = at;
} else {
right_reg = right.rm();
}
DCHECK(left != scratch && right_reg != scratch && dst != scratch &&
overflow != scratch);
DCHECK(overflow != left && overflow != right_reg);
if (dst == left || dst == right_reg) {
Mul(scratch, left, right_reg);
Mulh(overflow, left, right_reg);
mov(dst, scratch);
} else {
Mul(dst, left, right_reg);
Mulh(overflow, left, right_reg);
}
dsra32(scratch, dst, 0);
xor_(overflow, overflow, scratch);
}
void MacroAssembler::CallRuntime(const Runtime::Function* f, int num_arguments,
SaveFPRegsMode save_doubles) {
// All parameters are on the stack. v0 has the return value after call.
// If the expected number of arguments of the runtime function is
// constant, we check that the actual number of arguments match the
// expectation.
CHECK(f->nargs < 0 || f->nargs == num_arguments);
// TODO(1236192): Most runtime routines don't need the number of
// arguments passed in because it is constant. At some point we
// should remove this need and make the runtime routine entry code
// smarter.
PrepareCEntryArgs(num_arguments);
PrepareCEntryFunction(ExternalReference::Create(f));
Handle<Code> code =
CodeFactory::CEntry(isolate(), f->result_size, save_doubles);
Call(code, RelocInfo::CODE_TARGET);
}
void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid) {
const Runtime::Function* function = Runtime::FunctionForId(fid);
DCHECK_EQ(1, function->result_size);
if (function->nargs >= 0) {
PrepareCEntryArgs(function->nargs);
}
JumpToExternalReference(ExternalReference::Create(fid));
}
void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin,
BranchDelaySlot bd,
bool builtin_exit_frame) {
PrepareCEntryFunction(builtin);
Handle<Code> code = CodeFactory::CEntry(isolate(), 1, kDontSaveFPRegs,
kArgvOnStack, builtin_exit_frame);
Jump(code, RelocInfo::CODE_TARGET, al, zero_reg, Operand(zero_reg), bd);
}
void MacroAssembler::JumpToInstructionStream(Address entry) {
li(kOffHeapTrampolineRegister, Operand(entry, RelocInfo::OFF_HEAP_TARGET));
Jump(kOffHeapTrampolineRegister);
}
void MacroAssembler::LoadWeakValue(Register out, Register in,
Label* target_if_cleared) {
Branch(target_if_cleared, eq, in, Operand(kClearedWeakHeapObjectLower32));
And(out, in, Operand(~kWeakHeapObjectMask));
}
void MacroAssembler::IncrementCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2) {
DCHECK_GT(value, 0);
if (FLAG_native_code_counters && counter->Enabled()) {
// This operation has to be exactly 32-bit wide in case the external
// reference table redirects the counter to a uint32_t dummy_stats_counter_
// field.
li(scratch2, ExternalReference::Create(counter));
Lw(scratch1, MemOperand(scratch2));
Addu(scratch1, scratch1, Operand(value));
Sw(scratch1, MemOperand(scratch2));
}
}
void MacroAssembler::DecrementCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2) {
DCHECK_GT(value, 0);
if (FLAG_native_code_counters && counter->Enabled()) {
// This operation has to be exactly 32-bit wide in case the external
// reference table redirects the counter to a uint32_t dummy_stats_counter_
// field.
li(scratch2, ExternalReference::Create(counter));
Lw(scratch1, MemOperand(scratch2));
Subu(scratch1, scratch1, Operand(value));
Sw(scratch1, MemOperand(scratch2));
}
}
// -----------------------------------------------------------------------------
// Debugging.
void TurboAssembler::Trap() { stop(); }
void TurboAssembler::DebugBreak() { stop(); }
void TurboAssembler::Assert(Condition cc, AbortReason reason, Register rs,
Operand rt) {
if (emit_debug_code()) Check(cc, reason, rs, rt);
}
void TurboAssembler::Check(Condition cc, AbortReason reason, Register rs,
Operand rt) {
Label L;
Branch(&L, cc, rs, rt);
Abort(reason);
// Will not return here.
bind(&L);
}
void TurboAssembler::Abort(AbortReason reason) {
Label abort_start;
bind(&abort_start);
#ifdef DEBUG
const char* msg = GetAbortReason(reason);
RecordComment("Abort message: ");
RecordComment(msg);
#endif
// Avoid emitting call to builtin if requested.
if (trap_on_abort()) {
stop();
return;
}
if (should_abort_hard()) {
// We don't care if we constructed a frame. Just pretend we did.
FrameScope assume_frame(this, StackFrame::NONE);
PrepareCallCFunction(0, a0);
li(a0, Operand(static_cast<int>(reason)));
CallCFunction(ExternalReference::abort_with_reason(), 1);
return;
}
Move(a0, Smi::FromInt(static_cast<int>(reason)));
// Disable stub call restrictions to always allow calls to abort.
if (!has_frame()) {
// We don't actually want to generate a pile of code for this, so just
// claim there is a stack frame, without generating one.
FrameScope scope(this, StackFrame::NONE);
Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET);
} else {
Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET);
}
// Will not return here.
if (is_trampoline_pool_blocked()) {
// If the calling code cares about the exact number of
// instructions generated, we insert padding here to keep the size
// of the Abort macro constant.
// Currently in debug mode with debug_code enabled the number of
// generated instructions is 10, so we use this as a maximum value.
static const int kExpectedAbortInstructions = 10;
int abort_instructions = InstructionsGeneratedSince(&abort_start);
DCHECK_LE(abort_instructions, kExpectedAbortInstructions);
while (abort_instructions++ < kExpectedAbortInstructions) {
nop();
}
}
}
void MacroAssembler::LoadMap(Register destination, Register object) {
Ld(destination, FieldMemOperand(object, HeapObject::kMapOffset));
}
void MacroAssembler::LoadNativeContextSlot(int index, Register dst) {
LoadMap(dst, cp);
Ld(dst,
FieldMemOperand(dst, Map::kConstructorOrBackPointerOrNativeContextOffset));
Ld(dst, MemOperand(dst, Context::SlotOffset(index)));
}
void TurboAssembler::StubPrologue(StackFrame::Type type) {
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
li(scratch, Operand(StackFrame::TypeToMarker(type)));
PushCommonFrame(scratch);
}
void TurboAssembler::Prologue() { PushStandardFrame(a1); }
void TurboAssembler::EnterFrame(StackFrame::Type type) {
BlockTrampolinePoolScope block_trampoline_pool(this);
int stack_offset = -3 * kPointerSize;
const int fp_offset = 1 * kPointerSize;
daddiu(sp, sp, stack_offset);
stack_offset = -stack_offset - kPointerSize;
Sd(ra, MemOperand(sp, stack_offset));
stack_offset -= kPointerSize;
Sd(fp, MemOperand(sp, stack_offset));
stack_offset -= kPointerSize;
li(t9, Operand(StackFrame::TypeToMarker(type)));
Sd(t9, MemOperand(sp, stack_offset));
// Adjust FP to point to saved FP.
DCHECK_EQ(stack_offset, 0);
Daddu(fp, sp, Operand(fp_offset));
}
void TurboAssembler::LeaveFrame(StackFrame::Type type) {
daddiu(sp, fp, 2 * kPointerSize);
Ld(ra, MemOperand(fp, 1 * kPointerSize));
Ld(fp, MemOperand(fp, 0 * kPointerSize));
}
void MacroAssembler::EnterExitFrame(bool save_doubles, int stack_space,
StackFrame::Type frame_type) {
DCHECK(frame_type == StackFrame::EXIT ||
frame_type == StackFrame::BUILTIN_EXIT);
// Set up the frame structure on the stack.
STATIC_ASSERT(2 * kPointerSize == ExitFrameConstants::kCallerSPDisplacement);
STATIC_ASSERT(1 * kPointerSize == ExitFrameConstants::kCallerPCOffset);
STATIC_ASSERT(0 * kPointerSize == ExitFrameConstants::kCallerFPOffset);
// This is how the stack will look:
// fp + 2 (==kCallerSPDisplacement) - old stack's end
// [fp + 1 (==kCallerPCOffset)] - saved old ra
// [fp + 0 (==kCallerFPOffset)] - saved old fp
// [fp - 1 StackFrame::EXIT Smi
// [fp - 2 (==kSPOffset)] - sp of the called function
// fp - (2 + stack_space + alignment) == sp == [fp - kSPOffset] - top of the
// new stack (will contain saved ra)
// Save registers and reserve room for saved entry sp.
daddiu(sp, sp, -2 * kPointerSize - ExitFrameConstants::kFixedFrameSizeFromFp);
Sd(ra, MemOperand(sp, 3 * kPointerSize));
Sd(fp, MemOperand(sp, 2 * kPointerSize));
{
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
li(scratch, Operand(StackFrame::TypeToMarker(frame_type)));
Sd(scratch, MemOperand(sp, 1 * kPointerSize));
}
// Set up new frame pointer.
daddiu(fp, sp, ExitFrameConstants::kFixedFrameSizeFromFp);
if (emit_debug_code()) {
Sd(zero_reg, MemOperand(fp, ExitFrameConstants::kSPOffset));
}
{
BlockTrampolinePoolScope block_trampoline_pool(this);
// Save the frame pointer and the context in top.
li(t8, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress,
isolate()));
Sd(fp, MemOperand(t8));
li(t8,
ExternalReference::Create(IsolateAddressId::kContextAddress, isolate()));
Sd(cp, MemOperand(t8));
}
const int frame_alignment = MacroAssembler::ActivationFrameAlignment();
if (save_doubles) {
// The stack is already aligned to 0 modulo 8 for stores with sdc1.
int kNumOfSavedRegisters = FPURegister::kNumRegisters / 2;
int space = kNumOfSavedRegisters * kDoubleSize;
Dsubu(sp, sp, Operand(space));
// Remember: we only need to save every 2nd double FPU value.
for (int i = 0; i < kNumOfSavedRegisters; i++) {
FPURegister reg = FPURegister::from_code(2 * i);
Sdc1(reg, MemOperand(sp, i * kDoubleSize));
}
}
// Reserve place for the return address, stack space and an optional slot
// (used by DirectCEntry to hold the return value if a struct is
// returned) and align the frame preparing for calling the runtime function.
DCHECK_GE(stack_space, 0);
Dsubu(sp, sp, Operand((stack_space + 2) * kPointerSize));
if (frame_alignment > 0) {
DCHECK(base::bits::IsPowerOfTwo(frame_alignment));
And(sp, sp, Operand(-frame_alignment)); // Align stack.
}
// Set the exit frame sp value to point just before the return address
// location.
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
daddiu(scratch, sp, kPointerSize);
Sd(scratch, MemOperand(fp, ExitFrameConstants::kSPOffset));
}
void MacroAssembler::LeaveExitFrame(bool save_doubles, Register argument_count,
bool do_return,
bool argument_count_is_length) {
BlockTrampolinePoolScope block_trampoline_pool(this);
// Optionally restore all double registers.
if (save_doubles) {
// Remember: we only need to restore every 2nd double FPU value.
int kNumOfSavedRegisters = FPURegister::kNumRegisters / 2;
Dsubu(t8, fp,
Operand(ExitFrameConstants::kFixedFrameSizeFromFp +
kNumOfSavedRegisters * kDoubleSize));
for (int i = 0; i < kNumOfSavedRegisters; i++) {
FPURegister reg = FPURegister::from_code(2 * i);
Ldc1(reg, MemOperand(t8, i * kDoubleSize));
}
}
// Clear top frame.
li(t8,
ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, isolate()));
Sd(zero_reg, MemOperand(t8));
// Restore current context from top and clear it in debug mode.
li(t8,
ExternalReference::Create(IsolateAddressId::kContextAddress, isolate()));
Ld(cp, MemOperand(t8));
#ifdef DEBUG
li(t8,
ExternalReference::Create(IsolateAddressId::kContextAddress, isolate()));
Sd(a3, MemOperand(t8));
#endif
// Pop the arguments, restore registers, and return.
mov(sp, fp); // Respect ABI stack constraint.
Ld(fp, MemOperand(sp, ExitFrameConstants::kCallerFPOffset));
Ld(ra, MemOperand(sp, ExitFrameConstants::kCallerPCOffset));
if (argument_count.is_valid()) {
if (argument_count_is_length) {
daddu(sp, sp, argument_count);
} else {
Dlsa(sp, sp, argument_count, kPointerSizeLog2, t8);
}
}
if (do_return) {
Ret(USE_DELAY_SLOT);
// If returning, the instruction in the delay slot will be the addiu below.
}
daddiu(sp, sp, 2 * kPointerSize);
}
int TurboAssembler::ActivationFrameAlignment() {
#if V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
// Running on the real platform. Use the alignment as mandated by the local
// environment.
// Note: This will break if we ever start generating snapshots on one Mips
// platform for another Mips platform with a different alignment.
return base::OS::ActivationFrameAlignment();
#else // V8_HOST_ARCH_MIPS
// If we are using the simulator then we should always align to the expected
// alignment. As the simulator is used to generate snapshots we do not know
// if the target platform will need alignment, so this is controlled from a
// flag.
return FLAG_sim_stack_alignment;
#endif // V8_HOST_ARCH_MIPS
}
void MacroAssembler::AssertStackIsAligned() {
if (emit_debug_code()) {
const int frame_alignment = ActivationFrameAlignment();
const int frame_alignment_mask = frame_alignment - 1;
if (frame_alignment > kPointerSize) {
Label alignment_as_expected;
DCHECK(base::bits::IsPowerOfTwo(frame_alignment));
{
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
andi(scratch, sp, frame_alignment_mask);
Branch(&alignment_as_expected, eq, scratch, Operand(zero_reg));
}
// Don't use Check here, as it will call Runtime_Abort re-entering here.
stop();
bind(&alignment_as_expected);
}
}
}
void TurboAssembler::SmiUntag(Register dst, const MemOperand& src) {
if (SmiValuesAre32Bits()) {
Lw(dst, MemOperand(src.rm(), SmiWordOffset(src.offset())));
} else {
DCHECK(SmiValuesAre31Bits());
Lw(dst, src);
SmiUntag(dst);
}
}
void TurboAssembler::JumpIfSmi(Register value, Label* smi_label,
Register scratch, BranchDelaySlot bd) {
DCHECK_EQ(0, kSmiTag);
andi(scratch, value, kSmiTagMask);
Branch(bd, smi_label, eq, scratch, Operand(zero_reg));
}
void MacroAssembler::JumpIfNotSmi(Register value, Label* not_smi_label,
Register scratch, BranchDelaySlot bd) {
DCHECK_EQ(0, kSmiTag);
andi(scratch, value, kSmiTagMask);
Branch(bd, not_smi_label, ne, scratch, Operand(zero_reg));
}
void MacroAssembler::AssertNotSmi(Register object) {
if (emit_debug_code()) {
STATIC_ASSERT(kSmiTag == 0);
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
andi(scratch, object, kSmiTagMask);
Check(ne, AbortReason::kOperandIsASmi, scratch, Operand(zero_reg));
}
}
void MacroAssembler::AssertSmi(Register object) {
if (emit_debug_code()) {
STATIC_ASSERT(kSmiTag == 0);
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
andi(scratch, object, kSmiTagMask);
Check(eq, AbortReason::kOperandIsASmi, scratch, Operand(zero_reg));
}
}
void MacroAssembler::AssertConstructor(Register object) {
if (emit_debug_code()) {
BlockTrampolinePoolScope block_trampoline_pool(this);
STATIC_ASSERT(kSmiTag == 0);
SmiTst(object, t8);
Check(ne, AbortReason::kOperandIsASmiAndNotAConstructor, t8,
Operand(zero_reg));
LoadMap(t8, object);
Lbu(t8, FieldMemOperand(t8, Map::kBitFieldOffset));
And(t8, t8, Operand(Map::Bits1::IsConstructorBit::kMask));
Check(ne, AbortReason::kOperandIsNotAConstructor, t8, Operand(zero_reg));
}
}
void MacroAssembler::AssertFunction(Register object) {
if (emit_debug_code()) {
BlockTrampolinePoolScope block_trampoline_pool(this);
STATIC_ASSERT(kSmiTag == 0);
SmiTst(object, t8);
Check(ne, AbortReason::kOperandIsASmiAndNotAFunction, t8,
Operand(zero_reg));
GetObjectType(object, t8, t8);
Check(eq, AbortReason::kOperandIsNotAFunction, t8,
Operand(JS_FUNCTION_TYPE));
}
}
void MacroAssembler::AssertBoundFunction(Register object) {
if (emit_debug_code()) {
BlockTrampolinePoolScope block_trampoline_pool(this);
STATIC_ASSERT(kSmiTag == 0);
SmiTst(object, t8);
Check(ne, AbortReason::kOperandIsASmiAndNotABoundFunction, t8,
Operand(zero_reg));
GetObjectType(object, t8, t8);
Check(eq, AbortReason::kOperandIsNotABoundFunction, t8,
Operand(JS_BOUND_FUNCTION_TYPE));
}
}
void MacroAssembler::AssertGeneratorObject(Register object) {
if (!emit_debug_code()) return;
BlockTrampolinePoolScope block_trampoline_pool(this);
STATIC_ASSERT(kSmiTag == 0);
SmiTst(object, t8);
Check(ne, AbortReason::kOperandIsASmiAndNotAGeneratorObject, t8,
Operand(zero_reg));
GetObjectType(object, t8, t8);
Label done;
// Check if JSGeneratorObject
Branch(&done, eq, t8, Operand(JS_GENERATOR_OBJECT_TYPE));
// Check if JSAsyncFunctionObject (See MacroAssembler::CompareInstanceType)
Branch(&done, eq, t8, Operand(JS_ASYNC_FUNCTION_OBJECT_TYPE));
// Check if JSAsyncGeneratorObject
Branch(&done, eq, t8, Operand(JS_ASYNC_GENERATOR_OBJECT_TYPE));
Abort(AbortReason::kOperandIsNotAGeneratorObject);
bind(&done);
}
void MacroAssembler::AssertUndefinedOrAllocationSite(Register object,
Register scratch) {
if (emit_debug_code()) {
Label done_checking;
AssertNotSmi(object);
LoadRoot(scratch, RootIndex::kUndefinedValue);
Branch(&done_checking, eq, object, Operand(scratch));
GetObjectType(object, scratch, scratch);
Assert(eq, AbortReason::kExpectedUndefinedOrCell, scratch,
Operand(ALLOCATION_SITE_TYPE));
bind(&done_checking);
}
}
void TurboAssembler::Float32Max(FPURegister dst, FPURegister src1,
FPURegister src2, Label* out_of_line) {
if (src1 == src2) {
Move_s(dst, src1);
return;
}
// Check if one of operands is NaN.
CompareIsNanF32(src1, src2);
BranchTrueF(out_of_line);
if (kArchVariant >= kMips64r6) {
max_s(dst, src1, src2);
} else {
Label return_left, return_right, done;
CompareF32(OLT, src1, src2);
BranchTrueShortF(&return_right);
CompareF32(OLT, src2, src1);
BranchTrueShortF(&return_left);
// Operands are equal, but check for +/-0.
{
BlockTrampolinePoolScope block_trampoline_pool(this);
mfc1(t8, src1);
dsll32(t8, t8, 0);
Branch(&return_left, eq, t8, Operand(zero_reg));
Branch(&return_right);
}
bind(&return_right);
if (src2 != dst) {
Move_s(dst, src2);
}
Branch(&done);
bind(&return_left);
if (src1 != dst) {
Move_s(dst, src1);
}
bind(&done);
}
}
void TurboAssembler::Float32MaxOutOfLine(FPURegister dst, FPURegister src1,
FPURegister src2) {
add_s(dst, src1, src2);
}
void TurboAssembler::Float32Min(FPURegister dst, FPURegister src1,
FPURegister src2, Label* out_of_line) {
if (src1 == src2) {
Move_s(dst, src1);
return;
}
// Check if one of operands is NaN.
CompareIsNanF32(src1, src2);
BranchTrueF(out_of_line);
if (kArchVariant >= kMips64r6) {
min_s(dst, src1, src2);
} else {
Label return_left, return_right, done;
CompareF32(OLT, src1, src2);
BranchTrueShortF(&return_left);
CompareF32(OLT, src2, src1);
BranchTrueShortF(&return_right);
// Left equals right => check for -0.
{
BlockTrampolinePoolScope block_trampoline_pool(this);
mfc1(t8, src1);
dsll32(t8, t8, 0);
Branch(&return_right, eq, t8, Operand(zero_reg));
Branch(&return_left);
}
bind(&return_right);
if (src2 != dst) {
Move_s(dst, src2);
}
Branch(&done);
bind(&return_left);
if (src1 != dst) {
Move_s(dst, src1);
}
bind(&done);
}
}
void TurboAssembler::Float32MinOutOfLine(FPURegister dst, FPURegister src1,
FPURegister src2) {
add_s(dst, src1, src2);
}
void TurboAssembler::Float64Max(FPURegister dst, FPURegister src1,
FPURegister src2, Label* out_of_line) {
if (src1 == src2) {
Move_d(dst, src1);
return;
}
// Check if one of operands is NaN.
CompareIsNanF64(src1, src2);
BranchTrueF(out_of_line);
if (kArchVariant >= kMips64r6) {
max_d(dst, src1, src2);
} else {
Label return_left, return_right, done;
CompareF64(OLT, src1, src2);
BranchTrueShortF(&return_right);
CompareF64(OLT, src2, src1);
BranchTrueShortF(&return_left);
// Left equals right => check for -0.
{
BlockTrampolinePoolScope block_trampoline_pool(this);
dmfc1(t8, src1);
Branch(&return_left, eq, t8, Operand(zero_reg));
Branch(&return_right);
}
bind(&return_right);
if (src2 != dst) {
Move_d(dst, src2);
}
Branch(&done);
bind(&return_left);
if (src1 != dst) {
Move_d(dst, src1);
}
bind(&done);
}
}
void TurboAssembler::Float64MaxOutOfLine(FPURegister dst, FPURegister src1,
FPURegister src2) {
add_d(dst, src1, src2);
}
void TurboAssembler::Float64Min(FPURegister dst, FPURegister src1,
FPURegister src2, Label* out_of_line) {
if (src1 == src2) {
Move_d(dst, src1);
return;
}
// Check if one of operands is NaN.
CompareIsNanF64(src1, src2);
BranchTrueF(out_of_line);
if (kArchVariant >= kMips64r6) {
min_d(dst, src1, src2);
} else {
Label return_left, return_right, done;
CompareF64(OLT, src1, src2);
BranchTrueShortF(&return_left);
CompareF64(OLT, src2, src1);
BranchTrueShortF(&return_right);
// Left equals right => check for -0.
{
BlockTrampolinePoolScope block_trampoline_pool(this);
dmfc1(t8, src1);
Branch(&return_right, eq, t8, Operand(zero_reg));
Branch(&return_left);
}
bind(&return_right);
if (src2 != dst) {
Move_d(dst, src2);
}
Branch(&done);
bind(&return_left);
if (src1 != dst) {
Move_d(dst, src1);
}
bind(&done);
}
}
void TurboAssembler::Float64MinOutOfLine(FPURegister dst, FPURegister src1,
FPURegister src2) {
add_d(dst, src1, src2);
}
static const int kRegisterPassedArguments = 8;
int TurboAssembler::CalculateStackPassedWords(int num_reg_arguments,
int num_double_arguments) {
int stack_passed_words = 0;
num_reg_arguments += 2 * num_double_arguments;
// O32: Up to four simple arguments are passed in registers a0..a3.
// N64: Up to eight simple arguments are passed in registers a0..a7.
if (num_reg_arguments > kRegisterPassedArguments) {
stack_passed_words += num_reg_arguments - kRegisterPassedArguments;
}
stack_passed_words += kCArgSlotCount;
return stack_passed_words;
}
void TurboAssembler::PrepareCallCFunction(int num_reg_arguments,
int num_double_arguments,
Register scratch) {
int frame_alignment = ActivationFrameAlignment();
// n64: Up to eight simple arguments in a0..a3, a4..a7, No argument slots.
// O32: Up to four simple arguments are passed in registers a0..a3.
// Those four arguments must have reserved argument slots on the stack for
// mips, even though those argument slots are not normally used.
// Both ABIs: Remaining arguments are pushed on the stack, above (higher
// address than) the (O32) argument slots. (arg slot calculation handled by
// CalculateStackPassedWords()).
int stack_passed_arguments =
CalculateStackPassedWords(num_reg_arguments, num_double_arguments);
if (frame_alignment > kPointerSize) {
// Make stack end at alignment and make room for num_arguments - 4 words
// and the original value of sp.
mov(scratch, sp);
Dsubu(sp, sp, Operand((stack_passed_arguments + 1) * kPointerSize));
DCHECK(base::bits::IsPowerOfTwo(frame_alignment));
And(sp, sp, Operand(-frame_alignment));
Sd(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize));
} else {
Dsubu(sp, sp, Operand(stack_passed_arguments * kPointerSize));
}
}
void TurboAssembler::PrepareCallCFunction(int num_reg_arguments,
Register scratch) {
PrepareCallCFunction(num_reg_arguments, 0, scratch);
}
void TurboAssembler::CallCFunction(ExternalReference function,
int num_reg_arguments,
int num_double_arguments) {
BlockTrampolinePoolScope block_trampoline_pool(this);
li(t9, function);
CallCFunctionHelper(t9, num_reg_arguments, num_double_arguments);
}
void TurboAssembler::CallCFunction(Register function, int num_reg_arguments,
int num_double_arguments) {
CallCFunctionHelper(function, num_reg_arguments, num_double_arguments);
}
void TurboAssembler::CallCFunction(ExternalReference function,
int num_arguments) {
CallCFunction(function, num_arguments, 0);
}
void TurboAssembler::CallCFunction(Register function, int num_arguments) {
CallCFunction(function, num_arguments, 0);
}
void TurboAssembler::CallCFunctionHelper(Register function,
int num_reg_arguments,
int num_double_arguments) {
DCHECK_LE(num_reg_arguments + num_double_arguments, kMaxCParameters);
DCHECK(has_frame());
// Make sure that the stack is aligned before calling a C function unless
// running in the simulator. The simulator has its own alignment check which
// provides more information.
// The argument stots are presumed to have been set up by
// PrepareCallCFunction. The C function must be called via t9, for mips ABI.
#if V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
if (emit_debug_code()) {
int frame_alignment = base::OS::ActivationFrameAlignment();
int frame_alignment_mask = frame_alignment - 1;
if (frame_alignment > kPointerSize) {
DCHECK(base::bits::IsPowerOfTwo(frame_alignment));
Label alignment_as_expected;
{
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
And(scratch, sp, Operand(frame_alignment_mask));
Branch(&alignment_as_expected, eq, scratch, Operand(zero_reg));
}
// Don't use Check here, as it will call Runtime_Abort possibly
// re-entering here.
stop();
bind(&alignment_as_expected);
}
}
#endif // V8_HOST_ARCH_MIPS
// Just call directly. The function called cannot cause a GC, or
// allow preemption, so the return address in the link register
// stays correct.
{
BlockTrampolinePoolScope block_trampoline_pool(this);
if (function != t9) {
mov(t9, function);
function = t9;
}
// Save the frame pointer and PC so that the stack layout remains iterable,
// even without an ExitFrame which normally exists between JS and C frames.
// 't' registers are caller-saved so this is safe as a scratch register.
Register pc_scratch = t1;
Register scratch = t2;
DCHECK(!AreAliased(pc_scratch, scratch, function));
mov(scratch, ra);
nal();
mov(pc_scratch, ra);
mov(ra, scratch);
// See x64 code for reasoning about how to address the isolate data fields.
if (root_array_available()) {
Sd(pc_scratch, MemOperand(kRootRegister,
IsolateData::fast_c_call_caller_pc_offset()));
Sd(fp, MemOperand(kRootRegister,
IsolateData::fast_c_call_caller_fp_offset()));
} else {
DCHECK_NOT_NULL(isolate());
li(scratch, ExternalReference::fast_c_call_caller_pc_address(isolate()));
Sd(pc_scratch, MemOperand(scratch));
li(scratch, ExternalReference::fast_c_call_caller_fp_address(isolate()));
Sd(fp, MemOperand(scratch));
}
Call(function);
// We don't unset the PC; the FP is the source of truth.
if (root_array_available()) {
Sd(zero_reg, MemOperand(kRootRegister,
IsolateData::fast_c_call_caller_fp_offset()));
} else {
DCHECK_NOT_NULL(isolate());
li(scratch, ExternalReference::fast_c_call_caller_fp_address(isolate()));
Sd(zero_reg, MemOperand(scratch));
}
}
int stack_passed_arguments =
CalculateStackPassedWords(num_reg_arguments, num_double_arguments);
if (base::OS::ActivationFrameAlignment() > kPointerSize) {
Ld(sp, MemOperand(sp, stack_passed_arguments * kPointerSize));
} else {
Daddu(sp, sp, Operand(stack_passed_arguments * kPointerSize));
}
}
#undef BRANCH_ARGS_CHECK
void TurboAssembler::CheckPageFlag(Register object, Register scratch, int mask,
Condition cc, Label* condition_met) {
And(scratch, object, Operand(~kPageAlignmentMask));
Ld(scratch, MemOperand(scratch, BasicMemoryChunk::kFlagsOffset));
And(scratch, scratch, Operand(mask));
Branch(condition_met, cc, scratch, Operand(zero_reg));
}
Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2, Register reg3,
Register reg4, Register reg5,
Register reg6) {
RegList regs = 0;
if (reg1.is_valid()) regs |= reg1.bit();
if (reg2.is_valid()) regs |= reg2.bit();
if (reg3.is_valid()) regs |= reg3.bit();
if (reg4.is_valid()) regs |= reg4.bit();
if (reg5.is_valid()) regs |= reg5.bit();
if (reg6.is_valid()) regs |= reg6.bit();
const RegisterConfiguration* config = RegisterConfiguration::Default();
for (int i = 0; i < config->num_allocatable_general_registers(); ++i) {
int code = config->GetAllocatableGeneralCode(i);
Register candidate = Register::from_code(code);
if (regs & candidate.bit()) continue;
return candidate;
}
UNREACHABLE();
}
void TurboAssembler::ComputeCodeStartAddress(Register dst) {
// This push on ra and the pop below together ensure that we restore the
// register ra, which is needed while computing the code start address.
push(ra);
// The nal instruction puts the address of the current instruction into
// the return address (ra) register, which we can use later on.
if (kArchVariant == kMips64r6) {
addiupc(ra, 1);
} else {
nal();
nop();
}
int pc = pc_offset();
li(dst, Operand(pc));
Dsubu(dst, ra, dst);
pop(ra); // Restore ra
}
void TurboAssembler::ResetSpeculationPoisonRegister() {
li(kSpeculationPoisonRegister, -1);
}
void TurboAssembler::CallForDeoptimization(Builtins::Name target, int,
Label* exit, DeoptimizeKind kind,
Label*) {
BlockTrampolinePoolScope block_trampoline_pool(this);
Ld(t9,
MemOperand(kRootRegister, IsolateData::builtin_entry_slot_offset(target)));
Call(t9);
DCHECK_EQ(SizeOfCodeGeneratedSince(exit),
(kind == DeoptimizeKind::kLazy)
? Deoptimizer::kLazyDeoptExitSize
: Deoptimizer::kNonLazyDeoptExitSize);
USE(exit, kind);
}
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_MIPS64