| // Copyright 2014 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "src/base/iterator.h" |
| #include "src/compiler/backend/instruction-selector-impl.h" |
| #include "src/compiler/node-matchers.h" |
| #include "src/compiler/node-properties.h" |
| |
| namespace v8 { |
| namespace internal { |
| namespace compiler { |
| |
| // Adds IA32-specific methods for generating operands. |
| class IA32OperandGenerator final : public OperandGenerator { |
| public: |
| explicit IA32OperandGenerator(InstructionSelector* selector) |
| : OperandGenerator(selector) {} |
| |
| InstructionOperand UseByteRegister(Node* node) { |
| // TODO(titzer): encode byte register use constraints. |
| return UseFixed(node, edx); |
| } |
| |
| InstructionOperand DefineAsByteRegister(Node* node) { |
| // TODO(titzer): encode byte register def constraints. |
| return DefineAsRegister(node); |
| } |
| |
| bool CanBeMemoryOperand(InstructionCode opcode, Node* node, Node* input, |
| int effect_level) { |
| if (input->opcode() != IrOpcode::kLoad || |
| !selector()->CanCover(node, input)) { |
| return false; |
| } |
| if (effect_level != selector()->GetEffectLevel(input)) { |
| return false; |
| } |
| MachineRepresentation rep = |
| LoadRepresentationOf(input->op()).representation(); |
| switch (opcode) { |
| case kIA32And: |
| case kIA32Or: |
| case kIA32Xor: |
| case kIA32Add: |
| case kIA32Sub: |
| case kIA32Cmp: |
| case kIA32Test: |
| return rep == MachineRepresentation::kWord32 || IsAnyTagged(rep); |
| case kIA32Cmp16: |
| case kIA32Test16: |
| return rep == MachineRepresentation::kWord16; |
| case kIA32Cmp8: |
| case kIA32Test8: |
| return rep == MachineRepresentation::kWord8; |
| default: |
| break; |
| } |
| return false; |
| } |
| |
| bool CanBeImmediate(Node* node) { |
| switch (node->opcode()) { |
| case IrOpcode::kInt32Constant: |
| case IrOpcode::kNumberConstant: |
| case IrOpcode::kExternalConstant: |
| case IrOpcode::kRelocatableInt32Constant: |
| case IrOpcode::kRelocatableInt64Constant: |
| return true; |
| case IrOpcode::kHeapConstant: { |
| // TODO(bmeurer): We must not dereference handles concurrently. If we |
| // really have to this here, then we need to find a way to put this |
| // information on the HeapConstant node already. |
| #if 0 |
| // Constants in young generation cannot be used as immediates in V8 |
| // because the GC does not scan code objects when collecting the young |
| // generation. |
| Handle<HeapObject> value = HeapConstantOf(node->op()); |
| return !Heap::InYoungGeneration(*value); |
| #else |
| return false; |
| #endif |
| } |
| default: |
| return false; |
| } |
| } |
| |
| AddressingMode GenerateMemoryOperandInputs( |
| Node* index, int scale, Node* base, int32_t displacement, |
| DisplacementMode displacement_mode, InstructionOperand inputs[], |
| size_t* input_count, RegisterMode register_mode = kRegister) { |
| AddressingMode mode = kMode_MRI; |
| if (displacement_mode == kNegativeDisplacement) { |
| displacement = -displacement; |
| } |
| if (base != nullptr) { |
| if (base->opcode() == IrOpcode::kInt32Constant) { |
| displacement += OpParameter<int32_t>(base->op()); |
| base = nullptr; |
| } |
| } |
| if (base != nullptr) { |
| inputs[(*input_count)++] = UseRegisterWithMode(base, register_mode); |
| if (index != nullptr) { |
| DCHECK(scale >= 0 && scale <= 3); |
| inputs[(*input_count)++] = UseRegisterWithMode(index, register_mode); |
| if (displacement != 0) { |
| inputs[(*input_count)++] = TempImmediate(displacement); |
| static const AddressingMode kMRnI_modes[] = {kMode_MR1I, kMode_MR2I, |
| kMode_MR4I, kMode_MR8I}; |
| mode = kMRnI_modes[scale]; |
| } else { |
| static const AddressingMode kMRn_modes[] = {kMode_MR1, kMode_MR2, |
| kMode_MR4, kMode_MR8}; |
| mode = kMRn_modes[scale]; |
| } |
| } else { |
| if (displacement == 0) { |
| mode = kMode_MR; |
| } else { |
| inputs[(*input_count)++] = TempImmediate(displacement); |
| mode = kMode_MRI; |
| } |
| } |
| } else { |
| DCHECK(scale >= 0 && scale <= 3); |
| if (index != nullptr) { |
| inputs[(*input_count)++] = UseRegisterWithMode(index, register_mode); |
| if (displacement != 0) { |
| inputs[(*input_count)++] = TempImmediate(displacement); |
| static const AddressingMode kMnI_modes[] = {kMode_MRI, kMode_M2I, |
| kMode_M4I, kMode_M8I}; |
| mode = kMnI_modes[scale]; |
| } else { |
| static const AddressingMode kMn_modes[] = {kMode_MR, kMode_M2, |
| kMode_M4, kMode_M8}; |
| mode = kMn_modes[scale]; |
| } |
| } else { |
| inputs[(*input_count)++] = TempImmediate(displacement); |
| return kMode_MI; |
| } |
| } |
| return mode; |
| } |
| |
| AddressingMode GenerateMemoryOperandInputs( |
| Node* index, int scale, Node* base, Node* displacement_node, |
| DisplacementMode displacement_mode, InstructionOperand inputs[], |
| size_t* input_count, RegisterMode register_mode = kRegister) { |
| int32_t displacement = (displacement_node == nullptr) |
| ? 0 |
| : OpParameter<int32_t>(displacement_node->op()); |
| return GenerateMemoryOperandInputs(index, scale, base, displacement, |
| displacement_mode, inputs, input_count, |
| register_mode); |
| } |
| |
| AddressingMode GetEffectiveAddressMemoryOperand( |
| Node* node, InstructionOperand inputs[], size_t* input_count, |
| RegisterMode register_mode = kRegister) { |
| { |
| LoadMatcher<ExternalReferenceMatcher> m(node); |
| if (m.index().HasResolvedValue() && m.object().HasResolvedValue() && |
| selector()->CanAddressRelativeToRootsRegister( |
| m.object().ResolvedValue())) { |
| ptrdiff_t const delta = |
| m.index().ResolvedValue() + |
| TurboAssemblerBase::RootRegisterOffsetForExternalReference( |
| selector()->isolate(), m.object().ResolvedValue()); |
| if (is_int32(delta)) { |
| inputs[(*input_count)++] = TempImmediate(static_cast<int32_t>(delta)); |
| return kMode_Root; |
| } |
| } |
| } |
| |
| BaseWithIndexAndDisplacement32Matcher m(node, AddressOption::kAllowAll); |
| DCHECK(m.matches()); |
| if ((m.displacement() == nullptr || CanBeImmediate(m.displacement()))) { |
| return GenerateMemoryOperandInputs( |
| m.index(), m.scale(), m.base(), m.displacement(), |
| m.displacement_mode(), inputs, input_count, register_mode); |
| } else { |
| inputs[(*input_count)++] = |
| UseRegisterWithMode(node->InputAt(0), register_mode); |
| inputs[(*input_count)++] = |
| UseRegisterWithMode(node->InputAt(1), register_mode); |
| return kMode_MR1; |
| } |
| } |
| |
| InstructionOperand GetEffectiveIndexOperand(Node* index, |
| AddressingMode* mode) { |
| if (CanBeImmediate(index)) { |
| *mode = kMode_MRI; |
| return UseImmediate(index); |
| } else { |
| *mode = kMode_MR1; |
| return UseUniqueRegister(index); |
| } |
| } |
| |
| bool CanBeBetterLeftOperand(Node* node) const { |
| return !selector()->IsLive(node); |
| } |
| }; |
| |
| namespace { |
| |
| void VisitRO(InstructionSelector* selector, Node* node, ArchOpcode opcode) { |
| IA32OperandGenerator g(selector); |
| Node* input = node->InputAt(0); |
| // We have to use a byte register as input to movsxb. |
| InstructionOperand input_op = |
| opcode == kIA32Movsxbl ? g.UseFixed(input, eax) : g.Use(input); |
| selector->Emit(opcode, g.DefineAsRegister(node), input_op); |
| } |
| |
| void VisitROWithTemp(InstructionSelector* selector, Node* node, |
| ArchOpcode opcode) { |
| IA32OperandGenerator g(selector); |
| InstructionOperand temps[] = {g.TempRegister()}; |
| selector->Emit(opcode, g.DefineAsRegister(node), g.Use(node->InputAt(0)), |
| arraysize(temps), temps); |
| } |
| |
| void VisitROWithTempSimd(InstructionSelector* selector, Node* node, |
| ArchOpcode opcode) { |
| IA32OperandGenerator g(selector); |
| InstructionOperand temps[] = {g.TempSimd128Register()}; |
| selector->Emit(opcode, g.DefineAsRegister(node), |
| g.UseUniqueRegister(node->InputAt(0)), arraysize(temps), |
| temps); |
| } |
| |
| void VisitRR(InstructionSelector* selector, Node* node, |
| InstructionCode opcode) { |
| IA32OperandGenerator g(selector); |
| selector->Emit(opcode, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0))); |
| } |
| |
| void VisitRROFloat(InstructionSelector* selector, Node* node, |
| ArchOpcode avx_opcode, ArchOpcode sse_opcode) { |
| IA32OperandGenerator g(selector); |
| InstructionOperand operand0 = g.UseRegister(node->InputAt(0)); |
| InstructionOperand operand1 = g.Use(node->InputAt(1)); |
| if (selector->IsSupported(AVX)) { |
| selector->Emit(avx_opcode, g.DefineAsRegister(node), operand0, operand1); |
| } else { |
| selector->Emit(sse_opcode, g.DefineSameAsFirst(node), operand0, operand1); |
| } |
| } |
| |
| void VisitFloatUnop(InstructionSelector* selector, Node* node, Node* input, |
| ArchOpcode avx_opcode, ArchOpcode sse_opcode) { |
| IA32OperandGenerator g(selector); |
| InstructionOperand temps[] = {g.TempSimd128Register()}; |
| if (selector->IsSupported(AVX)) { |
| selector->Emit(avx_opcode, g.DefineAsRegister(node), g.UseUnique(input), |
| arraysize(temps), temps); |
| } else { |
| selector->Emit(sse_opcode, g.DefineSameAsFirst(node), |
| g.UseUniqueRegister(input), arraysize(temps), temps); |
| } |
| } |
| |
| void VisitRRSimd(InstructionSelector* selector, Node* node, |
| ArchOpcode avx_opcode, ArchOpcode sse_opcode) { |
| IA32OperandGenerator g(selector); |
| InstructionOperand operand0 = g.UseRegister(node->InputAt(0)); |
| if (selector->IsSupported(AVX)) { |
| selector->Emit(avx_opcode, g.DefineAsRegister(node), operand0); |
| } else { |
| selector->Emit(sse_opcode, g.DefineSameAsFirst(node), operand0); |
| } |
| } |
| |
| // TODO(v8:9198): Like VisitRROFloat, but for SIMD. SSE requires operand1 to be |
| // a register as we don't have memory alignment yet. For AVX, memory operands |
| // are fine, but can have performance issues if not aligned to 16/32 bytes |
| // (based on load size), see SDM Vol 1, chapter 14.9 |
| void VisitRROSimd(InstructionSelector* selector, Node* node, |
| ArchOpcode avx_opcode, ArchOpcode sse_opcode) { |
| IA32OperandGenerator g(selector); |
| InstructionOperand operand0 = g.UseRegister(node->InputAt(0)); |
| if (selector->IsSupported(AVX)) { |
| selector->Emit(avx_opcode, g.DefineAsRegister(node), operand0, |
| g.Use(node->InputAt(1))); |
| } else { |
| selector->Emit(sse_opcode, g.DefineSameAsFirst(node), operand0, |
| g.UseRegister(node->InputAt(1))); |
| } |
| } |
| |
| void VisitRRISimd(InstructionSelector* selector, Node* node, |
| ArchOpcode opcode) { |
| IA32OperandGenerator g(selector); |
| InstructionOperand operand0 = g.UseRegister(node->InputAt(0)); |
| InstructionOperand operand1 = |
| g.UseImmediate(OpParameter<int32_t>(node->op())); |
| // 8x16 uses movsx_b on dest to extract a byte, which only works |
| // if dest is a byte register. |
| InstructionOperand dest = opcode == kIA32I8x16ExtractLaneS |
| ? g.DefineAsFixed(node, eax) |
| : g.DefineAsRegister(node); |
| selector->Emit(opcode, dest, operand0, operand1); |
| } |
| |
| void VisitRRISimd(InstructionSelector* selector, Node* node, |
| ArchOpcode avx_opcode, ArchOpcode sse_opcode) { |
| IA32OperandGenerator g(selector); |
| InstructionOperand operand0 = g.UseRegister(node->InputAt(0)); |
| InstructionOperand operand1 = |
| g.UseImmediate(OpParameter<int32_t>(node->op())); |
| if (selector->IsSupported(AVX)) { |
| selector->Emit(avx_opcode, g.DefineAsRegister(node), operand0, operand1); |
| } else { |
| selector->Emit(sse_opcode, g.DefineSameAsFirst(node), operand0, operand1); |
| } |
| } |
| |
| void VisitRROSimdShift(InstructionSelector* selector, Node* node, |
| ArchOpcode opcode) { |
| IA32OperandGenerator g(selector); |
| if (g.CanBeImmediate(node->InputAt(1))) { |
| selector->Emit(opcode, g.DefineSameAsFirst(node), |
| g.UseRegister(node->InputAt(0)), |
| g.UseImmediate(node->InputAt(1))); |
| } else { |
| InstructionOperand operand0 = g.UseUniqueRegister(node->InputAt(0)); |
| InstructionOperand operand1 = g.UseUniqueRegister(node->InputAt(1)); |
| InstructionOperand temps[] = {g.TempSimd128Register(), g.TempRegister()}; |
| selector->Emit(opcode, g.DefineSameAsFirst(node), operand0, operand1, |
| arraysize(temps), temps); |
| } |
| } |
| |
| void VisitRROI8x16SimdShift(InstructionSelector* selector, Node* node, |
| ArchOpcode opcode) { |
| IA32OperandGenerator g(selector); |
| InstructionOperand operand0 = g.UseUniqueRegister(node->InputAt(0)); |
| InstructionOperand operand1 = g.UseUniqueRegister(node->InputAt(1)); |
| InstructionOperand temps[] = {g.TempRegister(), g.TempSimd128Register()}; |
| selector->Emit(opcode, g.DefineSameAsFirst(node), operand0, operand1, |
| arraysize(temps), temps); |
| } |
| } // namespace |
| |
| void InstructionSelector::VisitStackSlot(Node* node) { |
| StackSlotRepresentation rep = StackSlotRepresentationOf(node->op()); |
| int slot = frame_->AllocateSpillSlot(rep.size()); |
| OperandGenerator g(this); |
| |
| Emit(kArchStackSlot, g.DefineAsRegister(node), |
| sequence()->AddImmediate(Constant(slot)), 0, nullptr); |
| } |
| |
| void InstructionSelector::VisitAbortCSAAssert(Node* node) { |
| IA32OperandGenerator g(this); |
| Emit(kArchAbortCSAAssert, g.NoOutput(), g.UseFixed(node->InputAt(0), edx)); |
| } |
| |
| void InstructionSelector::VisitLoadTransform(Node* node) { |
| LoadTransformParameters params = LoadTransformParametersOf(node->op()); |
| InstructionCode opcode; |
| switch (params.transformation) { |
| case LoadTransformation::kS128Load8Splat: |
| opcode = kIA32S128Load8Splat; |
| break; |
| case LoadTransformation::kS128Load16Splat: |
| opcode = kIA32S128Load16Splat; |
| break; |
| case LoadTransformation::kS128Load32Splat: |
| opcode = kIA32S128Load32Splat; |
| break; |
| case LoadTransformation::kS128Load64Splat: |
| opcode = kIA32S128Load64Splat; |
| break; |
| case LoadTransformation::kS128Load8x8S: |
| opcode = kIA32S128Load8x8S; |
| break; |
| case LoadTransformation::kS128Load8x8U: |
| opcode = kIA32S128Load8x8U; |
| break; |
| case LoadTransformation::kS128Load16x4S: |
| opcode = kIA32S128Load16x4S; |
| break; |
| case LoadTransformation::kS128Load16x4U: |
| opcode = kIA32S128Load16x4U; |
| break; |
| case LoadTransformation::kS128Load32x2S: |
| opcode = kIA32S128Load32x2S; |
| break; |
| case LoadTransformation::kS128Load32x2U: |
| opcode = kIA32S128Load32x2U; |
| break; |
| case LoadTransformation::kS128Load32Zero: |
| opcode = kIA32Movss; |
| break; |
| case LoadTransformation::kS128Load64Zero: |
| opcode = kIA32Movsd; |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| |
| // IA32 supports unaligned loads. |
| DCHECK_NE(params.kind, MemoryAccessKind::kUnaligned); |
| // Trap handler is not supported on IA32. |
| DCHECK_NE(params.kind, MemoryAccessKind::kProtected); |
| |
| IA32OperandGenerator g(this); |
| InstructionOperand outputs[1]; |
| outputs[0] = g.DefineAsRegister(node); |
| InstructionOperand inputs[3]; |
| size_t input_count = 0; |
| AddressingMode mode = |
| g.GetEffectiveAddressMemoryOperand(node, inputs, &input_count); |
| InstructionCode code = opcode | AddressingModeField::encode(mode); |
| Emit(code, 1, outputs, input_count, inputs); |
| } |
| |
| void InstructionSelector::VisitLoad(Node* node) { |
| LoadRepresentation load_rep = LoadRepresentationOf(node->op()); |
| |
| ArchOpcode opcode; |
| switch (load_rep.representation()) { |
| case MachineRepresentation::kFloat32: |
| opcode = kIA32Movss; |
| break; |
| case MachineRepresentation::kFloat64: |
| opcode = kIA32Movsd; |
| break; |
| case MachineRepresentation::kBit: // Fall through. |
| case MachineRepresentation::kWord8: |
| opcode = load_rep.IsSigned() ? kIA32Movsxbl : kIA32Movzxbl; |
| break; |
| case MachineRepresentation::kWord16: |
| opcode = load_rep.IsSigned() ? kIA32Movsxwl : kIA32Movzxwl; |
| break; |
| case MachineRepresentation::kTaggedSigned: // Fall through. |
| case MachineRepresentation::kTaggedPointer: // Fall through. |
| case MachineRepresentation::kTagged: // Fall through. |
| case MachineRepresentation::kWord32: |
| opcode = kIA32Movl; |
| break; |
| case MachineRepresentation::kSimd128: |
| opcode = kIA32Movdqu; |
| break; |
| case MachineRepresentation::kCompressedPointer: // Fall through. |
| case MachineRepresentation::kCompressed: // Fall through. |
| case MachineRepresentation::kWord64: // Fall through. |
| case MachineRepresentation::kNone: |
| UNREACHABLE(); |
| } |
| |
| IA32OperandGenerator g(this); |
| InstructionOperand outputs[1]; |
| outputs[0] = g.DefineAsRegister(node); |
| InstructionOperand inputs[3]; |
| size_t input_count = 0; |
| AddressingMode mode = |
| g.GetEffectiveAddressMemoryOperand(node, inputs, &input_count); |
| InstructionCode code = opcode | AddressingModeField::encode(mode); |
| if (node->opcode() == IrOpcode::kPoisonedLoad) { |
| CHECK_NE(poisoning_level_, PoisoningMitigationLevel::kDontPoison); |
| code |= MiscField::encode(kMemoryAccessPoisoned); |
| } |
| Emit(code, 1, outputs, input_count, inputs); |
| } |
| |
| void InstructionSelector::VisitPoisonedLoad(Node* node) { VisitLoad(node); } |
| |
| void InstructionSelector::VisitProtectedLoad(Node* node) { |
| // TODO(eholk) |
| UNIMPLEMENTED(); |
| } |
| |
| void InstructionSelector::VisitStore(Node* node) { |
| IA32OperandGenerator g(this); |
| Node* base = node->InputAt(0); |
| Node* index = node->InputAt(1); |
| Node* value = node->InputAt(2); |
| |
| StoreRepresentation store_rep = StoreRepresentationOf(node->op()); |
| WriteBarrierKind write_barrier_kind = store_rep.write_barrier_kind(); |
| MachineRepresentation rep = store_rep.representation(); |
| |
| if (FLAG_enable_unconditional_write_barriers && CanBeTaggedPointer(rep)) { |
| write_barrier_kind = kFullWriteBarrier; |
| } |
| |
| if (write_barrier_kind != kNoWriteBarrier && |
| V8_LIKELY(!FLAG_disable_write_barriers)) { |
| DCHECK(CanBeTaggedPointer(rep)); |
| AddressingMode addressing_mode; |
| InstructionOperand inputs[] = { |
| g.UseUniqueRegister(base), |
| g.GetEffectiveIndexOperand(index, &addressing_mode), |
| g.UseUniqueRegister(value)}; |
| RecordWriteMode record_write_mode = |
| WriteBarrierKindToRecordWriteMode(write_barrier_kind); |
| InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()}; |
| size_t const temp_count = arraysize(temps); |
| InstructionCode code = kArchStoreWithWriteBarrier; |
| code |= AddressingModeField::encode(addressing_mode); |
| code |= MiscField::encode(static_cast<int>(record_write_mode)); |
| Emit(code, 0, nullptr, arraysize(inputs), inputs, temp_count, temps); |
| } else { |
| ArchOpcode opcode; |
| switch (rep) { |
| case MachineRepresentation::kFloat32: |
| opcode = kIA32Movss; |
| break; |
| case MachineRepresentation::kFloat64: |
| opcode = kIA32Movsd; |
| break; |
| case MachineRepresentation::kBit: // Fall through. |
| case MachineRepresentation::kWord8: |
| opcode = kIA32Movb; |
| break; |
| case MachineRepresentation::kWord16: |
| opcode = kIA32Movw; |
| break; |
| case MachineRepresentation::kTaggedSigned: // Fall through. |
| case MachineRepresentation::kTaggedPointer: // Fall through. |
| case MachineRepresentation::kTagged: // Fall through. |
| case MachineRepresentation::kWord32: |
| opcode = kIA32Movl; |
| break; |
| case MachineRepresentation::kSimd128: |
| opcode = kIA32Movdqu; |
| break; |
| case MachineRepresentation::kCompressedPointer: // Fall through. |
| case MachineRepresentation::kCompressed: // Fall through. |
| case MachineRepresentation::kWord64: // Fall through. |
| case MachineRepresentation::kNone: |
| UNREACHABLE(); |
| } |
| |
| InstructionOperand val; |
| if (g.CanBeImmediate(value)) { |
| val = g.UseImmediate(value); |
| } else if (rep == MachineRepresentation::kWord8 || |
| rep == MachineRepresentation::kBit) { |
| val = g.UseByteRegister(value); |
| } else { |
| val = g.UseRegister(value); |
| } |
| |
| InstructionOperand inputs[4]; |
| size_t input_count = 0; |
| AddressingMode addressing_mode = |
| g.GetEffectiveAddressMemoryOperand(node, inputs, &input_count); |
| InstructionCode code = |
| opcode | AddressingModeField::encode(addressing_mode); |
| inputs[input_count++] = val; |
| Emit(code, 0, static_cast<InstructionOperand*>(nullptr), input_count, |
| inputs); |
| } |
| } |
| |
| void InstructionSelector::VisitProtectedStore(Node* node) { |
| // TODO(eholk) |
| UNIMPLEMENTED(); |
| } |
| |
| // Architecture supports unaligned access, therefore VisitLoad is used instead |
| void InstructionSelector::VisitUnalignedLoad(Node* node) { UNREACHABLE(); } |
| |
| // Architecture supports unaligned access, therefore VisitStore is used instead |
| void InstructionSelector::VisitUnalignedStore(Node* node) { UNREACHABLE(); } |
| |
| namespace { |
| |
| // Shared routine for multiple binary operations. |
| void VisitBinop(InstructionSelector* selector, Node* node, |
| InstructionCode opcode, FlagsContinuation* cont) { |
| IA32OperandGenerator g(selector); |
| Int32BinopMatcher m(node); |
| Node* left = m.left().node(); |
| Node* right = m.right().node(); |
| InstructionOperand inputs[6]; |
| size_t input_count = 0; |
| InstructionOperand outputs[1]; |
| size_t output_count = 0; |
| |
| // TODO(turbofan): match complex addressing modes. |
| if (left == right) { |
| // If both inputs refer to the same operand, enforce allocating a register |
| // for both of them to ensure that we don't end up generating code like |
| // this: |
| // |
| // mov eax, [ebp-0x10] |
| // add eax, [ebp-0x10] |
| // jo label |
| InstructionOperand const input = g.UseRegister(left); |
| inputs[input_count++] = input; |
| inputs[input_count++] = input; |
| } else if (g.CanBeImmediate(right)) { |
| inputs[input_count++] = g.UseRegister(left); |
| inputs[input_count++] = g.UseImmediate(right); |
| } else { |
| int effect_level = selector->GetEffectLevel(node, cont); |
| if (node->op()->HasProperty(Operator::kCommutative) && |
| g.CanBeBetterLeftOperand(right) && |
| (!g.CanBeBetterLeftOperand(left) || |
| !g.CanBeMemoryOperand(opcode, node, right, effect_level))) { |
| std::swap(left, right); |
| } |
| if (g.CanBeMemoryOperand(opcode, node, right, effect_level)) { |
| inputs[input_count++] = g.UseRegister(left); |
| AddressingMode addressing_mode = |
| g.GetEffectiveAddressMemoryOperand(right, inputs, &input_count); |
| opcode |= AddressingModeField::encode(addressing_mode); |
| } else { |
| inputs[input_count++] = g.UseRegister(left); |
| inputs[input_count++] = g.Use(right); |
| } |
| } |
| |
| outputs[output_count++] = g.DefineSameAsFirst(node); |
| |
| DCHECK_NE(0u, input_count); |
| DCHECK_EQ(1u, output_count); |
| DCHECK_GE(arraysize(inputs), input_count); |
| DCHECK_GE(arraysize(outputs), output_count); |
| |
| selector->EmitWithContinuation(opcode, output_count, outputs, input_count, |
| inputs, cont); |
| } |
| |
| // Shared routine for multiple binary operations. |
| void VisitBinop(InstructionSelector* selector, Node* node, |
| InstructionCode opcode) { |
| FlagsContinuation cont; |
| VisitBinop(selector, node, opcode, &cont); |
| } |
| |
| } // namespace |
| |
| void InstructionSelector::VisitWord32And(Node* node) { |
| VisitBinop(this, node, kIA32And); |
| } |
| |
| void InstructionSelector::VisitWord32Or(Node* node) { |
| VisitBinop(this, node, kIA32Or); |
| } |
| |
| void InstructionSelector::VisitWord32Xor(Node* node) { |
| IA32OperandGenerator g(this); |
| Int32BinopMatcher m(node); |
| if (m.right().Is(-1)) { |
| Emit(kIA32Not, g.DefineSameAsFirst(node), g.UseRegister(m.left().node())); |
| } else { |
| VisitBinop(this, node, kIA32Xor); |
| } |
| } |
| |
| void InstructionSelector::VisitStackPointerGreaterThan( |
| Node* node, FlagsContinuation* cont) { |
| StackCheckKind kind = StackCheckKindOf(node->op()); |
| InstructionCode opcode = |
| kArchStackPointerGreaterThan | MiscField::encode(static_cast<int>(kind)); |
| |
| int effect_level = GetEffectLevel(node, cont); |
| |
| IA32OperandGenerator g(this); |
| |
| // No outputs. |
| InstructionOperand* const outputs = nullptr; |
| const int output_count = 0; |
| |
| // Applying an offset to this stack check requires a temp register. Offsets |
| // are only applied to the first stack check. If applying an offset, we must |
| // ensure the input and temp registers do not alias, thus kUniqueRegister. |
| InstructionOperand temps[] = {g.TempRegister()}; |
| const int temp_count = (kind == StackCheckKind::kJSFunctionEntry) ? 1 : 0; |
| const auto register_mode = (kind == StackCheckKind::kJSFunctionEntry) |
| ? OperandGenerator::kUniqueRegister |
| : OperandGenerator::kRegister; |
| |
| Node* const value = node->InputAt(0); |
| if (g.CanBeMemoryOperand(kIA32Cmp, node, value, effect_level)) { |
| DCHECK_EQ(IrOpcode::kLoad, value->opcode()); |
| |
| // GetEffectiveAddressMemoryOperand can create at most 3 inputs. |
| static constexpr int kMaxInputCount = 3; |
| |
| size_t input_count = 0; |
| InstructionOperand inputs[kMaxInputCount]; |
| AddressingMode addressing_mode = g.GetEffectiveAddressMemoryOperand( |
| value, inputs, &input_count, register_mode); |
| opcode |= AddressingModeField::encode(addressing_mode); |
| DCHECK_LE(input_count, kMaxInputCount); |
| |
| EmitWithContinuation(opcode, output_count, outputs, input_count, inputs, |
| temp_count, temps, cont); |
| } else { |
| InstructionOperand inputs[] = {g.UseRegisterWithMode(value, register_mode)}; |
| static constexpr int input_count = arraysize(inputs); |
| EmitWithContinuation(opcode, output_count, outputs, input_count, inputs, |
| temp_count, temps, cont); |
| } |
| } |
| |
| // Shared routine for multiple shift operations. |
| static inline void VisitShift(InstructionSelector* selector, Node* node, |
| ArchOpcode opcode) { |
| IA32OperandGenerator g(selector); |
| Node* left = node->InputAt(0); |
| Node* right = node->InputAt(1); |
| |
| if (g.CanBeImmediate(right)) { |
| selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left), |
| g.UseImmediate(right)); |
| } else { |
| selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left), |
| g.UseFixed(right, ecx)); |
| } |
| } |
| |
| namespace { |
| |
| void VisitMulHigh(InstructionSelector* selector, Node* node, |
| ArchOpcode opcode) { |
| IA32OperandGenerator g(selector); |
| InstructionOperand temps[] = {g.TempRegister(eax)}; |
| selector->Emit( |
| opcode, g.DefineAsFixed(node, edx), g.UseFixed(node->InputAt(0), eax), |
| g.UseUniqueRegister(node->InputAt(1)), arraysize(temps), temps); |
| } |
| |
| void VisitDiv(InstructionSelector* selector, Node* node, ArchOpcode opcode) { |
| IA32OperandGenerator g(selector); |
| InstructionOperand temps[] = {g.TempRegister(edx)}; |
| selector->Emit(opcode, g.DefineAsFixed(node, eax), |
| g.UseFixed(node->InputAt(0), eax), |
| g.UseUnique(node->InputAt(1)), arraysize(temps), temps); |
| } |
| |
| void VisitMod(InstructionSelector* selector, Node* node, ArchOpcode opcode) { |
| IA32OperandGenerator g(selector); |
| InstructionOperand temps[] = {g.TempRegister(eax)}; |
| selector->Emit(opcode, g.DefineAsFixed(node, edx), |
| g.UseFixed(node->InputAt(0), eax), |
| g.UseUnique(node->InputAt(1)), arraysize(temps), temps); |
| } |
| |
| void EmitLea(InstructionSelector* selector, Node* result, Node* index, |
| int scale, Node* base, Node* displacement, |
| DisplacementMode displacement_mode) { |
| IA32OperandGenerator g(selector); |
| InstructionOperand inputs[4]; |
| size_t input_count = 0; |
| AddressingMode mode = |
| g.GenerateMemoryOperandInputs(index, scale, base, displacement, |
| displacement_mode, inputs, &input_count); |
| |
| DCHECK_NE(0u, input_count); |
| DCHECK_GE(arraysize(inputs), input_count); |
| |
| InstructionOperand outputs[1]; |
| outputs[0] = g.DefineAsRegister(result); |
| |
| InstructionCode opcode = AddressingModeField::encode(mode) | kIA32Lea; |
| |
| selector->Emit(opcode, 1, outputs, input_count, inputs); |
| } |
| |
| } // namespace |
| |
| void InstructionSelector::VisitWord32Shl(Node* node) { |
| Int32ScaleMatcher m(node, true); |
| if (m.matches()) { |
| Node* index = node->InputAt(0); |
| Node* base = m.power_of_two_plus_one() ? index : nullptr; |
| EmitLea(this, node, index, m.scale(), base, nullptr, kPositiveDisplacement); |
| return; |
| } |
| VisitShift(this, node, kIA32Shl); |
| } |
| |
| void InstructionSelector::VisitWord32Shr(Node* node) { |
| VisitShift(this, node, kIA32Shr); |
| } |
| |
| void InstructionSelector::VisitWord32Sar(Node* node) { |
| VisitShift(this, node, kIA32Sar); |
| } |
| |
| void InstructionSelector::VisitInt32PairAdd(Node* node) { |
| IA32OperandGenerator g(this); |
| |
| Node* projection1 = NodeProperties::FindProjection(node, 1); |
| if (projection1) { |
| // We use UseUniqueRegister here to avoid register sharing with the temp |
| // register. |
| InstructionOperand inputs[] = { |
| g.UseRegister(node->InputAt(0)), |
| g.UseUniqueRegisterOrSlotOrConstant(node->InputAt(1)), |
| g.UseRegister(node->InputAt(2)), g.UseUniqueRegister(node->InputAt(3))}; |
| |
| InstructionOperand outputs[] = {g.DefineSameAsFirst(node), |
| g.DefineAsRegister(projection1)}; |
| |
| InstructionOperand temps[] = {g.TempRegister()}; |
| |
| Emit(kIA32AddPair, 2, outputs, 4, inputs, 1, temps); |
| } else { |
| // The high word of the result is not used, so we emit the standard 32 bit |
| // instruction. |
| Emit(kIA32Add, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)), |
| g.Use(node->InputAt(2))); |
| } |
| } |
| |
| void InstructionSelector::VisitInt32PairSub(Node* node) { |
| IA32OperandGenerator g(this); |
| |
| Node* projection1 = NodeProperties::FindProjection(node, 1); |
| if (projection1) { |
| // We use UseUniqueRegister here to avoid register sharing with the temp |
| // register. |
| InstructionOperand inputs[] = { |
| g.UseRegister(node->InputAt(0)), |
| g.UseUniqueRegisterOrSlotOrConstant(node->InputAt(1)), |
| g.UseRegister(node->InputAt(2)), g.UseUniqueRegister(node->InputAt(3))}; |
| |
| InstructionOperand outputs[] = {g.DefineSameAsFirst(node), |
| g.DefineAsRegister(projection1)}; |
| |
| InstructionOperand temps[] = {g.TempRegister()}; |
| |
| Emit(kIA32SubPair, 2, outputs, 4, inputs, 1, temps); |
| } else { |
| // The high word of the result is not used, so we emit the standard 32 bit |
| // instruction. |
| Emit(kIA32Sub, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)), |
| g.Use(node->InputAt(2))); |
| } |
| } |
| |
| void InstructionSelector::VisitInt32PairMul(Node* node) { |
| IA32OperandGenerator g(this); |
| |
| Node* projection1 = NodeProperties::FindProjection(node, 1); |
| if (projection1) { |
| // InputAt(3) explicitly shares ecx with OutputRegister(1) to save one |
| // register and one mov instruction. |
| InstructionOperand inputs[] = { |
| g.UseUnique(node->InputAt(0)), |
| g.UseUniqueRegisterOrSlotOrConstant(node->InputAt(1)), |
| g.UseUniqueRegister(node->InputAt(2)), |
| g.UseFixed(node->InputAt(3), ecx)}; |
| |
| InstructionOperand outputs[] = { |
| g.DefineAsFixed(node, eax), |
| g.DefineAsFixed(NodeProperties::FindProjection(node, 1), ecx)}; |
| |
| InstructionOperand temps[] = {g.TempRegister(edx)}; |
| |
| Emit(kIA32MulPair, 2, outputs, 4, inputs, 1, temps); |
| } else { |
| // The high word of the result is not used, so we emit the standard 32 bit |
| // instruction. |
| Emit(kIA32Imul, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)), |
| g.Use(node->InputAt(2))); |
| } |
| } |
| |
| void VisitWord32PairShift(InstructionSelector* selector, InstructionCode opcode, |
| Node* node) { |
| IA32OperandGenerator g(selector); |
| |
| Node* shift = node->InputAt(2); |
| InstructionOperand shift_operand; |
| if (g.CanBeImmediate(shift)) { |
| shift_operand = g.UseImmediate(shift); |
| } else { |
| shift_operand = g.UseFixed(shift, ecx); |
| } |
| InstructionOperand inputs[] = {g.UseFixed(node->InputAt(0), eax), |
| g.UseFixed(node->InputAt(1), edx), |
| shift_operand}; |
| |
| InstructionOperand outputs[2]; |
| InstructionOperand temps[1]; |
| int32_t output_count = 0; |
| int32_t temp_count = 0; |
| outputs[output_count++] = g.DefineAsFixed(node, eax); |
| Node* projection1 = NodeProperties::FindProjection(node, 1); |
| if (projection1) { |
| outputs[output_count++] = g.DefineAsFixed(projection1, edx); |
| } else { |
| temps[temp_count++] = g.TempRegister(edx); |
| } |
| |
| selector->Emit(opcode, output_count, outputs, 3, inputs, temp_count, temps); |
| } |
| |
| void InstructionSelector::VisitWord32PairShl(Node* node) { |
| VisitWord32PairShift(this, kIA32ShlPair, node); |
| } |
| |
| void InstructionSelector::VisitWord32PairShr(Node* node) { |
| VisitWord32PairShift(this, kIA32ShrPair, node); |
| } |
| |
| void InstructionSelector::VisitWord32PairSar(Node* node) { |
| VisitWord32PairShift(this, kIA32SarPair, node); |
| } |
| |
| void InstructionSelector::VisitWord32Rol(Node* node) { |
| VisitShift(this, node, kIA32Rol); |
| } |
| |
| void InstructionSelector::VisitWord32Ror(Node* node) { |
| VisitShift(this, node, kIA32Ror); |
| } |
| |
| #define RO_OP_LIST(V) \ |
| V(Word32Clz, kIA32Lzcnt) \ |
| V(Word32Ctz, kIA32Tzcnt) \ |
| V(Word32Popcnt, kIA32Popcnt) \ |
| V(ChangeFloat32ToFloat64, kSSEFloat32ToFloat64) \ |
| V(RoundInt32ToFloat32, kSSEInt32ToFloat32) \ |
| V(ChangeInt32ToFloat64, kSSEInt32ToFloat64) \ |
| V(TruncateFloat32ToInt32, kSSEFloat32ToInt32) \ |
| V(ChangeFloat64ToInt32, kSSEFloat64ToInt32) \ |
| V(TruncateFloat64ToFloat32, kSSEFloat64ToFloat32) \ |
| V(RoundFloat64ToInt32, kSSEFloat64ToInt32) \ |
| V(BitcastFloat32ToInt32, kIA32BitcastFI) \ |
| V(BitcastInt32ToFloat32, kIA32BitcastIF) \ |
| V(Float32Sqrt, kSSEFloat32Sqrt) \ |
| V(Float64Sqrt, kSSEFloat64Sqrt) \ |
| V(Float64ExtractLowWord32, kSSEFloat64ExtractLowWord32) \ |
| V(Float64ExtractHighWord32, kSSEFloat64ExtractHighWord32) \ |
| V(SignExtendWord8ToInt32, kIA32Movsxbl) \ |
| V(SignExtendWord16ToInt32, kIA32Movsxwl) \ |
| V(F64x2Sqrt, kIA32F64x2Sqrt) |
| |
| #define RO_WITH_TEMP_OP_LIST(V) V(ChangeUint32ToFloat64, kSSEUint32ToFloat64) |
| |
| #define RO_WITH_TEMP_SIMD_OP_LIST(V) \ |
| V(TruncateFloat32ToUint32, kSSEFloat32ToUint32) \ |
| V(ChangeFloat64ToUint32, kSSEFloat64ToUint32) \ |
| V(TruncateFloat64ToUint32, kSSEFloat64ToUint32) |
| |
| #define RR_OP_LIST(V) \ |
| V(TruncateFloat64ToWord32, kArchTruncateDoubleToI) \ |
| V(Float32RoundDown, kSSEFloat32Round | MiscField::encode(kRoundDown)) \ |
| V(Float64RoundDown, kSSEFloat64Round | MiscField::encode(kRoundDown)) \ |
| V(Float32RoundUp, kSSEFloat32Round | MiscField::encode(kRoundUp)) \ |
| V(Float64RoundUp, kSSEFloat64Round | MiscField::encode(kRoundUp)) \ |
| V(Float32RoundTruncate, kSSEFloat32Round | MiscField::encode(kRoundToZero)) \ |
| V(Float64RoundTruncate, kSSEFloat64Round | MiscField::encode(kRoundToZero)) \ |
| V(Float32RoundTiesEven, \ |
| kSSEFloat32Round | MiscField::encode(kRoundToNearest)) \ |
| V(Float64RoundTiesEven, \ |
| kSSEFloat64Round | MiscField::encode(kRoundToNearest)) \ |
| V(F32x4Ceil, kIA32F32x4Round | MiscField::encode(kRoundUp)) \ |
| V(F32x4Floor, kIA32F32x4Round | MiscField::encode(kRoundDown)) \ |
| V(F32x4Trunc, kIA32F32x4Round | MiscField::encode(kRoundToZero)) \ |
| V(F32x4NearestInt, kIA32F32x4Round | MiscField::encode(kRoundToNearest)) \ |
| V(F64x2Ceil, kIA32F64x2Round | MiscField::encode(kRoundUp)) \ |
| V(F64x2Floor, kIA32F64x2Round | MiscField::encode(kRoundDown)) \ |
| V(F64x2Trunc, kIA32F64x2Round | MiscField::encode(kRoundToZero)) \ |
| V(F64x2NearestInt, kIA32F64x2Round | MiscField::encode(kRoundToNearest)) |
| |
| #define RRO_FLOAT_OP_LIST(V) \ |
| V(Float32Add, kAVXFloat32Add, kSSEFloat32Add) \ |
| V(Float64Add, kAVXFloat64Add, kSSEFloat64Add) \ |
| V(Float32Sub, kAVXFloat32Sub, kSSEFloat32Sub) \ |
| V(Float64Sub, kAVXFloat64Sub, kSSEFloat64Sub) \ |
| V(Float32Mul, kAVXFloat32Mul, kSSEFloat32Mul) \ |
| V(Float64Mul, kAVXFloat64Mul, kSSEFloat64Mul) \ |
| V(Float32Div, kAVXFloat32Div, kSSEFloat32Div) \ |
| V(Float64Div, kAVXFloat64Div, kSSEFloat64Div) \ |
| V(F64x2Add, kIA32F64x2Add, kIA32F64x2Add) \ |
| V(F64x2Sub, kIA32F64x2Sub, kIA32F64x2Sub) \ |
| V(F64x2Mul, kIA32F64x2Mul, kIA32F64x2Mul) \ |
| V(F64x2Div, kIA32F64x2Div, kIA32F64x2Div) \ |
| V(F64x2Eq, kIA32F64x2Eq, kIA32F64x2Eq) \ |
| V(F64x2Ne, kIA32F64x2Ne, kIA32F64x2Ne) \ |
| V(F64x2Lt, kIA32F64x2Lt, kIA32F64x2Lt) \ |
| V(F64x2Le, kIA32F64x2Le, kIA32F64x2Le) |
| |
| #define FLOAT_UNOP_LIST(V) \ |
| V(Float32Abs, kAVXFloat32Abs, kSSEFloat32Abs) \ |
| V(Float64Abs, kAVXFloat64Abs, kSSEFloat64Abs) \ |
| V(Float32Neg, kAVXFloat32Neg, kSSEFloat32Neg) \ |
| V(Float64Neg, kAVXFloat64Neg, kSSEFloat64Neg) \ |
| V(F64x2Abs, kAVXFloat64Abs, kSSEFloat64Abs) \ |
| V(F64x2Neg, kAVXFloat64Neg, kSSEFloat64Neg) |
| |
| #define RO_VISITOR(Name, opcode) \ |
| void InstructionSelector::Visit##Name(Node* node) { \ |
| VisitRO(this, node, opcode); \ |
| } |
| RO_OP_LIST(RO_VISITOR) |
| #undef RO_VISITOR |
| #undef RO_OP_LIST |
| |
| #define RO_WITH_TEMP_VISITOR(Name, opcode) \ |
| void InstructionSelector::Visit##Name(Node* node) { \ |
| VisitROWithTemp(this, node, opcode); \ |
| } |
| RO_WITH_TEMP_OP_LIST(RO_WITH_TEMP_VISITOR) |
| #undef RO_WITH_TEMP_VISITOR |
| #undef RO_WITH_TEMP_OP_LIST |
| |
| #define RO_WITH_TEMP_SIMD_VISITOR(Name, opcode) \ |
| void InstructionSelector::Visit##Name(Node* node) { \ |
| VisitROWithTempSimd(this, node, opcode); \ |
| } |
| RO_WITH_TEMP_SIMD_OP_LIST(RO_WITH_TEMP_SIMD_VISITOR) |
| #undef RO_WITH_TEMP_SIMD_VISITOR |
| #undef RO_WITH_TEMP_SIMD_OP_LIST |
| |
| #define RR_VISITOR(Name, opcode) \ |
| void InstructionSelector::Visit##Name(Node* node) { \ |
| VisitRR(this, node, opcode); \ |
| } |
| RR_OP_LIST(RR_VISITOR) |
| #undef RR_VISITOR |
| #undef RR_OP_LIST |
| |
| #define RRO_FLOAT_VISITOR(Name, avx, sse) \ |
| void InstructionSelector::Visit##Name(Node* node) { \ |
| VisitRROFloat(this, node, avx, sse); \ |
| } |
| RRO_FLOAT_OP_LIST(RRO_FLOAT_VISITOR) |
| #undef RRO_FLOAT_VISITOR |
| #undef RRO_FLOAT_OP_LIST |
| |
| #define FLOAT_UNOP_VISITOR(Name, avx, sse) \ |
| void InstructionSelector::Visit##Name(Node* node) { \ |
| VisitFloatUnop(this, node, node->InputAt(0), avx, sse); \ |
| } |
| FLOAT_UNOP_LIST(FLOAT_UNOP_VISITOR) |
| #undef FLOAT_UNOP_VISITOR |
| #undef FLOAT_UNOP_LIST |
| |
| void InstructionSelector::VisitWord32ReverseBits(Node* node) { UNREACHABLE(); } |
| |
| void InstructionSelector::VisitWord64ReverseBytes(Node* node) { UNREACHABLE(); } |
| |
| void InstructionSelector::VisitWord32ReverseBytes(Node* node) { |
| IA32OperandGenerator g(this); |
| Emit(kIA32Bswap, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0))); |
| } |
| |
| void InstructionSelector::VisitSimd128ReverseBytes(Node* node) { |
| UNREACHABLE(); |
| } |
| |
| void InstructionSelector::VisitInt32Add(Node* node) { |
| IA32OperandGenerator g(this); |
| |
| // Try to match the Add to a lea pattern |
| BaseWithIndexAndDisplacement32Matcher m(node); |
| if (m.matches() && |
| (m.displacement() == nullptr || g.CanBeImmediate(m.displacement()))) { |
| InstructionOperand inputs[4]; |
| size_t input_count = 0; |
| AddressingMode mode = g.GenerateMemoryOperandInputs( |
| m.index(), m.scale(), m.base(), m.displacement(), m.displacement_mode(), |
| inputs, &input_count); |
| |
| DCHECK_NE(0u, input_count); |
| DCHECK_GE(arraysize(inputs), input_count); |
| |
| InstructionOperand outputs[1]; |
| outputs[0] = g.DefineAsRegister(node); |
| |
| InstructionCode opcode = AddressingModeField::encode(mode) | kIA32Lea; |
| Emit(opcode, 1, outputs, input_count, inputs); |
| return; |
| } |
| |
| // No lea pattern match, use add |
| VisitBinop(this, node, kIA32Add); |
| } |
| |
| void InstructionSelector::VisitInt32Sub(Node* node) { |
| IA32OperandGenerator g(this); |
| Int32BinopMatcher m(node); |
| if (m.left().Is(0)) { |
| Emit(kIA32Neg, g.DefineSameAsFirst(node), g.Use(m.right().node())); |
| } else { |
| VisitBinop(this, node, kIA32Sub); |
| } |
| } |
| |
| void InstructionSelector::VisitInt32Mul(Node* node) { |
| Int32ScaleMatcher m(node, true); |
| if (m.matches()) { |
| Node* index = node->InputAt(0); |
| Node* base = m.power_of_two_plus_one() ? index : nullptr; |
| EmitLea(this, node, index, m.scale(), base, nullptr, kPositiveDisplacement); |
| return; |
| } |
| IA32OperandGenerator g(this); |
| Node* left = node->InputAt(0); |
| Node* right = node->InputAt(1); |
| if (g.CanBeImmediate(right)) { |
| Emit(kIA32Imul, g.DefineAsRegister(node), g.Use(left), |
| g.UseImmediate(right)); |
| } else { |
| if (g.CanBeBetterLeftOperand(right)) { |
| std::swap(left, right); |
| } |
| Emit(kIA32Imul, g.DefineSameAsFirst(node), g.UseRegister(left), |
| g.Use(right)); |
| } |
| } |
| |
| void InstructionSelector::VisitInt32MulHigh(Node* node) { |
| VisitMulHigh(this, node, kIA32ImulHigh); |
| } |
| |
| void InstructionSelector::VisitUint32MulHigh(Node* node) { |
| VisitMulHigh(this, node, kIA32UmulHigh); |
| } |
| |
| void InstructionSelector::VisitInt32Div(Node* node) { |
| VisitDiv(this, node, kIA32Idiv); |
| } |
| |
| void InstructionSelector::VisitUint32Div(Node* node) { |
| VisitDiv(this, node, kIA32Udiv); |
| } |
| |
| void InstructionSelector::VisitInt32Mod(Node* node) { |
| VisitMod(this, node, kIA32Idiv); |
| } |
| |
| void InstructionSelector::VisitUint32Mod(Node* node) { |
| VisitMod(this, node, kIA32Udiv); |
| } |
| |
| void InstructionSelector::VisitRoundUint32ToFloat32(Node* node) { |
| IA32OperandGenerator g(this); |
| InstructionOperand temps[] = {g.TempRegister()}; |
| Emit(kSSEUint32ToFloat32, g.DefineAsRegister(node), g.Use(node->InputAt(0)), |
| arraysize(temps), temps); |
| } |
| |
| void InstructionSelector::VisitFloat64Mod(Node* node) { |
| IA32OperandGenerator g(this); |
| InstructionOperand temps[] = {g.TempRegister(eax), g.TempRegister()}; |
| Emit(kSSEFloat64Mod, g.DefineSameAsFirst(node), |
| g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)), |
| arraysize(temps), temps); |
| } |
| |
| void InstructionSelector::VisitFloat32Max(Node* node) { |
| IA32OperandGenerator g(this); |
| InstructionOperand temps[] = {g.TempRegister()}; |
| Emit(kSSEFloat32Max, g.DefineSameAsFirst(node), |
| g.UseRegister(node->InputAt(0)), g.Use(node->InputAt(1)), |
| arraysize(temps), temps); |
| } |
| |
| void InstructionSelector::VisitFloat64Max(Node* node) { |
| IA32OperandGenerator g(this); |
| InstructionOperand temps[] = {g.TempRegister()}; |
| Emit(kSSEFloat64Max, g.DefineSameAsFirst(node), |
| g.UseRegister(node->InputAt(0)), g.Use(node->InputAt(1)), |
| arraysize(temps), temps); |
| } |
| |
| void InstructionSelector::VisitFloat32Min(Node* node) { |
| IA32OperandGenerator g(this); |
| InstructionOperand temps[] = {g.TempRegister()}; |
| Emit(kSSEFloat32Min, g.DefineSameAsFirst(node), |
| g.UseRegister(node->InputAt(0)), g.Use(node->InputAt(1)), |
| arraysize(temps), temps); |
| } |
| |
| void InstructionSelector::VisitFloat64Min(Node* node) { |
| IA32OperandGenerator g(this); |
| InstructionOperand temps[] = {g.TempRegister()}; |
| Emit(kSSEFloat64Min, g.DefineSameAsFirst(node), |
| g.UseRegister(node->InputAt(0)), g.Use(node->InputAt(1)), |
| arraysize(temps), temps); |
| } |
| |
| void InstructionSelector::VisitFloat64RoundTiesAway(Node* node) { |
| UNREACHABLE(); |
| } |
| |
| void InstructionSelector::VisitFloat64Ieee754Binop(Node* node, |
| InstructionCode opcode) { |
| IA32OperandGenerator g(this); |
| Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)), |
| g.UseRegister(node->InputAt(1))) |
| ->MarkAsCall(); |
| } |
| |
| void InstructionSelector::VisitFloat64Ieee754Unop(Node* node, |
| InstructionCode opcode) { |
| IA32OperandGenerator g(this); |
| Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0))) |
| ->MarkAsCall(); |
| } |
| |
| void InstructionSelector::EmitPrepareArguments( |
| ZoneVector<PushParameter>* arguments, const CallDescriptor* call_descriptor, |
| Node* node) { |
| IA32OperandGenerator g(this); |
| |
| // Prepare for C function call. |
| if (call_descriptor->IsCFunctionCall()) { |
| InstructionOperand temps[] = {g.TempRegister()}; |
| size_t const temp_count = arraysize(temps); |
| Emit(kArchPrepareCallCFunction | MiscField::encode(static_cast<int>( |
| call_descriptor->ParameterCount())), |
| 0, nullptr, 0, nullptr, temp_count, temps); |
| |
| // Poke any stack arguments. |
| for (size_t n = 0; n < arguments->size(); ++n) { |
| PushParameter input = (*arguments)[n]; |
| if (input.node) { |
| int const slot = static_cast<int>(n); |
| InstructionOperand value = g.CanBeImmediate(node) |
| ? g.UseImmediate(input.node) |
| : g.UseRegister(input.node); |
| Emit(kIA32Poke | MiscField::encode(slot), g.NoOutput(), value); |
| } |
| } |
| } else { |
| // Push any stack arguments. |
| int effect_level = GetEffectLevel(node); |
| for (PushParameter input : base::Reversed(*arguments)) { |
| // Skip any alignment holes in pushed nodes. |
| if (input.node == nullptr) continue; |
| if (g.CanBeMemoryOperand(kIA32Push, node, input.node, effect_level)) { |
| InstructionOperand outputs[1]; |
| InstructionOperand inputs[4]; |
| size_t input_count = 0; |
| InstructionCode opcode = kIA32Push; |
| AddressingMode mode = g.GetEffectiveAddressMemoryOperand( |
| input.node, inputs, &input_count); |
| opcode |= AddressingModeField::encode(mode); |
| Emit(opcode, 0, outputs, input_count, inputs); |
| } else { |
| InstructionOperand value = |
| g.CanBeImmediate(input.node) |
| ? g.UseImmediate(input.node) |
| : IsSupported(ATOM) || |
| sequence()->IsFP(GetVirtualRegister(input.node)) |
| ? g.UseRegister(input.node) |
| : g.Use(input.node); |
| if (input.location.GetType() == MachineType::Float32()) { |
| Emit(kIA32PushFloat32, g.NoOutput(), value); |
| } else if (input.location.GetType() == MachineType::Float64()) { |
| Emit(kIA32PushFloat64, g.NoOutput(), value); |
| } else if (input.location.GetType() == MachineType::Simd128()) { |
| Emit(kIA32PushSimd128, g.NoOutput(), value); |
| } else { |
| Emit(kIA32Push, g.NoOutput(), value); |
| } |
| } |
| } |
| } |
| } |
| |
| void InstructionSelector::EmitPrepareResults( |
| ZoneVector<PushParameter>* results, const CallDescriptor* call_descriptor, |
| Node* node) { |
| IA32OperandGenerator g(this); |
| |
| int reverse_slot = 1; |
| for (PushParameter output : *results) { |
| if (!output.location.IsCallerFrameSlot()) continue; |
| // Skip any alignment holes in nodes. |
| if (output.node != nullptr) { |
| DCHECK(!call_descriptor->IsCFunctionCall()); |
| if (output.location.GetType() == MachineType::Float32()) { |
| MarkAsFloat32(output.node); |
| } else if (output.location.GetType() == MachineType::Float64()) { |
| MarkAsFloat64(output.node); |
| } else if (output.location.GetType() == MachineType::Simd128()) { |
| MarkAsSimd128(output.node); |
| } |
| Emit(kIA32Peek, g.DefineAsRegister(output.node), |
| g.UseImmediate(reverse_slot)); |
| } |
| reverse_slot += output.location.GetSizeInPointers(); |
| } |
| } |
| |
| bool InstructionSelector::IsTailCallAddressImmediate() { return true; } |
| |
| int InstructionSelector::GetTempsCountForTailCallFromJSFunction() { return 0; } |
| |
| namespace { |
| |
| void VisitCompareWithMemoryOperand(InstructionSelector* selector, |
| InstructionCode opcode, Node* left, |
| InstructionOperand right, |
| FlagsContinuation* cont) { |
| DCHECK_EQ(IrOpcode::kLoad, left->opcode()); |
| IA32OperandGenerator g(selector); |
| size_t input_count = 0; |
| InstructionOperand inputs[4]; |
| AddressingMode addressing_mode = |
| g.GetEffectiveAddressMemoryOperand(left, inputs, &input_count); |
| opcode |= AddressingModeField::encode(addressing_mode); |
| inputs[input_count++] = right; |
| |
| selector->EmitWithContinuation(opcode, 0, nullptr, input_count, inputs, cont); |
| } |
| |
| // Shared routine for multiple compare operations. |
| void VisitCompare(InstructionSelector* selector, InstructionCode opcode, |
| InstructionOperand left, InstructionOperand right, |
| FlagsContinuation* cont) { |
| selector->EmitWithContinuation(opcode, left, right, cont); |
| } |
| |
| // Shared routine for multiple compare operations. |
| void VisitCompare(InstructionSelector* selector, InstructionCode opcode, |
| Node* left, Node* right, FlagsContinuation* cont, |
| bool commutative) { |
| IA32OperandGenerator g(selector); |
| if (commutative && g.CanBeBetterLeftOperand(right)) { |
| std::swap(left, right); |
| } |
| VisitCompare(selector, opcode, g.UseRegister(left), g.Use(right), cont); |
| } |
| |
| MachineType MachineTypeForNarrow(Node* node, Node* hint_node) { |
| if (hint_node->opcode() == IrOpcode::kLoad) { |
| MachineType hint = LoadRepresentationOf(hint_node->op()); |
| if (node->opcode() == IrOpcode::kInt32Constant || |
| node->opcode() == IrOpcode::kInt64Constant) { |
| int64_t constant = node->opcode() == IrOpcode::kInt32Constant |
| ? OpParameter<int32_t>(node->op()) |
| : OpParameter<int64_t>(node->op()); |
| if (hint == MachineType::Int8()) { |
| if (constant >= std::numeric_limits<int8_t>::min() && |
| constant <= std::numeric_limits<int8_t>::max()) { |
| return hint; |
| } |
| } else if (hint == MachineType::Uint8()) { |
| if (constant >= std::numeric_limits<uint8_t>::min() && |
| constant <= std::numeric_limits<uint8_t>::max()) { |
| return hint; |
| } |
| } else if (hint == MachineType::Int16()) { |
| if (constant >= std::numeric_limits<int16_t>::min() && |
| constant <= std::numeric_limits<int16_t>::max()) { |
| return hint; |
| } |
| } else if (hint == MachineType::Uint16()) { |
| if (constant >= std::numeric_limits<uint16_t>::min() && |
| constant <= std::numeric_limits<uint16_t>::max()) { |
| return hint; |
| } |
| } else if (hint == MachineType::Int32()) { |
| return hint; |
| } else if (hint == MachineType::Uint32()) { |
| if (constant >= 0) return hint; |
| } |
| } |
| } |
| return node->opcode() == IrOpcode::kLoad ? LoadRepresentationOf(node->op()) |
| : MachineType::None(); |
| } |
| |
| // Tries to match the size of the given opcode to that of the operands, if |
| // possible. |
| InstructionCode TryNarrowOpcodeSize(InstructionCode opcode, Node* left, |
| Node* right, FlagsContinuation* cont) { |
| // TODO(epertoso): we can probably get some size information out of phi nodes. |
| // If the load representations don't match, both operands will be |
| // zero/sign-extended to 32bit. |
| MachineType left_type = MachineTypeForNarrow(left, right); |
| MachineType right_type = MachineTypeForNarrow(right, left); |
| if (left_type == right_type) { |
| switch (left_type.representation()) { |
| case MachineRepresentation::kBit: |
| case MachineRepresentation::kWord8: { |
| if (opcode == kIA32Test) return kIA32Test8; |
| if (opcode == kIA32Cmp) { |
| if (left_type.semantic() == MachineSemantic::kUint32) { |
| cont->OverwriteUnsignedIfSigned(); |
| } else { |
| CHECK_EQ(MachineSemantic::kInt32, left_type.semantic()); |
| } |
| return kIA32Cmp8; |
| } |
| break; |
| } |
| case MachineRepresentation::kWord16: |
| if (opcode == kIA32Test) return kIA32Test16; |
| if (opcode == kIA32Cmp) { |
| if (left_type.semantic() == MachineSemantic::kUint32) { |
| cont->OverwriteUnsignedIfSigned(); |
| } else { |
| CHECK_EQ(MachineSemantic::kInt32, left_type.semantic()); |
| } |
| return kIA32Cmp16; |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| return opcode; |
| } |
| |
| // Shared routine for multiple float32 compare operations (inputs commuted). |
| void VisitFloat32Compare(InstructionSelector* selector, Node* node, |
| FlagsContinuation* cont) { |
| Node* const left = node->InputAt(0); |
| Node* const right = node->InputAt(1); |
| VisitCompare(selector, kSSEFloat32Cmp, right, left, cont, false); |
| } |
| |
| // Shared routine for multiple float64 compare operations (inputs commuted). |
| void VisitFloat64Compare(InstructionSelector* selector, Node* node, |
| FlagsContinuation* cont) { |
| Node* const left = node->InputAt(0); |
| Node* const right = node->InputAt(1); |
| VisitCompare(selector, kSSEFloat64Cmp, right, left, cont, false); |
| } |
| |
| // Shared routine for multiple word compare operations. |
| void VisitWordCompare(InstructionSelector* selector, Node* node, |
| InstructionCode opcode, FlagsContinuation* cont) { |
| IA32OperandGenerator g(selector); |
| Node* left = node->InputAt(0); |
| Node* right = node->InputAt(1); |
| |
| InstructionCode narrowed_opcode = |
| TryNarrowOpcodeSize(opcode, left, right, cont); |
| |
| int effect_level = selector->GetEffectLevel(node, cont); |
| |
| // If one of the two inputs is an immediate, make sure it's on the right, or |
| // if one of the two inputs is a memory operand, make sure it's on the left. |
| if ((!g.CanBeImmediate(right) && g.CanBeImmediate(left)) || |
| (g.CanBeMemoryOperand(narrowed_opcode, node, right, effect_level) && |
| !g.CanBeMemoryOperand(narrowed_opcode, node, left, effect_level))) { |
| if (!node->op()->HasProperty(Operator::kCommutative)) cont->Commute(); |
| std::swap(left, right); |
| } |
| |
| // Match immediates on right side of comparison. |
| if (g.CanBeImmediate(right)) { |
| if (g.CanBeMemoryOperand(narrowed_opcode, node, left, effect_level)) { |
| return VisitCompareWithMemoryOperand(selector, narrowed_opcode, left, |
| g.UseImmediate(right), cont); |
| } |
| return VisitCompare(selector, opcode, g.Use(left), g.UseImmediate(right), |
| cont); |
| } |
| |
| // Match memory operands on left side of comparison. |
| if (g.CanBeMemoryOperand(narrowed_opcode, node, left, effect_level)) { |
| bool needs_byte_register = |
| narrowed_opcode == kIA32Test8 || narrowed_opcode == kIA32Cmp8; |
| return VisitCompareWithMemoryOperand( |
| selector, narrowed_opcode, left, |
| needs_byte_register ? g.UseByteRegister(right) : g.UseRegister(right), |
| cont); |
| } |
| |
| return VisitCompare(selector, opcode, left, right, cont, |
| node->op()->HasProperty(Operator::kCommutative)); |
| } |
| |
| void VisitWordCompare(InstructionSelector* selector, Node* node, |
| FlagsContinuation* cont) { |
| VisitWordCompare(selector, node, kIA32Cmp, cont); |
| } |
| |
| void VisitAtomicExchange(InstructionSelector* selector, Node* node, |
| ArchOpcode opcode, MachineRepresentation rep) { |
| IA32OperandGenerator g(selector); |
| Node* base = node->InputAt(0); |
| Node* index = node->InputAt(1); |
| Node* value = node->InputAt(2); |
| |
| AddressingMode addressing_mode; |
| InstructionOperand value_operand = (rep == MachineRepresentation::kWord8) |
| ? g.UseFixed(value, edx) |
| : g.UseUniqueRegister(value); |
| InstructionOperand inputs[] = { |
| value_operand, g.UseUniqueRegister(base), |
| g.GetEffectiveIndexOperand(index, &addressing_mode)}; |
| InstructionOperand outputs[] = { |
| (rep == MachineRepresentation::kWord8) |
| // Using DefineSameAsFirst requires the register to be unallocated. |
| ? g.DefineAsFixed(node, edx) |
| : g.DefineSameAsFirst(node)}; |
| InstructionCode code = opcode | AddressingModeField::encode(addressing_mode); |
| selector->Emit(code, 1, outputs, arraysize(inputs), inputs); |
| } |
| |
| void VisitAtomicBinOp(InstructionSelector* selector, Node* node, |
| ArchOpcode opcode, MachineRepresentation rep) { |
| AddressingMode addressing_mode; |
| IA32OperandGenerator g(selector); |
| Node* base = node->InputAt(0); |
| Node* index = node->InputAt(1); |
| Node* value = node->InputAt(2); |
| InstructionOperand inputs[] = { |
| g.UseUniqueRegister(value), g.UseUniqueRegister(base), |
| g.GetEffectiveIndexOperand(index, &addressing_mode)}; |
| InstructionOperand outputs[] = {g.DefineAsFixed(node, eax)}; |
| InstructionOperand temp[] = {(rep == MachineRepresentation::kWord8) |
| ? g.UseByteRegister(node) |
| : g.TempRegister()}; |
| InstructionCode code = opcode | AddressingModeField::encode(addressing_mode); |
| selector->Emit(code, arraysize(outputs), outputs, arraysize(inputs), inputs, |
| arraysize(temp), temp); |
| } |
| |
| void VisitPairAtomicBinOp(InstructionSelector* selector, Node* node, |
| ArchOpcode opcode) { |
| IA32OperandGenerator g(selector); |
| Node* base = node->InputAt(0); |
| Node* index = node->InputAt(1); |
| Node* value = node->InputAt(2); |
| // For Word64 operations, the value input is split into the a high node, |
| // and a low node in the int64-lowering phase. |
| Node* value_high = node->InputAt(3); |
| |
| // Wasm lives in 32-bit address space, so we do not need to worry about |
| // base/index lowering. This will need to be fixed for Wasm64. |
| AddressingMode addressing_mode; |
| InstructionOperand inputs[] = { |
| g.UseUniqueRegisterOrSlotOrConstant(value), g.UseFixed(value_high, ecx), |
| g.UseUniqueRegister(base), |
| g.GetEffectiveIndexOperand(index, &addressing_mode)}; |
| InstructionCode code = opcode | AddressingModeField::encode(addressing_mode); |
| Node* projection0 = NodeProperties::FindProjection(node, 0); |
| Node* projection1 = NodeProperties::FindProjection(node, 1); |
| InstructionOperand outputs[2]; |
| size_t output_count = 0; |
| InstructionOperand temps[2]; |
| size_t temp_count = 0; |
| if (projection0) { |
| outputs[output_count++] = g.DefineAsFixed(projection0, eax); |
| } else { |
| temps[temp_count++] = g.TempRegister(eax); |
| } |
| if (projection1) { |
| outputs[output_count++] = g.DefineAsFixed(projection1, edx); |
| } else { |
| temps[temp_count++] = g.TempRegister(edx); |
| } |
| selector->Emit(code, output_count, outputs, arraysize(inputs), inputs, |
| temp_count, temps); |
| } |
| |
| } // namespace |
| |
| // Shared routine for word comparison with zero. |
| void InstructionSelector::VisitWordCompareZero(Node* user, Node* value, |
| FlagsContinuation* cont) { |
| // Try to combine with comparisons against 0 by simply inverting the branch. |
| while (value->opcode() == IrOpcode::kWord32Equal && CanCover(user, value)) { |
| Int32BinopMatcher m(value); |
| if (!m.right().Is(0)) break; |
| |
| user = value; |
| value = m.left().node(); |
| cont->Negate(); |
| } |
| |
| if (CanCover(user, value)) { |
| switch (value->opcode()) { |
| case IrOpcode::kWord32Equal: |
| cont->OverwriteAndNegateIfEqual(kEqual); |
| return VisitWordCompare(this, value, cont); |
| case IrOpcode::kInt32LessThan: |
| cont->OverwriteAndNegateIfEqual(kSignedLessThan); |
| return VisitWordCompare(this, value, cont); |
| case IrOpcode::kInt32LessThanOrEqual: |
| cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual); |
| return VisitWordCompare(this, value, cont); |
| case IrOpcode::kUint32LessThan: |
| cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); |
| return VisitWordCompare(this, value, cont); |
| case IrOpcode::kUint32LessThanOrEqual: |
| cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); |
| return VisitWordCompare(this, value, cont); |
| case IrOpcode::kFloat32Equal: |
| cont->OverwriteAndNegateIfEqual(kUnorderedEqual); |
| return VisitFloat32Compare(this, value, cont); |
| case IrOpcode::kFloat32LessThan: |
| cont->OverwriteAndNegateIfEqual(kUnsignedGreaterThan); |
| return VisitFloat32Compare(this, value, cont); |
| case IrOpcode::kFloat32LessThanOrEqual: |
| cont->OverwriteAndNegateIfEqual(kUnsignedGreaterThanOrEqual); |
| return VisitFloat32Compare(this, value, cont); |
| case IrOpcode::kFloat64Equal: |
| cont->OverwriteAndNegateIfEqual(kUnorderedEqual); |
| return VisitFloat64Compare(this, value, cont); |
| case IrOpcode::kFloat64LessThan: |
| cont->OverwriteAndNegateIfEqual(kUnsignedGreaterThan); |
| return VisitFloat64Compare(this, value, cont); |
| case IrOpcode::kFloat64LessThanOrEqual: |
| cont->OverwriteAndNegateIfEqual(kUnsignedGreaterThanOrEqual); |
| return VisitFloat64Compare(this, value, cont); |
| case IrOpcode::kProjection: |
| // Check if this is the overflow output projection of an |
| // <Operation>WithOverflow node. |
| if (ProjectionIndexOf(value->op()) == 1u) { |
| // We cannot combine the <Operation>WithOverflow with this branch |
| // unless the 0th projection (the use of the actual value of the |
| // <Operation> is either nullptr, which means there's no use of the |
| // actual value, or was already defined, which means it is scheduled |
| // *AFTER* this branch). |
| Node* const node = value->InputAt(0); |
| Node* const result = NodeProperties::FindProjection(node, 0); |
| if (result == nullptr || IsDefined(result)) { |
| switch (node->opcode()) { |
| case IrOpcode::kInt32AddWithOverflow: |
| cont->OverwriteAndNegateIfEqual(kOverflow); |
| return VisitBinop(this, node, kIA32Add, cont); |
| case IrOpcode::kInt32SubWithOverflow: |
| cont->OverwriteAndNegateIfEqual(kOverflow); |
| return VisitBinop(this, node, kIA32Sub, cont); |
| case IrOpcode::kInt32MulWithOverflow: |
| cont->OverwriteAndNegateIfEqual(kOverflow); |
| return VisitBinop(this, node, kIA32Imul, cont); |
| default: |
| break; |
| } |
| } |
| } |
| break; |
| case IrOpcode::kInt32Sub: |
| return VisitWordCompare(this, value, cont); |
| case IrOpcode::kWord32And: |
| return VisitWordCompare(this, value, kIA32Test, cont); |
| case IrOpcode::kStackPointerGreaterThan: |
| cont->OverwriteAndNegateIfEqual(kStackPointerGreaterThanCondition); |
| return VisitStackPointerGreaterThan(value, cont); |
| default: |
| break; |
| } |
| } |
| |
| // Continuation could not be combined with a compare, emit compare against 0. |
| IA32OperandGenerator g(this); |
| VisitCompare(this, kIA32Cmp, g.Use(value), g.TempImmediate(0), cont); |
| } |
| |
| void InstructionSelector::VisitSwitch(Node* node, const SwitchInfo& sw) { |
| IA32OperandGenerator g(this); |
| InstructionOperand value_operand = g.UseRegister(node->InputAt(0)); |
| |
| // Emit either ArchTableSwitch or ArchBinarySearchSwitch. |
| if (enable_switch_jump_table_ == kEnableSwitchJumpTable) { |
| static const size_t kMaxTableSwitchValueRange = 2 << 16; |
| size_t table_space_cost = 4 + sw.value_range(); |
| size_t table_time_cost = 3; |
| size_t lookup_space_cost = 3 + 2 * sw.case_count(); |
| size_t lookup_time_cost = sw.case_count(); |
| if (sw.case_count() > 4 && |
| table_space_cost + 3 * table_time_cost <= |
| lookup_space_cost + 3 * lookup_time_cost && |
| sw.min_value() > std::numeric_limits<int32_t>::min() && |
| sw.value_range() <= kMaxTableSwitchValueRange) { |
| InstructionOperand index_operand = value_operand; |
| if (sw.min_value()) { |
| index_operand = g.TempRegister(); |
| Emit(kIA32Lea | AddressingModeField::encode(kMode_MRI), index_operand, |
| value_operand, g.TempImmediate(-sw.min_value())); |
| } |
| // Generate a table lookup. |
| return EmitTableSwitch(sw, index_operand); |
| } |
| } |
| |
| // Generate a tree of conditional jumps. |
| return EmitBinarySearchSwitch(sw, value_operand); |
| } |
| |
| void InstructionSelector::VisitWord32Equal(Node* const node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); |
| Int32BinopMatcher m(node); |
| if (m.right().Is(0)) { |
| return VisitWordCompareZero(m.node(), m.left().node(), &cont); |
| } |
| VisitWordCompare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitInt32LessThan(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node); |
| VisitWordCompare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitInt32LessThanOrEqual(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kSignedLessThanOrEqual, node); |
| VisitWordCompare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitUint32LessThan(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); |
| VisitWordCompare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitUint32LessThanOrEqual(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); |
| VisitWordCompare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitInt32AddWithOverflow(Node* node) { |
| if (Node* ovf = NodeProperties::FindProjection(node, 1)) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); |
| return VisitBinop(this, node, kIA32Add, &cont); |
| } |
| FlagsContinuation cont; |
| VisitBinop(this, node, kIA32Add, &cont); |
| } |
| |
| void InstructionSelector::VisitInt32SubWithOverflow(Node* node) { |
| if (Node* ovf = NodeProperties::FindProjection(node, 1)) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); |
| return VisitBinop(this, node, kIA32Sub, &cont); |
| } |
| FlagsContinuation cont; |
| VisitBinop(this, node, kIA32Sub, &cont); |
| } |
| |
| void InstructionSelector::VisitInt32MulWithOverflow(Node* node) { |
| if (Node* ovf = NodeProperties::FindProjection(node, 1)) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); |
| return VisitBinop(this, node, kIA32Imul, &cont); |
| } |
| FlagsContinuation cont; |
| VisitBinop(this, node, kIA32Imul, &cont); |
| } |
| |
| void InstructionSelector::VisitFloat32Equal(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kUnorderedEqual, node); |
| VisitFloat32Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitFloat32LessThan(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kUnsignedGreaterThan, node); |
| VisitFloat32Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitFloat32LessThanOrEqual(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kUnsignedGreaterThanOrEqual, node); |
| VisitFloat32Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitFloat64Equal(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kUnorderedEqual, node); |
| VisitFloat64Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitFloat64LessThan(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kUnsignedGreaterThan, node); |
| VisitFloat64Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitFloat64LessThanOrEqual(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kUnsignedGreaterThanOrEqual, node); |
| VisitFloat64Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitFloat64InsertLowWord32(Node* node) { |
| IA32OperandGenerator g(this); |
| Node* left = node->InputAt(0); |
| Node* right = node->InputAt(1); |
| Float64Matcher mleft(left); |
| if (mleft.HasResolvedValue() && |
| (bit_cast<uint64_t>(mleft.ResolvedValue()) >> 32) == 0u) { |
| Emit(kSSEFloat64LoadLowWord32, g.DefineAsRegister(node), g.Use(right)); |
| return; |
| } |
| Emit(kSSEFloat64InsertLowWord32, g.DefineSameAsFirst(node), |
| g.UseRegister(left), g.Use(right)); |
| } |
| |
| void InstructionSelector::VisitFloat64InsertHighWord32(Node* node) { |
| IA32OperandGenerator g(this); |
| Node* left = node->InputAt(0); |
| Node* right = node->InputAt(1); |
| Emit(kSSEFloat64InsertHighWord32, g.DefineSameAsFirst(node), |
| g.UseRegister(left), g.Use(right)); |
| } |
| |
| void InstructionSelector::VisitFloat64SilenceNaN(Node* node) { |
| IA32OperandGenerator g(this); |
| Emit(kSSEFloat64SilenceNaN, g.DefineSameAsFirst(node), |
| g.UseRegister(node->InputAt(0))); |
| } |
| |
| void InstructionSelector::VisitMemoryBarrier(Node* node) { |
| IA32OperandGenerator g(this); |
| Emit(kIA32MFence, g.NoOutput()); |
| } |
| |
| void InstructionSelector::VisitWord32AtomicLoad(Node* node) { |
| LoadRepresentation load_rep = LoadRepresentationOf(node->op()); |
| DCHECK(load_rep.representation() == MachineRepresentation::kWord8 || |
| load_rep.representation() == MachineRepresentation::kWord16 || |
| load_rep.representation() == MachineRepresentation::kWord32); |
| USE(load_rep); |
| VisitLoad(node); |
| } |
| |
| void InstructionSelector::VisitWord32AtomicStore(Node* node) { |
| IA32OperandGenerator g(this); |
| MachineRepresentation rep = AtomicStoreRepresentationOf(node->op()); |
| ArchOpcode opcode; |
| switch (rep) { |
| case MachineRepresentation::kWord8: |
| opcode = kWord32AtomicExchangeInt8; |
| break; |
| case MachineRepresentation::kWord16: |
| opcode = kWord32AtomicExchangeInt16; |
| break; |
| case MachineRepresentation::kWord32: |
| opcode = kWord32AtomicExchangeWord32; |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| VisitAtomicExchange(this, node, opcode, rep); |
| } |
| |
| void InstructionSelector::VisitWord32AtomicExchange(Node* node) { |
| IA32OperandGenerator g(this); |
| MachineType type = AtomicOpType(node->op()); |
| ArchOpcode opcode; |
| if (type == MachineType::Int8()) { |
| opcode = kWord32AtomicExchangeInt8; |
| } else if (type == MachineType::Uint8()) { |
| opcode = kWord32AtomicExchangeUint8; |
| } else if (type == MachineType::Int16()) { |
| opcode = kWord32AtomicExchangeInt16; |
| } else if (type == MachineType::Uint16()) { |
| opcode = kWord32AtomicExchangeUint16; |
| } else if (type == MachineType::Int32() || type == MachineType::Uint32()) { |
| opcode = kWord32AtomicExchangeWord32; |
| } else { |
| UNREACHABLE(); |
| } |
| VisitAtomicExchange(this, node, opcode, type.representation()); |
| } |
| |
| void InstructionSelector::VisitWord32AtomicCompareExchange(Node* node) { |
| IA32OperandGenerator g(this); |
| Node* base = node->InputAt(0); |
| Node* index = node->InputAt(1); |
| Node* old_value = node->InputAt(2); |
| Node* new_value = node->InputAt(3); |
| |
| MachineType type = AtomicOpType(node->op()); |
| ArchOpcode opcode; |
| if (type == MachineType::Int8()) { |
| opcode = kWord32AtomicCompareExchangeInt8; |
| } else if (type == MachineType::Uint8()) { |
| opcode = kWord32AtomicCompareExchangeUint8; |
| } else if (type == MachineType::Int16()) { |
| opcode = kWord32AtomicCompareExchangeInt16; |
| } else if (type == MachineType::Uint16()) { |
| opcode = kWord32AtomicCompareExchangeUint16; |
| } else if (type == MachineType::Int32() || type == MachineType::Uint32()) { |
| opcode = kWord32AtomicCompareExchangeWord32; |
| } else { |
| UNREACHABLE(); |
| } |
| AddressingMode addressing_mode; |
| InstructionOperand new_val_operand = |
| (type.representation() == MachineRepresentation::kWord8) |
| ? g.UseByteRegister(new_value) |
| : g.UseUniqueRegister(new_value); |
| InstructionOperand inputs[] = { |
| g.UseFixed(old_value, eax), new_val_operand, g.UseUniqueRegister(base), |
| g.GetEffectiveIndexOperand(index, &addressing_mode)}; |
| InstructionOperand outputs[] = {g.DefineAsFixed(node, eax)}; |
| InstructionCode code = opcode | AddressingModeField::encode(addressing_mode); |
| Emit(code, 1, outputs, arraysize(inputs), inputs); |
| } |
| |
| void InstructionSelector::VisitWord32AtomicBinaryOperation( |
| Node* node, ArchOpcode int8_op, ArchOpcode uint8_op, ArchOpcode int16_op, |
| ArchOpcode uint16_op, ArchOpcode word32_op) { |
| MachineType type = AtomicOpType(node->op()); |
| ArchOpcode opcode; |
| if (type == MachineType::Int8()) { |
| opcode = int8_op; |
| } else if (type == MachineType::Uint8()) { |
| opcode = uint8_op; |
| } else if (type == MachineType::Int16()) { |
| opcode = int16_op; |
| } else if (type == MachineType::Uint16()) { |
| opcode = uint16_op; |
| } else if (type == MachineType::Int32() || type == MachineType::Uint32()) { |
| opcode = word32_op; |
| } else { |
| UNREACHABLE(); |
| } |
| VisitAtomicBinOp(this, node, opcode, type.representation()); |
| } |
| |
| #define VISIT_ATOMIC_BINOP(op) \ |
| void InstructionSelector::VisitWord32Atomic##op(Node* node) { \ |
| VisitWord32AtomicBinaryOperation( \ |
| node, kWord32Atomic##op##Int8, kWord32Atomic##op##Uint8, \ |
| kWord32Atomic##op##Int16, kWord32Atomic##op##Uint16, \ |
| kWord32Atomic##op##Word32); \ |
| } |
| VISIT_ATOMIC_BINOP(Add) |
| VISIT_ATOMIC_BINOP(Sub) |
| VISIT_ATOMIC_BINOP(And) |
| VISIT_ATOMIC_BINOP(Or) |
| VISIT_ATOMIC_BINOP(Xor) |
| #undef VISIT_ATOMIC_BINOP |
| |
| void InstructionSelector::VisitWord32AtomicPairLoad(Node* node) { |
| IA32OperandGenerator g(this); |
| AddressingMode mode; |
| Node* base = node->InputAt(0); |
| Node* index = node->InputAt(1); |
| Node* projection0 = NodeProperties::FindProjection(node, 0); |
| Node* projection1 = NodeProperties::FindProjection(node, 1); |
| if (projection0 && projection1) { |
| InstructionOperand inputs[] = {g.UseUniqueRegister(base), |
| g.GetEffectiveIndexOperand(index, &mode)}; |
| InstructionCode code = |
| kIA32Word32AtomicPairLoad | AddressingModeField::encode(mode); |
| InstructionOperand temps[] = {g.TempDoubleRegister()}; |
| InstructionOperand outputs[] = {g.DefineAsRegister(projection0), |
| g.DefineAsRegister(projection1)}; |
| Emit(code, 2, outputs, 2, inputs, 1, temps); |
| } else if (projection0 || projection1) { |
| // Only one word is needed, so it's enough to load just that. |
| ArchOpcode opcode = kIA32Movl; |
| |
| InstructionOperand outputs[] = { |
| g.DefineAsRegister(projection0 ? projection0 : projection1)}; |
| InstructionOperand inputs[3]; |
| size_t input_count = 0; |
| // TODO(ahaas): Introduce an enum for {scale} instead of an integer. |
| // {scale = 0} means *1 in the generated code. |
| int scale = 0; |
| AddressingMode mode = g.GenerateMemoryOperandInputs( |
| index, scale, base, projection0 ? 0 : 4, kPositiveDisplacement, inputs, |
| &input_count); |
| InstructionCode code = opcode | AddressingModeField::encode(mode); |
| Emit(code, 1, outputs, input_count, inputs); |
| } |
| } |
| |
| void InstructionSelector::VisitWord32AtomicPairStore(Node* node) { |
| IA32OperandGenerator g(this); |
| Node* base = node->InputAt(0); |
| Node* index = node->InputAt(1); |
| Node* value = node->InputAt(2); |
| Node* value_high = node->InputAt(3); |
| |
| AddressingMode addressing_mode; |
| InstructionOperand inputs[] = { |
| g.UseUniqueRegisterOrSlotOrConstant(value), g.UseFixed(value_high, ecx), |
| g.UseUniqueRegister(base), |
| g.GetEffectiveIndexOperand(index, &addressing_mode)}; |
| // Allocating temp registers here as stores are performed using an atomic |
| // exchange, the output of which is stored in edx:eax, which should be saved |
| // and restored at the end of the instruction. |
| InstructionOperand temps[] = {g.TempRegister(eax), g.TempRegister(edx)}; |
| const int num_temps = arraysize(temps); |
| InstructionCode code = |
| kIA32Word32AtomicPairStore | AddressingModeField::encode(addressing_mode); |
| Emit(code, 0, nullptr, arraysize(inputs), inputs, num_temps, temps); |
| } |
| |
| void InstructionSelector::VisitWord32AtomicPairAdd(Node* node) { |
| VisitPairAtomicBinOp(this, node, kIA32Word32AtomicPairAdd); |
| } |
| |
| void InstructionSelector::VisitWord32AtomicPairSub(Node* node) { |
| VisitPairAtomicBinOp(this, node, kIA32Word32AtomicPairSub); |
| } |
| |
| void InstructionSelector::VisitWord32AtomicPairAnd(Node* node) { |
| VisitPairAtomicBinOp(this, node, kIA32Word32AtomicPairAnd); |
| } |
| |
| void InstructionSelector::VisitWord32AtomicPairOr(Node* node) { |
| VisitPairAtomicBinOp(this, node, kIA32Word32AtomicPairOr); |
| } |
| |
| void InstructionSelector::VisitWord32AtomicPairXor(Node* node) { |
| VisitPairAtomicBinOp(this, node, kIA32Word32AtomicPairXor); |
| } |
| |
| void InstructionSelector::VisitWord32AtomicPairExchange(Node* node) { |
| VisitPairAtomicBinOp(this, node, kIA32Word32AtomicPairExchange); |
| } |
| |
| void InstructionSelector::VisitWord32AtomicPairCompareExchange(Node* node) { |
| IA32OperandGenerator g(this); |
| Node* index = node->InputAt(1); |
| AddressingMode addressing_mode; |
| |
| InstructionOperand inputs[] = { |
| // High, Low values of old value |
| g.UseFixed(node->InputAt(2), eax), g.UseFixed(node->InputAt(3), edx), |
| // High, Low values of new value |
| g.UseUniqueRegisterOrSlotOrConstant(node->InputAt(4)), |
| g.UseFixed(node->InputAt(5), ecx), |
| // InputAt(0) => base |
| g.UseUniqueRegister(node->InputAt(0)), |
| g.GetEffectiveIndexOperand(index, &addressing_mode)}; |
| Node* projection0 = NodeProperties::FindProjection(node, 0); |
| Node* projection1 = NodeProperties::FindProjection(node, 1); |
| InstructionCode code = kIA32Word32AtomicPairCompareExchange | |
| AddressingModeField::encode(addressing_mode); |
| |
| InstructionOperand outputs[2]; |
| size_t output_count = 0; |
| InstructionOperand temps[2]; |
| size_t temp_count = 0; |
| if (projection0) { |
| outputs[output_count++] = g.DefineAsFixed(projection0, eax); |
| } else { |
| temps[temp_count++] = g.TempRegister(eax); |
| } |
| if (projection1) { |
| outputs[output_count++] = g.DefineAsFixed(projection1, edx); |
| } else { |
| temps[temp_count++] = g.TempRegister(edx); |
| } |
| Emit(code, output_count, outputs, arraysize(inputs), inputs, temp_count, |
| temps); |
| } |
| |
| #define SIMD_INT_TYPES(V) \ |
| V(I32x4) \ |
| V(I16x8) \ |
| V(I8x16) |
| |
| #define SIMD_BINOP_LIST(V) \ |
| V(F32x4Add) \ |
| V(F32x4AddHoriz) \ |
| V(F32x4Sub) \ |
| V(F32x4Mul) \ |
| V(F32x4Div) \ |
| V(F32x4Min) \ |
| V(F32x4Max) \ |
| V(F32x4Eq) \ |
| V(F32x4Ne) \ |
| V(F32x4Lt) \ |
| V(F32x4Le) \ |
| V(I32x4Add) \ |
| V(I32x4AddHoriz) \ |
| V(I32x4Sub) \ |
| V(I32x4Mul) \ |
| V(I32x4MinS) \ |
| V(I32x4MaxS) \ |
| V(I32x4Eq) \ |
| V(I32x4Ne) \ |
| V(I32x4GtS) \ |
| V(I32x4GeS) \ |
| V(I32x4MinU) \ |
| V(I32x4MaxU) \ |
| V(I32x4GtU) \ |
| V(I32x4GeU) \ |
| V(I16x8SConvertI32x4) \ |
| V(I16x8Add) \ |
| V(I16x8AddSatS) \ |
| V(I16x8AddHoriz) \ |
| V(I16x8Sub) \ |
| V(I16x8SubSatS) \ |
| V(I16x8Mul) \ |
| V(I16x8MinS) \ |
| V(I16x8MaxS) \ |
| V(I16x8Eq) \ |
| V(I16x8Ne) \ |
| V(I16x8GtS) \ |
| V(I16x8GeS) \ |
| V(I16x8AddSatU) \ |
| V(I16x8SubSatU) \ |
| V(I16x8MinU) \ |
| V(I16x8MaxU) \ |
| V(I16x8GtU) \ |
| V(I16x8GeU) \ |
| V(I8x16SConvertI16x8) \ |
| V(I8x16Add) \ |
| V(I8x16AddSatS) \ |
| V(I8x16Sub) \ |
| V(I8x16SubSatS) \ |
| V(I8x16MinS) \ |
| V(I8x16MaxS) \ |
| V(I8x16Eq) \ |
| V(I8x16Ne) \ |
| V(I8x16GtS) \ |
| V(I8x16GeS) \ |
| V(I8x16AddSatU) \ |
| V(I8x16SubSatU) \ |
| V(I8x16MinU) \ |
| V(I8x16MaxU) \ |
| V(I8x16GtU) \ |
| V(I8x16GeU) \ |
| V(S128And) \ |
| V(S128Or) \ |
| V(S128Xor) |
| |
| #define SIMD_BINOP_UNIFIED_SSE_AVX_LIST(V) \ |
| V(I64x2Add) \ |
| V(I64x2Sub) \ |
| V(I32x4DotI16x8S) \ |
| V(I16x8RoundingAverageU) \ |
| V(I8x16RoundingAverageU) |
| |
| #define SIMD_UNOP_LIST(V) \ |
| V(F32x4SConvertI32x4) \ |
| V(F32x4RecipApprox) \ |
| V(F32x4RecipSqrtApprox) \ |
| V(I32x4SConvertI16x8Low) \ |
| V(I32x4SConvertI16x8High) \ |
| V(I32x4Neg) \ |
| V(I32x4UConvertI16x8Low) \ |
| V(I32x4UConvertI16x8High) \ |
| V(I32x4Abs) \ |
| V(I32x4BitMask) \ |
| V(I16x8SConvertI8x16Low) \ |
| V(I16x8SConvertI8x16High) \ |
| V(I16x8Neg) \ |
| V(I16x8UConvertI8x16Low) \ |
| V(I16x8UConvertI8x16High) \ |
| V(I16x8Abs) \ |
| V(I8x16Neg) \ |
| V(I8x16Abs) \ |
| V(I8x16BitMask) |
| |
| #define SIMD_UNOP_PREFIX_LIST(V) \ |
| V(F32x4Abs) \ |
| V(F32x4Neg) \ |
| V(F32x4Sqrt) \ |
| V(S128Not) |
| |
| #define SIMD_ANYTRUE_LIST(V) \ |
| V(V32x4AnyTrue) \ |
| V(V16x8AnyTrue) \ |
| V(V8x16AnyTrue) |
| |
| #define SIMD_ALLTRUE_LIST(V) \ |
| V(V32x4AllTrue) \ |
| V(V16x8AllTrue) \ |
| V(V8x16AllTrue) |
| |
| #define SIMD_SHIFT_OPCODES_UNIFED_SSE_AVX(V) \ |
| V(I64x2Shl) \ |
| V(I64x2ShrU) \ |
| V(I32x4Shl) \ |
| V(I32x4ShrS) \ |
| V(I32x4ShrU) \ |
| V(I16x8Shl) \ |
| V(I16x8ShrS) \ |
| V(I16x8ShrU) |
| |
| void InstructionSelector::VisitS128Const(Node* node) { |
| IA32OperandGenerator g(this); |
| static const int kUint32Immediates = kSimd128Size / sizeof(uint32_t); |
| uint32_t val[kUint32Immediates]; |
| memcpy(val, S128ImmediateParameterOf(node->op()).data(), kSimd128Size); |
| // If all bytes are zeros or ones, avoid emitting code for generic constants |
| bool all_zeros = !(val[0] || val[1] || val[2] || val[3]); |
| bool all_ones = val[0] == UINT32_MAX && val[1] == UINT32_MAX && |
| val[2] == UINT32_MAX && val[3] == UINT32_MAX; |
| InstructionOperand dst = g.DefineAsRegister(node); |
| if (all_zeros) { |
| Emit(kIA32S128Zero, dst); |
| } else if (all_ones) { |
| Emit(kIA32S128AllOnes, dst); |
| } else { |
| InstructionOperand inputs[kUint32Immediates]; |
| for (int i = 0; i < kUint32Immediates; ++i) { |
| inputs[i] = g.UseImmediate(val[i]); |
| } |
| InstructionOperand temp(g.TempRegister()); |
| Emit(kIA32S128Const, 1, &dst, kUint32Immediates, inputs, 1, &temp); |
| } |
| } |
| |
| void InstructionSelector::VisitF64x2Min(Node* node) { |
| IA32OperandGenerator g(this); |
| InstructionOperand temps[] = {g.TempSimd128Register()}; |
| InstructionOperand operand0 = g.UseUniqueRegister(node->InputAt(0)); |
| InstructionOperand operand1 = g.UseUnique(node->InputAt(1)); |
| |
| if (IsSupported(AVX)) { |
| Emit(kIA32F64x2Min, g.DefineAsRegister(node), operand0, operand1, |
| arraysize(temps), temps); |
| } else { |
| Emit(kIA32F64x2Min, g.DefineSameAsFirst(node), operand0, operand1, |
| arraysize(temps), temps); |
| } |
| } |
| |
| void InstructionSelector::VisitF64x2Max(Node* node) { |
| IA32OperandGenerator g(this); |
| InstructionOperand temps[] = {g.TempSimd128Register()}; |
| InstructionOperand operand0 = g.UseUniqueRegister(node->InputAt(0)); |
| InstructionOperand operand1 = g.UseUnique(node->InputAt(1)); |
| if (IsSupported(AVX)) { |
| Emit(kIA32F64x2Max, g.DefineAsRegister(node), operand0, operand1, |
| arraysize(temps), temps); |
| } else { |
| Emit(kIA32F64x2Max, g.DefineSameAsFirst(node), operand0, operand1, |
| arraysize(temps), temps); |
| } |
| } |
| |
| void InstructionSelector::VisitF64x2Splat(Node* node) { |
| VisitRRSimd(this, node, kAVXF64x2Splat, kSSEF64x2Splat); |
| } |
| |
| void InstructionSelector::VisitF64x2ExtractLane(Node* node) { |
| VisitRRISimd(this, node, kAVXF64x2ExtractLane, kSSEF64x2ExtractLane); |
| } |
| |
| void InstructionSelector::VisitI64x2SplatI32Pair(Node* node) { |
| IA32OperandGenerator g(this); |
| Int32Matcher match_left(node->InputAt(0)); |
| Int32Matcher match_right(node->InputAt(1)); |
| if (match_left.Is(0) && match_right.Is(0)) { |
| Emit(kIA32S128Zero, g.DefineAsRegister(node)); |
| } else { |
| InstructionOperand operand0 = g.UseRegister(node->InputAt(0)); |
| InstructionOperand operand1 = g.Use(node->InputAt(1)); |
| Emit(kIA32I64x2SplatI32Pair, g.DefineAsRegister(node), operand0, operand1); |
| } |
| } |
| |
| void InstructionSelector::VisitI64x2ReplaceLaneI32Pair(Node* node) { |
| IA32OperandGenerator g(this); |
| InstructionOperand operand = g.UseRegister(node->InputAt(0)); |
| InstructionOperand lane = g.UseImmediate(OpParameter<int32_t>(node->op())); |
| InstructionOperand low = g.Use(node->InputAt(1)); |
| InstructionOperand high = g.Use(node->InputAt(2)); |
| Emit(kIA32I64x2ReplaceLaneI32Pair, g.DefineSameAsFirst(node), operand, lane, |
| low, high); |
| } |
| |
| void InstructionSelector::VisitI64x2Neg(Node* node) { |
| IA32OperandGenerator g(this); |
| InstructionOperand operand0 = g.UseUnique(node->InputAt(0)); |
| Emit(kIA32I64x2Neg, g.DefineAsRegister(node), operand0); |
| } |
| |
| void InstructionSelector::VisitI64x2ShrS(Node* node) { |
| IA32OperandGenerator g(this); |
| InstructionOperand temps[] = {g.TempSimd128Register(), |
| g.TempSimd128Register()}; |
| if (IsSupported(AVX)) { |
| Emit(kIA32I64x2ShrS, g.DefineAsRegister(node), |
| g.UseUniqueRegister(node->InputAt(0)), g.Use(node->InputAt(1)), |
| arraysize(temps), temps); |
| } else { |
| Emit(kIA32I64x2ShrS, g.DefineSameAsFirst(node), |
| g.UseUniqueRegister(node->InputAt(0)), g.Use(node->InputAt(1)), |
| arraysize(temps), temps); |
| } |
| } |
| |
| void InstructionSelector::VisitI64x2Mul(Node* node) { |
| IA32OperandGenerator g(this); |
| InstructionOperand temps[] = {g.TempSimd128Register(), |
| g.TempSimd128Register()}; |
| if (IsSupported(AVX)) { |
| Emit(kIA32I64x2Mul, g.DefineAsRegister(node), |
| g.UseUniqueRegister(node->InputAt(0)), |
| g.UseUniqueRegister(node->InputAt(1)), arraysize(temps), temps); |
| } else { |
| Emit(kIA32I64x2Mul, g.DefineSameAsFirst(node), |
| g.UseUniqueRegister(node->InputAt(0)), |
| g.UseUniqueRegister(node->InputAt(1)), arraysize(temps), temps); |
| } |
| } |
| |
| void InstructionSelector::VisitF32x4Splat(Node* node) { |
| VisitRRSimd(this, node, kAVXF32x4Splat, kSSEF32x4Splat); |
| } |
| |
| void InstructionSelector::VisitF32x4ExtractLane(Node* node) { |
| VisitRRISimd(this, node, kAVXF32x4ExtractLane, kSSEF32x4ExtractLane); |
| } |
| |
| void InstructionSelector::VisitF32x4UConvertI32x4(Node* node) { |
| VisitRRSimd(this, node, kAVXF32x4UConvertI32x4, kSSEF32x4UConvertI32x4); |
| } |
| |
| void InstructionSelector::VisitI32x4SConvertF32x4(Node* node) { |
| VisitRRSimd(this, node, kAVXI32x4SConvertF32x4, kSSEI32x4SConvertF32x4); |
| } |
| |
| void InstructionSelector::VisitI32x4UConvertF32x4(Node* node) { |
| IA32OperandGenerator g(this); |
| InstructionOperand temps[] = {g.TempSimd128Register()}; |
| InstructionCode opcode = |
| IsSupported(AVX) ? kAVXI32x4UConvertF32x4 : kSSEI32x4UConvertF32x4; |
| Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)), |
| arraysize(temps), temps); |
| } |
| |
| void InstructionSelector::VisitI8x16Mul(Node* node) { |
| IA32OperandGenerator g(this); |
| InstructionOperand operand0 = g.UseUniqueRegister(node->InputAt(0)); |
| InstructionOperand operand1 = g.UseUniqueRegister(node->InputAt(1)); |
| InstructionOperand temps[] = {g.TempSimd128Register()}; |
| if (IsSupported(AVX)) { |
| Emit(kAVXI8x16Mul, g.DefineAsRegister(node), operand0, operand1, |
| arraysize(temps), temps); |
| } else { |
| Emit(kSSEI8x16Mul, g.DefineSameAsFirst(node), operand0, operand1, |
| arraysize(temps), temps); |
| } |
| } |
| |
| void InstructionSelector::VisitS128Zero(Node* node) { |
| IA32OperandGenerator g(this); |
| Emit(kIA32S128Zero, g.DefineAsRegister(node)); |
| } |
| |
| void InstructionSelector::VisitS128Select(Node* node) { |
| IA32OperandGenerator g(this); |
| InstructionOperand operand2 = g.UseRegister(node->InputAt(2)); |
| if (IsSupported(AVX)) { |
| // AVX supports unaligned memory operands, so Use here is okay. |
| Emit(kAVXS128Select, g.DefineAsRegister(node), g.Use(node->InputAt(0)), |
| g.Use(node->InputAt(1)), operand2); |
| } else { |
| Emit(kSSES128Select, g.DefineSameAsFirst(node), |
| g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)), |
| operand2); |
| } |
| } |
| |
| void InstructionSelector::VisitS128AndNot(Node* node) { |
| IA32OperandGenerator g(this); |
| // andnps a b does ~a & b, but we want a & !b, so flip the input. |
| Emit(kIA32S128AndNot, g.DefineSameAsFirst(node), |
| g.UseRegister(node->InputAt(1)), g.UseRegister(node->InputAt(0))); |
| } |
| |
| #define VISIT_SIMD_SPLAT(Type) \ |
| void InstructionSelector::Visit##Type##Splat(Node* node) { \ |
| Int32Matcher int32_matcher(node->InputAt(0)); \ |
| if (int32_matcher.Is(0)) { \ |
| IA32OperandGenerator g(this); \ |
| Emit(kIA32S128Zero, g.DefineAsRegister(node)); \ |
| } else { \ |
| VisitRO(this, node, kIA32##Type##Splat); \ |
| } \ |
| } |
| SIMD_INT_TYPES(VISIT_SIMD_SPLAT) |
| #undef VISIT_SIMD_SPLAT |
| |
| #define SIMD_VISIT_EXTRACT_LANE(Type, Sign) \ |
| void InstructionSelector::Visit##Type##ExtractLane##Sign(Node* node) { \ |
| VisitRRISimd(this, node, kIA32##Type##ExtractLane##Sign); \ |
| } |
| SIMD_VISIT_EXTRACT_LANE(I32x4, ) |
| SIMD_VISIT_EXTRACT_LANE(I16x8, U) |
| SIMD_VISIT_EXTRACT_LANE(I16x8, S) |
| SIMD_VISIT_EXTRACT_LANE(I8x16, U) |
| SIMD_VISIT_EXTRACT_LANE(I8x16, S) |
| #undef SIMD_VISIT_EXTRACT_LANE |
| |
| #define VISIT_SIMD_REPLACE_LANE(Type) \ |
| void InstructionSelector::Visit##Type##ReplaceLane(Node* node) { \ |
| IA32OperandGenerator g(this); \ |
| InstructionOperand operand0 = g.UseRegister(node->InputAt(0)); \ |
| InstructionOperand operand1 = \ |
| g.UseImmediate(OpParameter<int32_t>(node->op())); \ |
| InstructionOperand operand2 = g.Use(node->InputAt(1)); \ |
| if (IsSupported(AVX)) { \ |
| Emit(kAVX##Type##ReplaceLane, g.DefineAsRegister(node), operand0, \ |
| operand1, operand2); \ |
| } else { \ |
| Emit(kSSE##Type##ReplaceLane, g.DefineSameAsFirst(node), operand0, \ |
| operand1, operand2); \ |
| } \ |
| } |
| SIMD_INT_TYPES(VISIT_SIMD_REPLACE_LANE) |
| VISIT_SIMD_REPLACE_LANE(F32x4) |
| #undef VISIT_SIMD_REPLACE_LANE |
| #undef SIMD_INT_TYPES |
| |
| // The difference between this and VISIT_SIMD_REPLACE_LANE is that this forces |
| // operand2 to be UseRegister, because the codegen relies on insertps using |
| // registers. |
| // TODO(v8:9764) Remove this UseRegister requirement |
| #define VISIT_SIMD_REPLACE_LANE_USE_REG(Type) \ |
| void InstructionSelector::Visit##Type##ReplaceLane(Node* node) { \ |
| IA32OperandGenerator g(this); \ |
| InstructionOperand operand0 = g.UseRegister(node->InputAt(0)); \ |
| InstructionOperand operand1 = \ |
| g.UseImmediate(OpParameter<int32_t>(node->op())); \ |
| InstructionOperand operand2 = g.UseUniqueRegister(node->InputAt(1)); \ |
| if (IsSupported(AVX)) { \ |
| Emit(kAVX##Type##ReplaceLane, g.DefineAsRegister(node), operand0, \ |
| operand1, operand2); \ |
| } else { \ |
| Emit(kSSE##Type##ReplaceLane, g.DefineSameAsFirst(node), operand0, \ |
| operand1, operand2); \ |
| } \ |
| } |
| VISIT_SIMD_REPLACE_LANE_USE_REG(F64x2) |
| #undef VISIT_SIMD_REPLACE_LANE_USE_REG |
| |
| #define VISIT_SIMD_SHIFT_UNIFIED_SSE_AVX(Opcode) \ |
| void InstructionSelector::Visit##Opcode(Node* node) { \ |
| VisitRROSimdShift(this, node, kIA32##Opcode); \ |
| } |
| SIMD_SHIFT_OPCODES_UNIFED_SSE_AVX(VISIT_SIMD_SHIFT_UNIFIED_SSE_AVX) |
| #undef VISIT_SIMD_SHIFT_UNIFIED_SSE_AVX |
| #undef SIMD_SHIFT_OPCODES_UNIFED_SSE_AVX |
| |
| // TODO(v8:9198): SSE requires operand0 to be a register as we don't have memory |
| // alignment yet. For AVX, memory operands are fine, but can have performance |
| // issues if not aligned to 16/32 bytes (based on load size), see SDM Vol 1, |
| // chapter 14.9 |
| #define VISIT_SIMD_UNOP(Opcode) \ |
| void InstructionSelector::Visit##Opcode(Node* node) { \ |
| IA32OperandGenerator g(this); \ |
| Emit(kIA32##Opcode, g.DefineAsRegister(node), \ |
| g.UseRegister(node->InputAt(0))); \ |
| } |
| SIMD_UNOP_LIST(VISIT_SIMD_UNOP) |
| #undef VISIT_SIMD_UNOP |
| #undef SIMD_UNOP_LIST |
| |
| // TODO(v8:9198): SSE instructions that read 16 bytes from memory require the |
| // operand to be 16-byte aligned. AVX instructions relax this requirement, but |
| // might have reduced performance if the memory crosses cache line. But since we |
| // have limited xmm registers, this might be okay to alleviate register |
| // pressure. |
| #define VISIT_SIMD_UNOP_PREFIX(Opcode) \ |
| void InstructionSelector::Visit##Opcode(Node* node) { \ |
| IA32OperandGenerator g(this); \ |
| if (IsSupported(AVX)) { \ |
| Emit(kAVX##Opcode, g.DefineAsRegister(node), g.Use(node->InputAt(0))); \ |
| } else { \ |
| Emit(kSSE##Opcode, g.DefineSameAsFirst(node), \ |
| g.UseRegister(node->InputAt(0))); \ |
| } \ |
| } |
| SIMD_UNOP_PREFIX_LIST(VISIT_SIMD_UNOP_PREFIX) |
| #undef VISIT_SIMD_UNOP_PREFIX |
| #undef SIMD_UNOP_PREFIX_LIST |
| |
| #define VISIT_SIMD_ANYTRUE(Opcode) \ |
| void InstructionSelector::Visit##Opcode(Node* node) { \ |
| IA32OperandGenerator g(this); \ |
| InstructionOperand temps[] = {g.TempRegister()}; \ |
| Emit(kIA32##Opcode, g.DefineAsRegister(node), \ |
| g.UseRegister(node->InputAt(0)), arraysize(temps), temps); \ |
| } |
| SIMD_ANYTRUE_LIST(VISIT_SIMD_ANYTRUE) |
| #undef VISIT_SIMD_ANYTRUE |
| #undef SIMD_ANYTRUE_LIST |
| |
| #define VISIT_SIMD_ALLTRUE(Opcode) \ |
| void InstructionSelector::Visit##Opcode(Node* node) { \ |
| IA32OperandGenerator g(this); \ |
| InstructionOperand temps[] = {g.TempRegister(), g.TempSimd128Register()}; \ |
| Emit(kIA32##Opcode, g.DefineAsRegister(node), \ |
| g.UseUniqueRegister(node->InputAt(0)), arraysize(temps), temps); \ |
| } |
| SIMD_ALLTRUE_LIST(VISIT_SIMD_ALLTRUE) |
| #undef VISIT_SIMD_ALLTRUE |
| #undef SIMD_ALLTRUE_LIST |
| |
| #define VISIT_SIMD_BINOP(Opcode) \ |
| void InstructionSelector::Visit##Opcode(Node* node) { \ |
| VisitRROSimd(this, node, kAVX##Opcode, kSSE##Opcode); \ |
| } |
| SIMD_BINOP_LIST(VISIT_SIMD_BINOP) |
| #undef VISIT_SIMD_BINOP |
| #undef SIMD_BINOP_LIST |
| |
| #define VISIT_SIMD_BINOP_UNIFIED_SSE_AVX(Opcode) \ |
| void InstructionSelector::Visit##Opcode(Node* node) { \ |
| VisitRROSimd(this, node, kIA32##Opcode, kIA32##Opcode); \ |
| } |
| SIMD_BINOP_UNIFIED_SSE_AVX_LIST(VISIT_SIMD_BINOP_UNIFIED_SSE_AVX) |
| #undef VISIT_SIMD_BINOP_UNIFIED_SSE_AVX |
| #undef SIMD_BINOP_UNIFIED_SSE_AVX_LIST |
| |
| // TODO(v8:9198): SSE requires operand1 to be a register as we don't have memory |
| // alignment yet. For AVX, memory operands are fine, but can have performance |
| // issues if not aligned to 16/32 bytes (based on load size), see SDM Vol 1, |
| // chapter 14.9 |
| void VisitPack(InstructionSelector* selector, Node* node, ArchOpcode avx_opcode, |
| ArchOpcode sse_opcode) { |
| IA32OperandGenerator g(selector); |
| InstructionOperand operand0 = g.UseRegister(node->InputAt(0)); |
| InstructionOperand operand1 = g.UseRegister(node->InputAt(1)); |
| if (selector->IsSupported(AVX)) { |
| selector->Emit(avx_opcode, g.DefineSameAsFirst(node), operand0, operand1); |
| } else { |
| selector->Emit(sse_opcode, g.DefineSameAsFirst(node), operand0, operand1); |
| } |
| } |
| |
| void InstructionSelector::VisitI16x8UConvertI32x4(Node* node) { |
| VisitPack(this, node, kAVXI16x8UConvertI32x4, kSSEI16x8UConvertI32x4); |
| } |
| |
| void InstructionSelector::VisitI16x8BitMask(Node* node) { |
| IA32OperandGenerator g(this); |
| InstructionOperand temps[] = {g.TempSimd128Register()}; |
| Emit(kIA32I16x8BitMask, g.DefineAsRegister(node), |
| g.UseUniqueRegister(node->InputAt(0)), arraysize(temps), temps); |
| } |
| |
| void InstructionSelector::VisitI8x16UConvertI16x8(Node* node) { |
| VisitPack(this, node, kAVXI8x16UConvertI16x8, kSSEI8x16UConvertI16x8); |
| } |
| |
| void InstructionSelector::VisitI8x16Shl(Node* node) { |
| IA32OperandGenerator g(this); |
| if (g.CanBeImmediate(node->InputAt(1))) { |
| InstructionOperand temps[] = {g.TempRegister(), g.TempSimd128Register()}; |
| this->Emit(kIA32I8x16Shl, g.DefineSameAsFirst(node), |
| g.UseRegister(node->InputAt(0)), |
| g.UseImmediate(node->InputAt(1)), arraysize(temps), temps); |
| } else { |
| VisitRROI8x16SimdShift(this, node, kIA32I8x16Shl); |
| } |
| } |
| |
| void InstructionSelector::VisitI8x16ShrS(Node* node) { |
| IA32OperandGenerator g(this); |
| if (g.CanBeImmediate(node->InputAt(1))) { |
| this->Emit(kIA32I8x16ShrS, g.DefineSameAsFirst(node), |
| g.UseRegister(node->InputAt(0)), |
| g.UseImmediate(node->InputAt(1))); |
| } else { |
| VisitRROI8x16SimdShift(this, node, kIA32I8x16ShrS); |
| } |
| } |
| |
| void InstructionSelector::VisitI8x16ShrU(Node* node) { |
| IA32OperandGenerator g(this); |
| if (g.CanBeImmediate(node->InputAt(1))) { |
| InstructionOperand temps[] = {g.TempRegister(), g.TempSimd128Register()}; |
| this->Emit(kIA32I8x16ShrU, g.DefineSameAsFirst(node), |
| g.UseRegister(node->InputAt(0)), |
| g.UseImmediate(node->InputAt(1)), arraysize(temps), temps); |
| } else { |
| VisitRROI8x16SimdShift(this, node, kIA32I8x16ShrU); |
| } |
| } |
| |
| void InstructionSelector::VisitInt32AbsWithOverflow(Node* node) { |
| UNREACHABLE(); |
| } |
| |
| void InstructionSelector::VisitInt64AbsWithOverflow(Node* node) { |
| UNREACHABLE(); |
| } |
| |
| namespace { |
| |
| // Returns true if shuffle can be decomposed into two 16x4 half shuffles |
| // followed by a 16x8 blend. |
| // E.g. [3 2 1 0 15 14 13 12]. |
| bool TryMatch16x8HalfShuffle(uint8_t* shuffle16x8, uint8_t* blend_mask) { |
| *blend_mask = 0; |
| for (int i = 0; i < 8; i++) { |
| if ((shuffle16x8[i] & 0x4) != (i & 0x4)) return false; |
| *blend_mask |= (shuffle16x8[i] > 7 ? 1 : 0) << i; |
| } |
| return true; |
| } |
| |
| struct ShuffleEntry { |
| uint8_t shuffle[kSimd128Size]; |
| ArchOpcode opcode; |
| ArchOpcode avx_opcode; |
| bool src0_needs_reg; |
| bool src1_needs_reg; |
| }; |
| |
| // Shuffles that map to architecture-specific instruction sequences. These are |
| // matched very early, so we shouldn't include shuffles that match better in |
| // later tests, like 32x4 and 16x8 shuffles. In general, these patterns should |
| // map to either a single instruction, or be finer grained, such as zip/unzip or |
| // transpose patterns. |
| static const ShuffleEntry arch_shuffles[] = { |
| {{0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23}, |
| kIA32S64x2UnpackLow, |
| kIA32S64x2UnpackLow, |
| true, |
| false}, |
| {{8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31}, |
| kIA32S64x2UnpackHigh, |
| kIA32S64x2UnpackHigh, |
| true, |
| false}, |
| {{0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23}, |
| kIA32S32x4UnpackLow, |
| kIA32S32x4UnpackLow, |
| true, |
| false}, |
| {{8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31}, |
| kIA32S32x4UnpackHigh, |
| kIA32S32x4UnpackHigh, |
| true, |
| false}, |
| {{0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23}, |
| kIA32S16x8UnpackLow, |
| kIA32S16x8UnpackLow, |
| true, |
| false}, |
| {{8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31}, |
| kIA32S16x8UnpackHigh, |
| kIA32S16x8UnpackHigh, |
| true, |
| false}, |
| {{0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}, |
| kIA32S8x16UnpackLow, |
| kIA32S8x16UnpackLow, |
| true, |
| false}, |
| {{8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31}, |
| kIA32S8x16UnpackHigh, |
| kIA32S8x16UnpackHigh, |
| true, |
| false}, |
| |
| {{0, 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29}, |
| kSSES16x8UnzipLow, |
| kAVXS16x8UnzipLow, |
| true, |
| false}, |
| {{2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31}, |
| kSSES16x8UnzipHigh, |
| kAVXS16x8UnzipHigh, |
| true, |
| true}, |
| {{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30}, |
| kSSES8x16UnzipLow, |
| kAVXS8x16UnzipLow, |
| true, |
| true}, |
| {{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31}, |
| kSSES8x16UnzipHigh, |
| kAVXS8x16UnzipHigh, |
| true, |
| true}, |
| |
| {{0, 16, 2, 18, 4, 20, 6, 22, 8, 24, 10, 26, 12, 28, 14, 30}, |
| kSSES8x16TransposeLow, |
| kAVXS8x16TransposeLow, |
| true, |
| true}, |
| {{1, 17, 3, 19, 5, 21, 7, 23, 9, 25, 11, 27, 13, 29, 15, 31}, |
| kSSES8x16TransposeHigh, |
| kAVXS8x16TransposeHigh, |
| true, |
| true}, |
| {{7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8}, |
| kSSES8x8Reverse, |
| kAVXS8x8Reverse, |
| true, |
| true}, |
| {{3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12}, |
| kSSES8x4Reverse, |
| kAVXS8x4Reverse, |
| true, |
| true}, |
| {{1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14}, |
| kSSES8x2Reverse, |
| kAVXS8x2Reverse, |
| true, |
| true}}; |
| |
| bool TryMatchArchShuffle(const uint8_t* shuffle, const ShuffleEntry* table, |
| size_t num_entries, bool is_swizzle, |
| const ShuffleEntry** arch_shuffle) { |
| uint8_t mask = is_swizzle ? kSimd128Size - 1 : 2 * kSimd128Size - 1; |
| for (size_t i = 0; i < num_entries; ++i) { |
| const ShuffleEntry& entry = table[i]; |
| int j = 0; |
| for (; j < kSimd128Size; ++j) { |
| if ((entry.shuffle[j] & mask) != (shuffle[j] & mask)) { |
| break; |
| } |
| } |
| if (j == kSimd128Size) { |
| *arch_shuffle = &entry; |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| } // namespace |
| |
| void InstructionSelector::VisitI8x16Shuffle(Node* node) { |
| uint8_t shuffle[kSimd128Size]; |
| bool is_swizzle; |
| CanonicalizeShuffle(node, shuffle, &is_swizzle); |
| |
| int imm_count = 0; |
| static const int kMaxImms = 6; |
| uint32_t imms[kMaxImms]; |
| int temp_count = 0; |
| static const int kMaxTemps = 2; |
| InstructionOperand temps[kMaxTemps]; |
| |
| IA32OperandGenerator g(this); |
| bool use_avx = CpuFeatures::IsSupported(AVX); |
| // AVX and swizzles don't generally need DefineSameAsFirst to avoid a move. |
| bool no_same_as_first = use_avx || is_swizzle; |
| // We generally need UseRegister for input0, Use for input1. |
| // TODO(v8:9198): We don't have 16-byte alignment for SIMD operands yet, but |
| // we retain this logic (continue setting these in the various shuffle match |
| // clauses), but ignore it when selecting registers or slots. |
| bool src0_needs_reg = true; |
| bool src1_needs_reg = false; |
| ArchOpcode opcode = kIA32I8x16Shuffle; // general shuffle is the default |
| |
| uint8_t offset; |
| uint8_t shuffle32x4[4]; |
| uint8_t shuffle16x8[8]; |
| int index; |
| const ShuffleEntry* arch_shuffle; |
| if (wasm::SimdShuffle::TryMatchConcat(shuffle, &offset)) { |
| // Swap inputs from the normal order for (v)palignr. |
| SwapShuffleInputs(node); |
| is_swizzle = false; // It's simpler to just handle the general case. |
| no_same_as_first = use_avx; // SSE requires same-as-first. |
| opcode = kIA32S8x16Alignr; |
| // palignr takes a single imm8 offset. |
| imms[imm_count++] = offset; |
| } else if (TryMatchArchShuffle(shuffle, arch_shuffles, |
| arraysize(arch_shuffles), is_swizzle, |
| &arch_shuffle)) { |
| opcode = use_avx ? arch_shuffle->avx_opcode : arch_shuffle->opcode; |
| src0_needs_reg = !use_avx || arch_shuffle->src0_needs_reg; |
| // SSE can't take advantage of both operands in registers and needs |
| // same-as-first. |
| src1_needs_reg = use_avx && arch_shuffle->src1_needs_reg; |
| no_same_as_first = use_avx; |
| } else if (wasm::SimdShuffle::TryMatch32x4Shuffle(shuffle, shuffle32x4)) { |
| uint8_t shuffle_mask = wasm::SimdShuffle::PackShuffle4(shuffle32x4); |
| if (is_swizzle) { |
| if (wasm::SimdShuffle::TryMatchIdentity(shuffle)) { |
| // Bypass normal shuffle code generation in this case. |
| EmitIdentity(node); |
| return; |
| } else { |
| // pshufd takes a single imm8 shuffle mask. |
| opcode = kIA32S32x4Swizzle; |
| no_same_as_first = true; |
| // TODO(v8:9198): This doesn't strictly require a register, forcing the |
| // swizzles to always use registers until generation of incorrect memory |
| // operands can be fixed. |
| src0_needs_reg = true; |
| imms[imm_count++] = shuffle_mask; |
| } |
| } else { |
| // 2 operand shuffle |
| // A blend is more efficient than a general 32x4 shuffle; try it first. |
| if (wasm::SimdShuffle::TryMatchBlend(shuffle)) { |
| opcode = kIA32S16x8Blend; |
| uint8_t blend_mask = wasm::SimdShuffle::PackBlend4(shuffle32x4); |
| imms[imm_count++] = blend_mask; |
| } else { |
| opcode = kIA32S32x4Shuffle; |
| no_same_as_first = true; |
| // TODO(v8:9198): src0 and src1 is used by pshufd in codegen, which |
| // requires memory to be 16-byte aligned, since we cannot guarantee that |
| // yet, force using a register here. |
| src0_needs_reg = true; |
| src1_needs_reg = true; |
| imms[imm_count++] = shuffle_mask; |
| int8_t blend_mask = wasm::SimdShuffle::PackBlend4(shuffle32x4); |
| imms[imm_count++] = blend_mask; |
| } |
| } |
| } else if (wasm::SimdShuffle::TryMatch16x8Shuffle(shuffle, shuffle16x8)) { |
| uint8_t blend_mask; |
| if (wasm::SimdShuffle::TryMatchBlend(shuffle)) { |
| opcode = kIA32S16x8Blend; |
| blend_mask = wasm::SimdShuffle::PackBlend8(shuffle16x8); |
| imms[imm_count++] = blend_mask; |
| } else if (wasm::SimdShuffle::TryMatchSplat<8>(shuffle, &index)) { |
| opcode = kIA32S16x8Dup; |
| src0_needs_reg = false; |
| imms[imm_count++] = index; |
| } else if (TryMatch16x8HalfShuffle(shuffle16x8, &blend_mask)) { |
| opcode = is_swizzle ? kIA32S16x8HalfShuffle1 : kIA32S16x8HalfShuffle2; |
| // Half-shuffles don't need DefineSameAsFirst or UseRegister(src0). |
| no_same_as_first = true; |
| src0_needs_reg = false; |
| uint8_t mask_lo = wasm::SimdShuffle::PackShuffle4(shuffle16x8); |
| uint8_t mask_hi = wasm::SimdShuffle::PackShuffle4(shuffle16x8 + 4); |
| imms[imm_count++] = mask_lo; |
| imms[imm_count++] = mask_hi; |
| if (!is_swizzle) imms[imm_count++] = blend_mask; |
| } |
| } else if (wasm::SimdShuffle::TryMatchSplat<16>(shuffle, &index)) { |
| opcode = kIA32S8x16Dup; |
| no_same_as_first = use_avx; |
| src0_needs_reg = true; |
| imms[imm_count++] = index; |
| } |
| if (opcode == kIA32I8x16Shuffle) { |
| // Use same-as-first for general swizzle, but not shuffle. |
| no_same_as_first = !is_swizzle; |
| src0_needs_reg = !no_same_as_first; |
| imms[imm_count++] = wasm::SimdShuffle::Pack4Lanes(shuffle); |
| imms[imm_count++] = wasm::SimdShuffle::Pack4Lanes(shuffle + 4); |
| imms[imm_count++] = wasm::SimdShuffle::Pack4Lanes(shuffle + 8); |
| imms[imm_count++] = wasm::SimdShuffle::Pack4Lanes(shuffle + 12); |
| temps[temp_count++] = g.TempRegister(); |
| } |
| |
| // Use DefineAsRegister(node) and Use(src0) if we can without forcing an extra |
| // move instruction in the CodeGenerator. |
| Node* input0 = node->InputAt(0); |
| InstructionOperand dst = |
| no_same_as_first ? g.DefineAsRegister(node) : g.DefineSameAsFirst(node); |
| // TODO(v8:9198): Use src0_needs_reg when we have memory alignment for SIMD. |
| InstructionOperand src0 = g.UseRegister(input0); |
| USE(src0_needs_reg); |
| |
| int input_count = 0; |
| InstructionOperand inputs[2 + kMaxImms + kMaxTemps]; |
| inputs[input_count++] = src0; |
| if (!is_swizzle) { |
| Node* input1 = node->InputAt(1); |
| // TODO(v8:9198): Use src1_needs_reg when we have memory alignment for SIMD. |
| inputs[input_count++] = g.UseRegister(input1); |
| USE(src1_needs_reg); |
| } |
| for (int i = 0; i < imm_count; ++i) { |
| inputs[input_count++] = g.UseImmediate(imms[i]); |
| } |
| Emit(opcode, 1, &dst, input_count, inputs, temp_count, temps); |
| } |
| |
| void InstructionSelector::VisitI8x16Swizzle(Node* node) { |
| IA32OperandGenerator g(this); |
| InstructionOperand temps[] = {g.TempSimd128Register()}; |
| Emit(kIA32I8x16Swizzle, g.DefineSameAsFirst(node), |
| g.UseRegister(node->InputAt(0)), g.UseUniqueRegister(node->InputAt(1)), |
| arraysize(temps), temps); |
| } |
| |
| namespace { |
| void VisitPminOrPmax(InstructionSelector* selector, Node* node, |
| ArchOpcode opcode) { |
| // Due to the way minps/minpd work, we want the dst to be same as the second |
| // input: b = pmin(a, b) directly maps to minps b a. |
| IA32OperandGenerator g(selector); |
| selector->Emit(opcode, g.DefineSameAsFirst(node), |
| g.UseRegister(node->InputAt(1)), |
| g.UseRegister(node->InputAt(0))); |
| } |
| } // namespace |
| |
| void InstructionSelector::VisitF32x4Pmin(Node* node) { |
| VisitPminOrPmax(this, node, kIA32F32x4Pmin); |
| } |
| |
| void InstructionSelector::VisitF32x4Pmax(Node* node) { |
| VisitPminOrPmax(this, node, kIA32F32x4Pmax); |
| } |
| |
| void InstructionSelector::VisitF64x2Pmin(Node* node) { |
| VisitPminOrPmax(this, node, kIA32F64x2Pmin); |
| } |
| |
| void InstructionSelector::VisitF64x2Pmax(Node* node) { |
| VisitPminOrPmax(this, node, kIA32F64x2Pmax); |
| } |
| |
| // static |
| MachineOperatorBuilder::Flags |
| InstructionSelector::SupportedMachineOperatorFlags() { |
| MachineOperatorBuilder::Flags flags = |
| MachineOperatorBuilder::kWord32ShiftIsSafe | |
| MachineOperatorBuilder::kWord32Ctz | MachineOperatorBuilder::kWord32Rol; |
| if (CpuFeatures::IsSupported(POPCNT)) { |
| flags |= MachineOperatorBuilder::kWord32Popcnt; |
| } |
| if (CpuFeatures::IsSupported(SSE4_1)) { |
| flags |= MachineOperatorBuilder::kFloat32RoundDown | |
| MachineOperatorBuilder::kFloat64RoundDown | |
| MachineOperatorBuilder::kFloat32RoundUp | |
| MachineOperatorBuilder::kFloat64RoundUp | |
| MachineOperatorBuilder::kFloat32RoundTruncate | |
| MachineOperatorBuilder::kFloat64RoundTruncate | |
| MachineOperatorBuilder::kFloat32RoundTiesEven | |
| MachineOperatorBuilder::kFloat64RoundTiesEven; |
| } |
| return flags; |
| } |
| |
| // static |
| MachineOperatorBuilder::AlignmentRequirements |
| InstructionSelector::AlignmentRequirements() { |
| return MachineOperatorBuilder::AlignmentRequirements:: |
| FullUnalignedAccessSupport(); |
| } |
| |
| } // namespace compiler |
| } // namespace internal |
| } // namespace v8 |