| // Copyright 2014 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "src/base/iterator.h" |
| #include "src/compiler/backend/instruction-selector-impl.h" |
| #include "src/compiler/node-matchers.h" |
| #include "src/compiler/node-properties.h" |
| #include "src/execution/ppc/frame-constants-ppc.h" |
| |
| namespace v8 { |
| namespace internal { |
| namespace compiler { |
| |
| enum ImmediateMode { |
| kInt16Imm, |
| kInt16Imm_Unsigned, |
| kInt16Imm_Negate, |
| kInt16Imm_4ByteAligned, |
| kShift32Imm, |
| kShift64Imm, |
| kNoImmediate |
| }; |
| |
| // Adds PPC-specific methods for generating operands. |
| class PPCOperandGenerator final : public OperandGenerator { |
| public: |
| explicit PPCOperandGenerator(InstructionSelector* selector) |
| : OperandGenerator(selector) {} |
| |
| InstructionOperand UseOperand(Node* node, ImmediateMode mode) { |
| if (CanBeImmediate(node, mode)) { |
| return UseImmediate(node); |
| } |
| return UseRegister(node); |
| } |
| |
| bool CanBeImmediate(Node* node, ImmediateMode mode) { |
| int64_t value; |
| if (node->opcode() == IrOpcode::kInt32Constant) |
| value = OpParameter<int32_t>(node->op()); |
| else if (node->opcode() == IrOpcode::kInt64Constant) |
| value = OpParameter<int64_t>(node->op()); |
| else |
| return false; |
| return CanBeImmediate(value, mode); |
| } |
| |
| bool CanBeImmediate(int64_t value, ImmediateMode mode) { |
| switch (mode) { |
| case kInt16Imm: |
| return is_int16(value); |
| case kInt16Imm_Unsigned: |
| return is_uint16(value); |
| case kInt16Imm_Negate: |
| return is_int16(-value); |
| case kInt16Imm_4ByteAligned: |
| return is_int16(value) && !(value & 3); |
| case kShift32Imm: |
| return 0 <= value && value < 32; |
| case kShift64Imm: |
| return 0 <= value && value < 64; |
| case kNoImmediate: |
| return false; |
| } |
| return false; |
| } |
| }; |
| |
| namespace { |
| |
| void VisitRR(InstructionSelector* selector, InstructionCode opcode, |
| Node* node) { |
| PPCOperandGenerator g(selector); |
| selector->Emit(opcode, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0))); |
| } |
| |
| void VisitRRR(InstructionSelector* selector, InstructionCode opcode, |
| Node* node) { |
| PPCOperandGenerator g(selector); |
| selector->Emit(opcode, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0)), |
| g.UseRegister(node->InputAt(1))); |
| } |
| |
| void VisitRRO(InstructionSelector* selector, InstructionCode opcode, Node* node, |
| ImmediateMode operand_mode) { |
| PPCOperandGenerator g(selector); |
| selector->Emit(opcode, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0)), |
| g.UseOperand(node->InputAt(1), operand_mode)); |
| } |
| |
| #if V8_TARGET_ARCH_PPC64 |
| void VisitTryTruncateDouble(InstructionSelector* selector, |
| InstructionCode opcode, Node* node) { |
| PPCOperandGenerator g(selector); |
| InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))}; |
| InstructionOperand outputs[2]; |
| size_t output_count = 0; |
| outputs[output_count++] = g.DefineAsRegister(node); |
| |
| Node* success_output = NodeProperties::FindProjection(node, 1); |
| if (success_output) { |
| outputs[output_count++] = g.DefineAsRegister(success_output); |
| } |
| |
| selector->Emit(opcode, output_count, outputs, 1, inputs); |
| } |
| #endif |
| |
| // Shared routine for multiple binary operations. |
| template <typename Matcher> |
| void VisitBinop(InstructionSelector* selector, Node* node, |
| InstructionCode opcode, ImmediateMode operand_mode, |
| FlagsContinuation* cont) { |
| PPCOperandGenerator g(selector); |
| Matcher m(node); |
| InstructionOperand inputs[4]; |
| size_t input_count = 0; |
| InstructionOperand outputs[2]; |
| size_t output_count = 0; |
| |
| inputs[input_count++] = g.UseRegister(m.left().node()); |
| inputs[input_count++] = g.UseOperand(m.right().node(), operand_mode); |
| |
| if (cont->IsDeoptimize()) { |
| // If we can deoptimize as a result of the binop, we need to make sure that |
| // the deopt inputs are not overwritten by the binop result. One way |
| // to achieve that is to declare the output register as same-as-first. |
| outputs[output_count++] = g.DefineSameAsFirst(node); |
| } else { |
| outputs[output_count++] = g.DefineAsRegister(node); |
| } |
| |
| DCHECK_NE(0u, input_count); |
| DCHECK_NE(0u, output_count); |
| DCHECK_GE(arraysize(inputs), input_count); |
| DCHECK_GE(arraysize(outputs), output_count); |
| |
| selector->EmitWithContinuation(opcode, output_count, outputs, input_count, |
| inputs, cont); |
| } |
| |
| // Shared routine for multiple binary operations. |
| template <typename Matcher> |
| void VisitBinop(InstructionSelector* selector, Node* node, |
| InstructionCode opcode, ImmediateMode operand_mode) { |
| FlagsContinuation cont; |
| VisitBinop<Matcher>(selector, node, opcode, operand_mode, &cont); |
| } |
| |
| } // namespace |
| |
| void InstructionSelector::VisitStackSlot(Node* node) { |
| StackSlotRepresentation rep = StackSlotRepresentationOf(node->op()); |
| int slot = frame_->AllocateSpillSlot(rep.size()); |
| OperandGenerator g(this); |
| |
| Emit(kArchStackSlot, g.DefineAsRegister(node), |
| sequence()->AddImmediate(Constant(slot)), 0, nullptr); |
| } |
| |
| void InstructionSelector::VisitAbortCSAAssert(Node* node) { |
| PPCOperandGenerator g(this); |
| Emit(kArchAbortCSAAssert, g.NoOutput(), g.UseFixed(node->InputAt(0), r4)); |
| } |
| |
| void InstructionSelector::VisitLoad(Node* node) { |
| LoadRepresentation load_rep = LoadRepresentationOf(node->op()); |
| PPCOperandGenerator g(this); |
| Node* base = node->InputAt(0); |
| Node* offset = node->InputAt(1); |
| InstructionCode opcode = kArchNop; |
| ImmediateMode mode = kInt16Imm; |
| switch (load_rep.representation()) { |
| case MachineRepresentation::kFloat32: |
| opcode = kPPC_LoadFloat32; |
| break; |
| case MachineRepresentation::kFloat64: |
| opcode = kPPC_LoadDouble; |
| break; |
| case MachineRepresentation::kBit: // Fall through. |
| case MachineRepresentation::kWord8: |
| opcode = load_rep.IsSigned() ? kPPC_LoadWordS8 : kPPC_LoadWordU8; |
| break; |
| case MachineRepresentation::kWord16: |
| opcode = load_rep.IsSigned() ? kPPC_LoadWordS16 : kPPC_LoadWordU16; |
| break; |
| case MachineRepresentation::kWord32: |
| opcode = kPPC_LoadWordU32; |
| break; |
| case MachineRepresentation::kCompressedPointer: // Fall through. |
| case MachineRepresentation::kCompressed: |
| #ifdef V8_COMPRESS_POINTERS |
| opcode = kPPC_LoadWordS32; |
| mode = kInt16Imm_4ByteAligned; |
| break; |
| #else |
| UNREACHABLE(); |
| #endif |
| #ifdef V8_COMPRESS_POINTERS |
| case MachineRepresentation::kTaggedSigned: |
| opcode = kPPC_LoadDecompressTaggedSigned; |
| break; |
| case MachineRepresentation::kTaggedPointer: |
| opcode = kPPC_LoadDecompressTaggedPointer; |
| break; |
| case MachineRepresentation::kTagged: |
| opcode = kPPC_LoadDecompressAnyTagged; |
| break; |
| #else |
| case MachineRepresentation::kTaggedSigned: // Fall through. |
| case MachineRepresentation::kTaggedPointer: // Fall through. |
| case MachineRepresentation::kTagged: // Fall through. |
| #endif |
| case MachineRepresentation::kWord64: |
| opcode = kPPC_LoadWord64; |
| mode = kInt16Imm_4ByteAligned; |
| break; |
| case MachineRepresentation::kSimd128: |
| opcode = kPPC_LoadSimd128; |
| // Vectors do not support MRI mode, only MRR is available. |
| mode = kNoImmediate; |
| break; |
| case MachineRepresentation::kNone: |
| UNREACHABLE(); |
| } |
| |
| if (node->opcode() == IrOpcode::kPoisonedLoad && |
| poisoning_level_ != PoisoningMitigationLevel::kDontPoison) { |
| opcode |= MiscField::encode(kMemoryAccessPoisoned); |
| } |
| |
| bool is_atomic = (node->opcode() == IrOpcode::kWord32AtomicLoad || |
| node->opcode() == IrOpcode::kWord64AtomicLoad); |
| |
| if (g.CanBeImmediate(offset, mode)) { |
| Emit(opcode | AddressingModeField::encode(kMode_MRI), |
| g.DefineAsRegister(node), g.UseRegister(base), g.UseImmediate(offset), |
| g.UseImmediate(is_atomic)); |
| } else if (g.CanBeImmediate(base, mode)) { |
| Emit(opcode | AddressingModeField::encode(kMode_MRI), |
| g.DefineAsRegister(node), g.UseRegister(offset), g.UseImmediate(base), |
| g.UseImmediate(is_atomic)); |
| } else { |
| Emit(opcode | AddressingModeField::encode(kMode_MRR), |
| g.DefineAsRegister(node), g.UseRegister(base), g.UseRegister(offset), |
| g.UseImmediate(is_atomic)); |
| } |
| } |
| |
| void InstructionSelector::VisitPoisonedLoad(Node* node) { VisitLoad(node); } |
| |
| void InstructionSelector::VisitProtectedLoad(Node* node) { |
| // TODO(eholk) |
| UNIMPLEMENTED(); |
| } |
| |
| void InstructionSelector::VisitStore(Node* node) { |
| PPCOperandGenerator g(this); |
| Node* base = node->InputAt(0); |
| Node* offset = node->InputAt(1); |
| Node* value = node->InputAt(2); |
| |
| bool is_atomic = (node->opcode() == IrOpcode::kWord32AtomicStore || |
| node->opcode() == IrOpcode::kWord64AtomicStore); |
| |
| MachineRepresentation rep; |
| WriteBarrierKind write_barrier_kind = kNoWriteBarrier; |
| |
| if (is_atomic) { |
| rep = AtomicStoreRepresentationOf(node->op()); |
| } else { |
| StoreRepresentation store_rep = StoreRepresentationOf(node->op()); |
| write_barrier_kind = store_rep.write_barrier_kind(); |
| rep = store_rep.representation(); |
| } |
| |
| if (FLAG_enable_unconditional_write_barriers && |
| CanBeTaggedOrCompressedPointer(rep)) { |
| write_barrier_kind = kFullWriteBarrier; |
| } |
| |
| if (write_barrier_kind != kNoWriteBarrier && |
| V8_LIKELY(!FLAG_disable_write_barriers)) { |
| DCHECK(CanBeTaggedOrCompressedPointer(rep)); |
| AddressingMode addressing_mode; |
| InstructionOperand inputs[3]; |
| size_t input_count = 0; |
| inputs[input_count++] = g.UseUniqueRegister(base); |
| // OutOfLineRecordWrite uses the offset in an 'add' instruction as well as |
| // for the store itself, so we must check compatibility with both. |
| if (g.CanBeImmediate(offset, kInt16Imm) |
| #if V8_TARGET_ARCH_PPC64 |
| && g.CanBeImmediate(offset, kInt16Imm_4ByteAligned) |
| #endif |
| ) { |
| inputs[input_count++] = g.UseImmediate(offset); |
| addressing_mode = kMode_MRI; |
| } else { |
| inputs[input_count++] = g.UseUniqueRegister(offset); |
| addressing_mode = kMode_MRR; |
| } |
| inputs[input_count++] = g.UseUniqueRegister(value); |
| RecordWriteMode record_write_mode = |
| WriteBarrierKindToRecordWriteMode(write_barrier_kind); |
| InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()}; |
| size_t const temp_count = arraysize(temps); |
| InstructionCode code = kArchStoreWithWriteBarrier; |
| code |= AddressingModeField::encode(addressing_mode); |
| code |= MiscField::encode(static_cast<int>(record_write_mode)); |
| CHECK_EQ(is_atomic, false); |
| Emit(code, 0, nullptr, input_count, inputs, temp_count, temps); |
| } else { |
| ArchOpcode opcode; |
| ImmediateMode mode = kInt16Imm; |
| switch (rep) { |
| case MachineRepresentation::kFloat32: |
| opcode = kPPC_StoreFloat32; |
| break; |
| case MachineRepresentation::kFloat64: |
| opcode = kPPC_StoreDouble; |
| break; |
| case MachineRepresentation::kBit: // Fall through. |
| case MachineRepresentation::kWord8: |
| opcode = kPPC_StoreWord8; |
| break; |
| case MachineRepresentation::kWord16: |
| opcode = kPPC_StoreWord16; |
| break; |
| case MachineRepresentation::kWord32: |
| opcode = kPPC_StoreWord32; |
| break; |
| case MachineRepresentation::kCompressedPointer: // Fall through. |
| case MachineRepresentation::kCompressed: |
| #ifdef V8_COMPRESS_POINTERS |
| opcode = kPPC_StoreCompressTagged; |
| break; |
| #else |
| UNREACHABLE(); |
| break; |
| #endif |
| case MachineRepresentation::kTaggedSigned: // Fall through. |
| case MachineRepresentation::kTaggedPointer: // Fall through. |
| case MachineRepresentation::kTagged: |
| mode = kInt16Imm_4ByteAligned; |
| opcode = kPPC_StoreCompressTagged; |
| break; |
| case MachineRepresentation::kWord64: |
| opcode = kPPC_StoreWord64; |
| mode = kInt16Imm_4ByteAligned; |
| break; |
| case MachineRepresentation::kSimd128: |
| opcode = kPPC_StoreSimd128; |
| // Vectors do not support MRI mode, only MRR is available. |
| mode = kNoImmediate; |
| break; |
| case MachineRepresentation::kNone: |
| UNREACHABLE(); |
| } |
| |
| if (g.CanBeImmediate(offset, mode)) { |
| Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(), |
| g.UseRegister(base), g.UseImmediate(offset), g.UseRegister(value), |
| g.UseImmediate(is_atomic)); |
| } else if (g.CanBeImmediate(base, mode)) { |
| Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(), |
| g.UseRegister(offset), g.UseImmediate(base), g.UseRegister(value), |
| g.UseImmediate(is_atomic)); |
| } else { |
| Emit(opcode | AddressingModeField::encode(kMode_MRR), g.NoOutput(), |
| g.UseRegister(base), g.UseRegister(offset), g.UseRegister(value), |
| g.UseImmediate(is_atomic)); |
| } |
| } |
| } |
| |
| void InstructionSelector::VisitProtectedStore(Node* node) { |
| // TODO(eholk) |
| UNIMPLEMENTED(); |
| } |
| |
| // Architecture supports unaligned access, therefore VisitLoad is used instead |
| void InstructionSelector::VisitUnalignedLoad(Node* node) { UNREACHABLE(); } |
| |
| // Architecture supports unaligned access, therefore VisitStore is used instead |
| void InstructionSelector::VisitUnalignedStore(Node* node) { UNREACHABLE(); } |
| |
| template <typename Matcher> |
| static void VisitLogical(InstructionSelector* selector, Node* node, Matcher* m, |
| ArchOpcode opcode, bool left_can_cover, |
| bool right_can_cover, ImmediateMode imm_mode) { |
| PPCOperandGenerator g(selector); |
| |
| // Map instruction to equivalent operation with inverted right input. |
| ArchOpcode inv_opcode = opcode; |
| switch (opcode) { |
| case kPPC_And: |
| inv_opcode = kPPC_AndComplement; |
| break; |
| case kPPC_Or: |
| inv_opcode = kPPC_OrComplement; |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| |
| // Select Logical(y, ~x) for Logical(Xor(x, -1), y). |
| if ((m->left().IsWord32Xor() || m->left().IsWord64Xor()) && left_can_cover) { |
| Matcher mleft(m->left().node()); |
| if (mleft.right().Is(-1)) { |
| selector->Emit(inv_opcode, g.DefineAsRegister(node), |
| g.UseRegister(m->right().node()), |
| g.UseRegister(mleft.left().node())); |
| return; |
| } |
| } |
| |
| // Select Logical(x, ~y) for Logical(x, Xor(y, -1)). |
| if ((m->right().IsWord32Xor() || m->right().IsWord64Xor()) && |
| right_can_cover) { |
| Matcher mright(m->right().node()); |
| if (mright.right().Is(-1)) { |
| // TODO(all): support shifted operand on right. |
| selector->Emit(inv_opcode, g.DefineAsRegister(node), |
| g.UseRegister(m->left().node()), |
| g.UseRegister(mright.left().node())); |
| return; |
| } |
| } |
| |
| VisitBinop<Matcher>(selector, node, opcode, imm_mode); |
| } |
| |
| static inline bool IsContiguousMask32(uint32_t value, int* mb, int* me) { |
| int mask_width = base::bits::CountPopulation(value); |
| int mask_msb = base::bits::CountLeadingZeros32(value); |
| int mask_lsb = base::bits::CountTrailingZeros32(value); |
| if ((mask_width == 0) || (mask_msb + mask_width + mask_lsb != 32)) |
| return false; |
| *mb = mask_lsb + mask_width - 1; |
| *me = mask_lsb; |
| return true; |
| } |
| |
| #if V8_TARGET_ARCH_PPC64 |
| static inline bool IsContiguousMask64(uint64_t value, int* mb, int* me) { |
| int mask_width = base::bits::CountPopulation(value); |
| int mask_msb = base::bits::CountLeadingZeros64(value); |
| int mask_lsb = base::bits::CountTrailingZeros64(value); |
| if ((mask_width == 0) || (mask_msb + mask_width + mask_lsb != 64)) |
| return false; |
| *mb = mask_lsb + mask_width - 1; |
| *me = mask_lsb; |
| return true; |
| } |
| #endif |
| |
| // TODO(mbrandy): Absorb rotate-right into rlwinm? |
| void InstructionSelector::VisitWord32And(Node* node) { |
| PPCOperandGenerator g(this); |
| Int32BinopMatcher m(node); |
| int mb = 0; |
| int me = 0; |
| if (m.right().HasResolvedValue() && |
| IsContiguousMask32(m.right().ResolvedValue(), &mb, &me)) { |
| int sh = 0; |
| Node* left = m.left().node(); |
| if ((m.left().IsWord32Shr() || m.left().IsWord32Shl()) && |
| CanCover(node, left)) { |
| // Try to absorb left/right shift into rlwinm |
| Int32BinopMatcher mleft(m.left().node()); |
| if (mleft.right().IsInRange(0, 31)) { |
| left = mleft.left().node(); |
| sh = mleft.right().ResolvedValue(); |
| if (m.left().IsWord32Shr()) { |
| // Adjust the mask such that it doesn't include any rotated bits. |
| if (mb > 31 - sh) mb = 31 - sh; |
| sh = (32 - sh) & 0x1F; |
| } else { |
| // Adjust the mask such that it doesn't include any rotated bits. |
| if (me < sh) me = sh; |
| } |
| } |
| } |
| if (mb >= me) { |
| Emit(kPPC_RotLeftAndMask32, g.DefineAsRegister(node), g.UseRegister(left), |
| g.TempImmediate(sh), g.TempImmediate(mb), g.TempImmediate(me)); |
| return; |
| } |
| } |
| VisitLogical<Int32BinopMatcher>( |
| this, node, &m, kPPC_And, CanCover(node, m.left().node()), |
| CanCover(node, m.right().node()), kInt16Imm_Unsigned); |
| } |
| |
| #if V8_TARGET_ARCH_PPC64 |
| // TODO(mbrandy): Absorb rotate-right into rldic? |
| void InstructionSelector::VisitWord64And(Node* node) { |
| PPCOperandGenerator g(this); |
| Int64BinopMatcher m(node); |
| int mb = 0; |
| int me = 0; |
| if (m.right().HasResolvedValue() && |
| IsContiguousMask64(m.right().ResolvedValue(), &mb, &me)) { |
| int sh = 0; |
| Node* left = m.left().node(); |
| if ((m.left().IsWord64Shr() || m.left().IsWord64Shl()) && |
| CanCover(node, left)) { |
| // Try to absorb left/right shift into rldic |
| Int64BinopMatcher mleft(m.left().node()); |
| if (mleft.right().IsInRange(0, 63)) { |
| left = mleft.left().node(); |
| sh = mleft.right().ResolvedValue(); |
| if (m.left().IsWord64Shr()) { |
| // Adjust the mask such that it doesn't include any rotated bits. |
| if (mb > 63 - sh) mb = 63 - sh; |
| sh = (64 - sh) & 0x3F; |
| } else { |
| // Adjust the mask such that it doesn't include any rotated bits. |
| if (me < sh) me = sh; |
| } |
| } |
| } |
| if (mb >= me) { |
| bool match = false; |
| ArchOpcode opcode; |
| int mask; |
| if (me == 0) { |
| match = true; |
| opcode = kPPC_RotLeftAndClearLeft64; |
| mask = mb; |
| } else if (mb == 63) { |
| match = true; |
| opcode = kPPC_RotLeftAndClearRight64; |
| mask = me; |
| } else if (sh && me <= sh && m.left().IsWord64Shl()) { |
| match = true; |
| opcode = kPPC_RotLeftAndClear64; |
| mask = mb; |
| } |
| if (match) { |
| Emit(opcode, g.DefineAsRegister(node), g.UseRegister(left), |
| g.TempImmediate(sh), g.TempImmediate(mask)); |
| return; |
| } |
| } |
| } |
| VisitLogical<Int64BinopMatcher>( |
| this, node, &m, kPPC_And, CanCover(node, m.left().node()), |
| CanCover(node, m.right().node()), kInt16Imm_Unsigned); |
| } |
| #endif |
| |
| void InstructionSelector::VisitWord32Or(Node* node) { |
| Int32BinopMatcher m(node); |
| VisitLogical<Int32BinopMatcher>( |
| this, node, &m, kPPC_Or, CanCover(node, m.left().node()), |
| CanCover(node, m.right().node()), kInt16Imm_Unsigned); |
| } |
| |
| #if V8_TARGET_ARCH_PPC64 |
| void InstructionSelector::VisitWord64Or(Node* node) { |
| Int64BinopMatcher m(node); |
| VisitLogical<Int64BinopMatcher>( |
| this, node, &m, kPPC_Or, CanCover(node, m.left().node()), |
| CanCover(node, m.right().node()), kInt16Imm_Unsigned); |
| } |
| #endif |
| |
| void InstructionSelector::VisitWord32Xor(Node* node) { |
| PPCOperandGenerator g(this); |
| Int32BinopMatcher m(node); |
| if (m.right().Is(-1)) { |
| Emit(kPPC_Not, g.DefineAsRegister(node), g.UseRegister(m.left().node())); |
| } else { |
| VisitBinop<Int32BinopMatcher>(this, node, kPPC_Xor, kInt16Imm_Unsigned); |
| } |
| } |
| |
| void InstructionSelector::VisitStackPointerGreaterThan( |
| Node* node, FlagsContinuation* cont) { |
| StackCheckKind kind = StackCheckKindOf(node->op()); |
| InstructionCode opcode = |
| kArchStackPointerGreaterThan | MiscField::encode(static_cast<int>(kind)); |
| |
| PPCOperandGenerator g(this); |
| |
| // No outputs. |
| InstructionOperand* const outputs = nullptr; |
| const int output_count = 0; |
| |
| // Applying an offset to this stack check requires a temp register. Offsets |
| // are only applied to the first stack check. If applying an offset, we must |
| // ensure the input and temp registers do not alias, thus kUniqueRegister. |
| InstructionOperand temps[] = {g.TempRegister()}; |
| const int temp_count = (kind == StackCheckKind::kJSFunctionEntry) ? 1 : 0; |
| const auto register_mode = (kind == StackCheckKind::kJSFunctionEntry) |
| ? OperandGenerator::kUniqueRegister |
| : OperandGenerator::kRegister; |
| |
| Node* const value = node->InputAt(0); |
| InstructionOperand inputs[] = {g.UseRegisterWithMode(value, register_mode)}; |
| static constexpr int input_count = arraysize(inputs); |
| |
| EmitWithContinuation(opcode, output_count, outputs, input_count, inputs, |
| temp_count, temps, cont); |
| } |
| |
| #if V8_TARGET_ARCH_PPC64 |
| void InstructionSelector::VisitWord64Xor(Node* node) { |
| PPCOperandGenerator g(this); |
| Int64BinopMatcher m(node); |
| if (m.right().Is(-1)) { |
| Emit(kPPC_Not, g.DefineAsRegister(node), g.UseRegister(m.left().node())); |
| } else { |
| VisitBinop<Int64BinopMatcher>(this, node, kPPC_Xor, kInt16Imm_Unsigned); |
| } |
| } |
| #endif |
| |
| void InstructionSelector::VisitWord32Shl(Node* node) { |
| PPCOperandGenerator g(this); |
| Int32BinopMatcher m(node); |
| if (m.left().IsWord32And() && m.right().IsInRange(0, 31)) { |
| // Try to absorb logical-and into rlwinm |
| Int32BinopMatcher mleft(m.left().node()); |
| int sh = m.right().ResolvedValue(); |
| int mb; |
| int me; |
| if (mleft.right().HasResolvedValue() && |
| IsContiguousMask32(mleft.right().ResolvedValue() << sh, &mb, &me)) { |
| // Adjust the mask such that it doesn't include any rotated bits. |
| if (me < sh) me = sh; |
| if (mb >= me) { |
| Emit(kPPC_RotLeftAndMask32, g.DefineAsRegister(node), |
| g.UseRegister(mleft.left().node()), g.TempImmediate(sh), |
| g.TempImmediate(mb), g.TempImmediate(me)); |
| return; |
| } |
| } |
| } |
| VisitRRO(this, kPPC_ShiftLeft32, node, kShift32Imm); |
| } |
| |
| #if V8_TARGET_ARCH_PPC64 |
| void InstructionSelector::VisitWord64Shl(Node* node) { |
| PPCOperandGenerator g(this); |
| Int64BinopMatcher m(node); |
| // TODO(mbrandy): eliminate left sign extension if right >= 32 |
| if (m.left().IsWord64And() && m.right().IsInRange(0, 63)) { |
| // Try to absorb logical-and into rldic |
| Int64BinopMatcher mleft(m.left().node()); |
| int sh = m.right().ResolvedValue(); |
| int mb; |
| int me; |
| if (mleft.right().HasResolvedValue() && |
| IsContiguousMask64(mleft.right().ResolvedValue() << sh, &mb, &me)) { |
| // Adjust the mask such that it doesn't include any rotated bits. |
| if (me < sh) me = sh; |
| if (mb >= me) { |
| bool match = false; |
| ArchOpcode opcode; |
| int mask; |
| if (me == 0) { |
| match = true; |
| opcode = kPPC_RotLeftAndClearLeft64; |
| mask = mb; |
| } else if (mb == 63) { |
| match = true; |
| opcode = kPPC_RotLeftAndClearRight64; |
| mask = me; |
| } else if (sh && me <= sh) { |
| match = true; |
| opcode = kPPC_RotLeftAndClear64; |
| mask = mb; |
| } |
| if (match) { |
| Emit(opcode, g.DefineAsRegister(node), |
| g.UseRegister(mleft.left().node()), g.TempImmediate(sh), |
| g.TempImmediate(mask)); |
| return; |
| } |
| } |
| } |
| } |
| VisitRRO(this, kPPC_ShiftLeft64, node, kShift64Imm); |
| } |
| #endif |
| |
| void InstructionSelector::VisitWord32Shr(Node* node) { |
| PPCOperandGenerator g(this); |
| Int32BinopMatcher m(node); |
| if (m.left().IsWord32And() && m.right().IsInRange(0, 31)) { |
| // Try to absorb logical-and into rlwinm |
| Int32BinopMatcher mleft(m.left().node()); |
| int sh = m.right().ResolvedValue(); |
| int mb; |
| int me; |
| if (mleft.right().HasResolvedValue() && |
| IsContiguousMask32((uint32_t)(mleft.right().ResolvedValue()) >> sh, &mb, |
| &me)) { |
| // Adjust the mask such that it doesn't include any rotated bits. |
| if (mb > 31 - sh) mb = 31 - sh; |
| sh = (32 - sh) & 0x1F; |
| if (mb >= me) { |
| Emit(kPPC_RotLeftAndMask32, g.DefineAsRegister(node), |
| g.UseRegister(mleft.left().node()), g.TempImmediate(sh), |
| g.TempImmediate(mb), g.TempImmediate(me)); |
| return; |
| } |
| } |
| } |
| VisitRRO(this, kPPC_ShiftRight32, node, kShift32Imm); |
| } |
| |
| #if V8_TARGET_ARCH_PPC64 |
| void InstructionSelector::VisitWord64Shr(Node* node) { |
| PPCOperandGenerator g(this); |
| Int64BinopMatcher m(node); |
| if (m.left().IsWord64And() && m.right().IsInRange(0, 63)) { |
| // Try to absorb logical-and into rldic |
| Int64BinopMatcher mleft(m.left().node()); |
| int sh = m.right().ResolvedValue(); |
| int mb; |
| int me; |
| if (mleft.right().HasResolvedValue() && |
| IsContiguousMask64((uint64_t)(mleft.right().ResolvedValue()) >> sh, &mb, |
| &me)) { |
| // Adjust the mask such that it doesn't include any rotated bits. |
| if (mb > 63 - sh) mb = 63 - sh; |
| sh = (64 - sh) & 0x3F; |
| if (mb >= me) { |
| bool match = false; |
| ArchOpcode opcode; |
| int mask; |
| if (me == 0) { |
| match = true; |
| opcode = kPPC_RotLeftAndClearLeft64; |
| mask = mb; |
| } else if (mb == 63) { |
| match = true; |
| opcode = kPPC_RotLeftAndClearRight64; |
| mask = me; |
| } |
| if (match) { |
| Emit(opcode, g.DefineAsRegister(node), |
| g.UseRegister(mleft.left().node()), g.TempImmediate(sh), |
| g.TempImmediate(mask)); |
| return; |
| } |
| } |
| } |
| } |
| VisitRRO(this, kPPC_ShiftRight64, node, kShift64Imm); |
| } |
| #endif |
| |
| void InstructionSelector::VisitWord32Sar(Node* node) { |
| PPCOperandGenerator g(this); |
| Int32BinopMatcher m(node); |
| // Replace with sign extension for (x << K) >> K where K is 16 or 24. |
| if (CanCover(node, m.left().node()) && m.left().IsWord32Shl()) { |
| Int32BinopMatcher mleft(m.left().node()); |
| if (mleft.right().Is(16) && m.right().Is(16)) { |
| Emit(kPPC_ExtendSignWord16, g.DefineAsRegister(node), |
| g.UseRegister(mleft.left().node())); |
| return; |
| } else if (mleft.right().Is(24) && m.right().Is(24)) { |
| Emit(kPPC_ExtendSignWord8, g.DefineAsRegister(node), |
| g.UseRegister(mleft.left().node())); |
| return; |
| } |
| } |
| VisitRRO(this, kPPC_ShiftRightAlg32, node, kShift32Imm); |
| } |
| |
| #if !V8_TARGET_ARCH_PPC64 |
| void VisitPairBinop(InstructionSelector* selector, InstructionCode opcode, |
| InstructionCode opcode2, Node* node) { |
| PPCOperandGenerator g(selector); |
| |
| Node* projection1 = NodeProperties::FindProjection(node, 1); |
| if (projection1) { |
| // We use UseUniqueRegister here to avoid register sharing with the output |
| // registers. |
| InstructionOperand inputs[] = { |
| g.UseRegister(node->InputAt(0)), g.UseUniqueRegister(node->InputAt(1)), |
| g.UseRegister(node->InputAt(2)), g.UseUniqueRegister(node->InputAt(3))}; |
| |
| InstructionOperand outputs[] = { |
| g.DefineAsRegister(node), |
| g.DefineAsRegister(NodeProperties::FindProjection(node, 1))}; |
| |
| selector->Emit(opcode, 2, outputs, 4, inputs); |
| } else { |
| // The high word of the result is not used, so we emit the standard 32 bit |
| // instruction. |
| selector->Emit(opcode2, g.DefineSameAsFirst(node), |
| g.UseRegister(node->InputAt(0)), |
| g.UseRegister(node->InputAt(2))); |
| } |
| } |
| |
| void InstructionSelector::VisitInt32PairAdd(Node* node) { |
| VisitPairBinop(this, kPPC_AddPair, kPPC_Add32, node); |
| } |
| |
| void InstructionSelector::VisitInt32PairSub(Node* node) { |
| VisitPairBinop(this, kPPC_SubPair, kPPC_Sub, node); |
| } |
| |
| void InstructionSelector::VisitInt32PairMul(Node* node) { |
| PPCOperandGenerator g(this); |
| Node* projection1 = NodeProperties::FindProjection(node, 1); |
| if (projection1) { |
| InstructionOperand inputs[] = {g.UseUniqueRegister(node->InputAt(0)), |
| g.UseUniqueRegister(node->InputAt(1)), |
| g.UseUniqueRegister(node->InputAt(2)), |
| g.UseUniqueRegister(node->InputAt(3))}; |
| |
| InstructionOperand outputs[] = { |
| g.DefineAsRegister(node), |
| g.DefineAsRegister(NodeProperties::FindProjection(node, 1))}; |
| |
| InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()}; |
| |
| Emit(kPPC_MulPair, 2, outputs, 4, inputs, 2, temps); |
| } else { |
| // The high word of the result is not used, so we emit the standard 32 bit |
| // instruction. |
| Emit(kPPC_Mul32, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)), |
| g.UseRegister(node->InputAt(2))); |
| } |
| } |
| |
| namespace { |
| // Shared routine for multiple shift operations. |
| void VisitPairShift(InstructionSelector* selector, InstructionCode opcode, |
| Node* node) { |
| PPCOperandGenerator g(selector); |
| // We use g.UseUniqueRegister here to guarantee that there is |
| // no register aliasing of input registers with output registers. |
| Int32Matcher m(node->InputAt(2)); |
| InstructionOperand shift_operand; |
| if (m.HasResolvedValue()) { |
| shift_operand = g.UseImmediate(m.node()); |
| } else { |
| shift_operand = g.UseUniqueRegister(m.node()); |
| } |
| |
| InstructionOperand inputs[] = {g.UseUniqueRegister(node->InputAt(0)), |
| g.UseUniqueRegister(node->InputAt(1)), |
| shift_operand}; |
| |
| Node* projection1 = NodeProperties::FindProjection(node, 1); |
| |
| InstructionOperand outputs[2]; |
| InstructionOperand temps[1]; |
| int32_t output_count = 0; |
| int32_t temp_count = 0; |
| |
| outputs[output_count++] = g.DefineAsRegister(node); |
| if (projection1) { |
| outputs[output_count++] = g.DefineAsRegister(projection1); |
| } else { |
| temps[temp_count++] = g.TempRegister(); |
| } |
| |
| selector->Emit(opcode, output_count, outputs, 3, inputs, temp_count, temps); |
| } |
| } // namespace |
| |
| void InstructionSelector::VisitWord32PairShl(Node* node) { |
| VisitPairShift(this, kPPC_ShiftLeftPair, node); |
| } |
| |
| void InstructionSelector::VisitWord32PairShr(Node* node) { |
| VisitPairShift(this, kPPC_ShiftRightPair, node); |
| } |
| |
| void InstructionSelector::VisitWord32PairSar(Node* node) { |
| VisitPairShift(this, kPPC_ShiftRightAlgPair, node); |
| } |
| #endif |
| |
| #if V8_TARGET_ARCH_PPC64 |
| void InstructionSelector::VisitWord64Sar(Node* node) { |
| PPCOperandGenerator g(this); |
| Int64BinopMatcher m(node); |
| if (CanCover(m.node(), m.left().node()) && m.left().IsLoad() && |
| m.right().Is(32)) { |
| // Just load and sign-extend the interesting 4 bytes instead. This happens, |
| // for example, when we're loading and untagging SMIs. |
| BaseWithIndexAndDisplacement64Matcher mleft(m.left().node(), |
| AddressOption::kAllowAll); |
| if (mleft.matches() && mleft.index() == nullptr) { |
| int64_t offset = 0; |
| Node* displacement = mleft.displacement(); |
| if (displacement != nullptr) { |
| Int64Matcher mdisplacement(displacement); |
| DCHECK(mdisplacement.HasResolvedValue()); |
| offset = mdisplacement.ResolvedValue(); |
| } |
| offset = SmiWordOffset(offset); |
| if (g.CanBeImmediate(offset, kInt16Imm_4ByteAligned)) { |
| Emit(kPPC_LoadWordS32 | AddressingModeField::encode(kMode_MRI), |
| g.DefineAsRegister(node), g.UseRegister(mleft.base()), |
| g.TempImmediate(offset), g.UseImmediate(0)); |
| return; |
| } |
| } |
| } |
| VisitRRO(this, kPPC_ShiftRightAlg64, node, kShift64Imm); |
| } |
| #endif |
| |
| void InstructionSelector::VisitWord32Rol(Node* node) { UNREACHABLE(); } |
| |
| void InstructionSelector::VisitWord64Rol(Node* node) { UNREACHABLE(); } |
| |
| // TODO(mbrandy): Absorb logical-and into rlwinm? |
| void InstructionSelector::VisitWord32Ror(Node* node) { |
| VisitRRO(this, kPPC_RotRight32, node, kShift32Imm); |
| } |
| |
| #if V8_TARGET_ARCH_PPC64 |
| // TODO(mbrandy): Absorb logical-and into rldic? |
| void InstructionSelector::VisitWord64Ror(Node* node) { |
| VisitRRO(this, kPPC_RotRight64, node, kShift64Imm); |
| } |
| #endif |
| |
| void InstructionSelector::VisitWord32Clz(Node* node) { |
| PPCOperandGenerator g(this); |
| Emit(kPPC_Cntlz32, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); |
| } |
| |
| #if V8_TARGET_ARCH_PPC64 |
| void InstructionSelector::VisitWord64Clz(Node* node) { |
| PPCOperandGenerator g(this); |
| Emit(kPPC_Cntlz64, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); |
| } |
| #endif |
| |
| void InstructionSelector::VisitWord32Popcnt(Node* node) { |
| PPCOperandGenerator g(this); |
| Emit(kPPC_Popcnt32, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0))); |
| } |
| |
| #if V8_TARGET_ARCH_PPC64 |
| void InstructionSelector::VisitWord64Popcnt(Node* node) { |
| PPCOperandGenerator g(this); |
| Emit(kPPC_Popcnt64, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0))); |
| } |
| #endif |
| |
| void InstructionSelector::VisitWord32Ctz(Node* node) { UNREACHABLE(); } |
| |
| #if V8_TARGET_ARCH_PPC64 |
| void InstructionSelector::VisitWord64Ctz(Node* node) { UNREACHABLE(); } |
| #endif |
| |
| void InstructionSelector::VisitWord32ReverseBits(Node* node) { UNREACHABLE(); } |
| |
| #if V8_TARGET_ARCH_PPC64 |
| void InstructionSelector::VisitWord64ReverseBits(Node* node) { UNREACHABLE(); } |
| #endif |
| |
| void InstructionSelector::VisitWord64ReverseBytes(Node* node) { |
| PPCOperandGenerator g(this); |
| InstructionOperand temp[] = {g.TempRegister()}; |
| Emit(kPPC_ByteRev64, g.DefineAsRegister(node), |
| g.UseUniqueRegister(node->InputAt(0)), 1, temp); |
| } |
| |
| void InstructionSelector::VisitWord32ReverseBytes(Node* node) { |
| PPCOperandGenerator g(this); |
| Emit(kPPC_ByteRev32, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0))); |
| } |
| |
| void InstructionSelector::VisitSimd128ReverseBytes(Node* node) { |
| // TODO(miladfar): Implement the ppc selector for reversing SIMD bytes. |
| // Check if the input node is a Load and do a Load Reverse at once. |
| UNIMPLEMENTED(); |
| } |
| |
| void InstructionSelector::VisitInt32Add(Node* node) { |
| VisitBinop<Int32BinopMatcher>(this, node, kPPC_Add32, kInt16Imm); |
| } |
| |
| #if V8_TARGET_ARCH_PPC64 |
| void InstructionSelector::VisitInt64Add(Node* node) { |
| VisitBinop<Int64BinopMatcher>(this, node, kPPC_Add64, kInt16Imm); |
| } |
| #endif |
| |
| void InstructionSelector::VisitInt32Sub(Node* node) { |
| PPCOperandGenerator g(this); |
| Int32BinopMatcher m(node); |
| if (m.left().Is(0)) { |
| Emit(kPPC_Neg, g.DefineAsRegister(node), g.UseRegister(m.right().node())); |
| } else { |
| VisitBinop<Int32BinopMatcher>(this, node, kPPC_Sub, kInt16Imm_Negate); |
| } |
| } |
| |
| #if V8_TARGET_ARCH_PPC64 |
| void InstructionSelector::VisitInt64Sub(Node* node) { |
| PPCOperandGenerator g(this); |
| Int64BinopMatcher m(node); |
| if (m.left().Is(0)) { |
| Emit(kPPC_Neg, g.DefineAsRegister(node), g.UseRegister(m.right().node())); |
| } else { |
| VisitBinop<Int64BinopMatcher>(this, node, kPPC_Sub, kInt16Imm_Negate); |
| } |
| } |
| #endif |
| |
| namespace { |
| |
| void VisitCompare(InstructionSelector* selector, InstructionCode opcode, |
| InstructionOperand left, InstructionOperand right, |
| FlagsContinuation* cont); |
| void EmitInt32MulWithOverflow(InstructionSelector* selector, Node* node, |
| FlagsContinuation* cont) { |
| PPCOperandGenerator g(selector); |
| Int32BinopMatcher m(node); |
| InstructionOperand result_operand = g.DefineAsRegister(node); |
| InstructionOperand high32_operand = g.TempRegister(); |
| InstructionOperand temp_operand = g.TempRegister(); |
| { |
| InstructionOperand outputs[] = {result_operand, high32_operand}; |
| InstructionOperand inputs[] = {g.UseRegister(m.left().node()), |
| g.UseRegister(m.right().node())}; |
| selector->Emit(kPPC_Mul32WithHigh32, 2, outputs, 2, inputs); |
| } |
| { |
| InstructionOperand shift_31 = g.UseImmediate(31); |
| InstructionOperand outputs[] = {temp_operand}; |
| InstructionOperand inputs[] = {result_operand, shift_31}; |
| selector->Emit(kPPC_ShiftRightAlg32, 1, outputs, 2, inputs); |
| } |
| |
| VisitCompare(selector, kPPC_Cmp32, high32_operand, temp_operand, cont); |
| } |
| |
| } // namespace |
| |
| void InstructionSelector::VisitInt32Mul(Node* node) { |
| VisitRRR(this, kPPC_Mul32, node); |
| } |
| |
| #if V8_TARGET_ARCH_PPC64 |
| void InstructionSelector::VisitInt64Mul(Node* node) { |
| VisitRRR(this, kPPC_Mul64, node); |
| } |
| #endif |
| |
| void InstructionSelector::VisitInt32MulHigh(Node* node) { |
| PPCOperandGenerator g(this); |
| Emit(kPPC_MulHigh32, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); |
| } |
| |
| void InstructionSelector::VisitUint32MulHigh(Node* node) { |
| PPCOperandGenerator g(this); |
| Emit(kPPC_MulHighU32, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); |
| } |
| |
| void InstructionSelector::VisitInt32Div(Node* node) { |
| VisitRRR(this, kPPC_Div32, node); |
| } |
| |
| #if V8_TARGET_ARCH_PPC64 |
| void InstructionSelector::VisitInt64Div(Node* node) { |
| VisitRRR(this, kPPC_Div64, node); |
| } |
| #endif |
| |
| void InstructionSelector::VisitUint32Div(Node* node) { |
| VisitRRR(this, kPPC_DivU32, node); |
| } |
| |
| #if V8_TARGET_ARCH_PPC64 |
| void InstructionSelector::VisitUint64Div(Node* node) { |
| VisitRRR(this, kPPC_DivU64, node); |
| } |
| #endif |
| |
| void InstructionSelector::VisitInt32Mod(Node* node) { |
| VisitRRR(this, kPPC_Mod32, node); |
| } |
| |
| #if V8_TARGET_ARCH_PPC64 |
| void InstructionSelector::VisitInt64Mod(Node* node) { |
| VisitRRR(this, kPPC_Mod64, node); |
| } |
| #endif |
| |
| void InstructionSelector::VisitUint32Mod(Node* node) { |
| VisitRRR(this, kPPC_ModU32, node); |
| } |
| |
| #if V8_TARGET_ARCH_PPC64 |
| void InstructionSelector::VisitUint64Mod(Node* node) { |
| VisitRRR(this, kPPC_ModU64, node); |
| } |
| #endif |
| |
| void InstructionSelector::VisitChangeFloat32ToFloat64(Node* node) { |
| VisitRR(this, kPPC_Float32ToDouble, node); |
| } |
| |
| void InstructionSelector::VisitRoundInt32ToFloat32(Node* node) { |
| VisitRR(this, kPPC_Int32ToFloat32, node); |
| } |
| |
| void InstructionSelector::VisitRoundUint32ToFloat32(Node* node) { |
| VisitRR(this, kPPC_Uint32ToFloat32, node); |
| } |
| |
| void InstructionSelector::VisitChangeInt32ToFloat64(Node* node) { |
| VisitRR(this, kPPC_Int32ToDouble, node); |
| } |
| |
| void InstructionSelector::VisitChangeUint32ToFloat64(Node* node) { |
| VisitRR(this, kPPC_Uint32ToDouble, node); |
| } |
| |
| void InstructionSelector::VisitChangeFloat64ToInt32(Node* node) { |
| VisitRR(this, kPPC_DoubleToInt32, node); |
| } |
| |
| void InstructionSelector::VisitChangeFloat64ToUint32(Node* node) { |
| VisitRR(this, kPPC_DoubleToUint32, node); |
| } |
| |
| void InstructionSelector::VisitTruncateFloat64ToUint32(Node* node) { |
| VisitRR(this, kPPC_DoubleToUint32, node); |
| } |
| |
| void InstructionSelector::VisitSignExtendWord8ToInt32(Node* node) { |
| // TODO(mbrandy): inspect input to see if nop is appropriate. |
| VisitRR(this, kPPC_ExtendSignWord8, node); |
| } |
| |
| void InstructionSelector::VisitSignExtendWord16ToInt32(Node* node) { |
| // TODO(mbrandy): inspect input to see if nop is appropriate. |
| VisitRR(this, kPPC_ExtendSignWord16, node); |
| } |
| |
| #if V8_TARGET_ARCH_PPC64 |
| void InstructionSelector::VisitTryTruncateFloat32ToInt64(Node* node) { |
| VisitTryTruncateDouble(this, kPPC_DoubleToInt64, node); |
| } |
| |
| void InstructionSelector::VisitTryTruncateFloat64ToInt64(Node* node) { |
| VisitTryTruncateDouble(this, kPPC_DoubleToInt64, node); |
| } |
| |
| void InstructionSelector::VisitTruncateFloat64ToInt64(Node* node) { |
| VisitRR(this, kPPC_DoubleToInt64, node); |
| } |
| |
| void InstructionSelector::VisitTryTruncateFloat32ToUint64(Node* node) { |
| VisitTryTruncateDouble(this, kPPC_DoubleToUint64, node); |
| } |
| |
| void InstructionSelector::VisitTryTruncateFloat64ToUint64(Node* node) { |
| VisitTryTruncateDouble(this, kPPC_DoubleToUint64, node); |
| } |
| |
| void InstructionSelector::VisitBitcastWord32ToWord64(Node* node) { |
| DCHECK(SmiValuesAre31Bits()); |
| DCHECK(COMPRESS_POINTERS_BOOL); |
| EmitIdentity(node); |
| } |
| |
| void InstructionSelector::VisitChangeInt32ToInt64(Node* node) { |
| // TODO(mbrandy): inspect input to see if nop is appropriate. |
| VisitRR(this, kPPC_ExtendSignWord32, node); |
| } |
| |
| void InstructionSelector::VisitSignExtendWord8ToInt64(Node* node) { |
| // TODO(mbrandy): inspect input to see if nop is appropriate. |
| VisitRR(this, kPPC_ExtendSignWord8, node); |
| } |
| |
| void InstructionSelector::VisitSignExtendWord16ToInt64(Node* node) { |
| // TODO(mbrandy): inspect input to see if nop is appropriate. |
| VisitRR(this, kPPC_ExtendSignWord16, node); |
| } |
| |
| void InstructionSelector::VisitSignExtendWord32ToInt64(Node* node) { |
| // TODO(mbrandy): inspect input to see if nop is appropriate. |
| VisitRR(this, kPPC_ExtendSignWord32, node); |
| } |
| |
| bool InstructionSelector::ZeroExtendsWord32ToWord64NoPhis(Node* node) { |
| UNIMPLEMENTED(); |
| } |
| |
| void InstructionSelector::VisitChangeUint32ToUint64(Node* node) { |
| // TODO(mbrandy): inspect input to see if nop is appropriate. |
| VisitRR(this, kPPC_Uint32ToUint64, node); |
| } |
| |
| void InstructionSelector::VisitChangeFloat64ToUint64(Node* node) { |
| VisitRR(this, kPPC_DoubleToUint64, node); |
| } |
| |
| void InstructionSelector::VisitChangeFloat64ToInt64(Node* node) { |
| VisitRR(this, kPPC_DoubleToInt64, node); |
| } |
| #endif |
| |
| void InstructionSelector::VisitTruncateFloat64ToFloat32(Node* node) { |
| VisitRR(this, kPPC_DoubleToFloat32, node); |
| } |
| |
| void InstructionSelector::VisitTruncateFloat64ToWord32(Node* node) { |
| VisitRR(this, kArchTruncateDoubleToI, node); |
| } |
| |
| void InstructionSelector::VisitRoundFloat64ToInt32(Node* node) { |
| VisitRR(this, kPPC_DoubleToInt32, node); |
| } |
| |
| void InstructionSelector::VisitTruncateFloat32ToInt32(Node* node) { |
| PPCOperandGenerator g(this); |
| |
| InstructionCode opcode = kPPC_Float32ToInt32; |
| TruncateKind kind = OpParameter<TruncateKind>(node->op()); |
| if (kind == TruncateKind::kSetOverflowToMin) { |
| opcode |= MiscField::encode(true); |
| } |
| |
| Emit(opcode, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); |
| } |
| |
| void InstructionSelector::VisitTruncateFloat32ToUint32(Node* node) { |
| PPCOperandGenerator g(this); |
| |
| InstructionCode opcode = kPPC_Float32ToUint32; |
| TruncateKind kind = OpParameter<TruncateKind>(node->op()); |
| if (kind == TruncateKind::kSetOverflowToMin) { |
| opcode |= MiscField::encode(true); |
| } |
| |
| Emit(opcode, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); |
| } |
| |
| #if V8_TARGET_ARCH_PPC64 |
| void InstructionSelector::VisitTruncateInt64ToInt32(Node* node) { |
| // TODO(mbrandy): inspect input to see if nop is appropriate. |
| VisitRR(this, kPPC_Int64ToInt32, node); |
| } |
| |
| void InstructionSelector::VisitRoundInt64ToFloat32(Node* node) { |
| VisitRR(this, kPPC_Int64ToFloat32, node); |
| } |
| |
| void InstructionSelector::VisitRoundInt64ToFloat64(Node* node) { |
| VisitRR(this, kPPC_Int64ToDouble, node); |
| } |
| |
| void InstructionSelector::VisitChangeInt64ToFloat64(Node* node) { |
| VisitRR(this, kPPC_Int64ToDouble, node); |
| } |
| |
| void InstructionSelector::VisitRoundUint64ToFloat32(Node* node) { |
| VisitRR(this, kPPC_Uint64ToFloat32, node); |
| } |
| |
| void InstructionSelector::VisitRoundUint64ToFloat64(Node* node) { |
| VisitRR(this, kPPC_Uint64ToDouble, node); |
| } |
| #endif |
| |
| void InstructionSelector::VisitBitcastFloat32ToInt32(Node* node) { |
| VisitRR(this, kPPC_BitcastFloat32ToInt32, node); |
| } |
| |
| #if V8_TARGET_ARCH_PPC64 |
| void InstructionSelector::VisitBitcastFloat64ToInt64(Node* node) { |
| VisitRR(this, kPPC_BitcastDoubleToInt64, node); |
| } |
| #endif |
| |
| void InstructionSelector::VisitBitcastInt32ToFloat32(Node* node) { |
| VisitRR(this, kPPC_BitcastInt32ToFloat32, node); |
| } |
| |
| #if V8_TARGET_ARCH_PPC64 |
| void InstructionSelector::VisitBitcastInt64ToFloat64(Node* node) { |
| VisitRR(this, kPPC_BitcastInt64ToDouble, node); |
| } |
| #endif |
| |
| void InstructionSelector::VisitFloat32Add(Node* node) { |
| VisitRRR(this, kPPC_AddDouble | MiscField::encode(1), node); |
| } |
| |
| void InstructionSelector::VisitFloat64Add(Node* node) { |
| // TODO(mbrandy): detect multiply-add |
| VisitRRR(this, kPPC_AddDouble, node); |
| } |
| |
| void InstructionSelector::VisitFloat32Sub(Node* node) { |
| VisitRRR(this, kPPC_SubDouble | MiscField::encode(1), node); |
| } |
| |
| void InstructionSelector::VisitFloat64Sub(Node* node) { |
| // TODO(mbrandy): detect multiply-subtract |
| VisitRRR(this, kPPC_SubDouble, node); |
| } |
| |
| void InstructionSelector::VisitFloat32Mul(Node* node) { |
| VisitRRR(this, kPPC_MulDouble | MiscField::encode(1), node); |
| } |
| |
| void InstructionSelector::VisitFloat64Mul(Node* node) { |
| // TODO(mbrandy): detect negate |
| VisitRRR(this, kPPC_MulDouble, node); |
| } |
| |
| void InstructionSelector::VisitFloat32Div(Node* node) { |
| VisitRRR(this, kPPC_DivDouble | MiscField::encode(1), node); |
| } |
| |
| void InstructionSelector::VisitFloat64Div(Node* node) { |
| VisitRRR(this, kPPC_DivDouble, node); |
| } |
| |
| void InstructionSelector::VisitFloat64Mod(Node* node) { |
| PPCOperandGenerator g(this); |
| Emit(kPPC_ModDouble, g.DefineAsFixed(node, d1), |
| g.UseFixed(node->InputAt(0), d1), g.UseFixed(node->InputAt(1), d2)) |
| ->MarkAsCall(); |
| } |
| |
| void InstructionSelector::VisitFloat32Max(Node* node) { |
| VisitRRR(this, kPPC_MaxDouble | MiscField::encode(1), node); |
| } |
| |
| void InstructionSelector::VisitFloat64Max(Node* node) { |
| VisitRRR(this, kPPC_MaxDouble, node); |
| } |
| |
| void InstructionSelector::VisitFloat64SilenceNaN(Node* node) { |
| VisitRR(this, kPPC_Float64SilenceNaN, node); |
| } |
| |
| void InstructionSelector::VisitFloat32Min(Node* node) { |
| VisitRRR(this, kPPC_MinDouble | MiscField::encode(1), node); |
| } |
| |
| void InstructionSelector::VisitFloat64Min(Node* node) { |
| VisitRRR(this, kPPC_MinDouble, node); |
| } |
| |
| void InstructionSelector::VisitFloat32Abs(Node* node) { |
| VisitRR(this, kPPC_AbsDouble | MiscField::encode(1), node); |
| } |
| |
| void InstructionSelector::VisitFloat64Abs(Node* node) { |
| VisitRR(this, kPPC_AbsDouble, node); |
| } |
| |
| void InstructionSelector::VisitFloat32Sqrt(Node* node) { |
| VisitRR(this, kPPC_SqrtDouble | MiscField::encode(1), node); |
| } |
| |
| void InstructionSelector::VisitFloat64Ieee754Unop(Node* node, |
| InstructionCode opcode) { |
| PPCOperandGenerator g(this); |
| Emit(opcode, g.DefineAsFixed(node, d1), g.UseFixed(node->InputAt(0), d1)) |
| ->MarkAsCall(); |
| } |
| |
| void InstructionSelector::VisitFloat64Ieee754Binop(Node* node, |
| InstructionCode opcode) { |
| PPCOperandGenerator g(this); |
| Emit(opcode, g.DefineAsFixed(node, d1), g.UseFixed(node->InputAt(0), d1), |
| g.UseFixed(node->InputAt(1), d2)) |
| ->MarkAsCall(); |
| } |
| |
| void InstructionSelector::VisitFloat64Sqrt(Node* node) { |
| VisitRR(this, kPPC_SqrtDouble, node); |
| } |
| |
| void InstructionSelector::VisitFloat32RoundDown(Node* node) { |
| VisitRR(this, kPPC_FloorDouble | MiscField::encode(1), node); |
| } |
| |
| void InstructionSelector::VisitFloat64RoundDown(Node* node) { |
| VisitRR(this, kPPC_FloorDouble, node); |
| } |
| |
| void InstructionSelector::VisitFloat32RoundUp(Node* node) { |
| VisitRR(this, kPPC_CeilDouble | MiscField::encode(1), node); |
| } |
| |
| void InstructionSelector::VisitFloat64RoundUp(Node* node) { |
| VisitRR(this, kPPC_CeilDouble, node); |
| } |
| |
| void InstructionSelector::VisitFloat32RoundTruncate(Node* node) { |
| VisitRR(this, kPPC_TruncateDouble | MiscField::encode(1), node); |
| } |
| |
| void InstructionSelector::VisitFloat64RoundTruncate(Node* node) { |
| VisitRR(this, kPPC_TruncateDouble, node); |
| } |
| |
| void InstructionSelector::VisitFloat64RoundTiesAway(Node* node) { |
| VisitRR(this, kPPC_RoundDouble, node); |
| } |
| |
| void InstructionSelector::VisitFloat32RoundTiesEven(Node* node) { |
| UNREACHABLE(); |
| } |
| |
| void InstructionSelector::VisitFloat64RoundTiesEven(Node* node) { |
| UNREACHABLE(); |
| } |
| |
| void InstructionSelector::VisitFloat32Neg(Node* node) { |
| VisitRR(this, kPPC_NegDouble, node); |
| } |
| |
| void InstructionSelector::VisitFloat64Neg(Node* node) { |
| VisitRR(this, kPPC_NegDouble, node); |
| } |
| |
| void InstructionSelector::VisitInt32AddWithOverflow(Node* node) { |
| if (Node* ovf = NodeProperties::FindProjection(node, 1)) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); |
| return VisitBinop<Int32BinopMatcher>(this, node, kPPC_AddWithOverflow32, |
| kInt16Imm, &cont); |
| } |
| FlagsContinuation cont; |
| VisitBinop<Int32BinopMatcher>(this, node, kPPC_AddWithOverflow32, kInt16Imm, |
| &cont); |
| } |
| |
| void InstructionSelector::VisitInt32SubWithOverflow(Node* node) { |
| if (Node* ovf = NodeProperties::FindProjection(node, 1)) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); |
| return VisitBinop<Int32BinopMatcher>(this, node, kPPC_SubWithOverflow32, |
| kInt16Imm_Negate, &cont); |
| } |
| FlagsContinuation cont; |
| VisitBinop<Int32BinopMatcher>(this, node, kPPC_SubWithOverflow32, |
| kInt16Imm_Negate, &cont); |
| } |
| |
| #if V8_TARGET_ARCH_PPC64 |
| void InstructionSelector::VisitInt64AddWithOverflow(Node* node) { |
| if (Node* ovf = NodeProperties::FindProjection(node, 1)) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); |
| return VisitBinop<Int64BinopMatcher>(this, node, kPPC_Add64, kInt16Imm, |
| &cont); |
| } |
| FlagsContinuation cont; |
| VisitBinop<Int64BinopMatcher>(this, node, kPPC_Add64, kInt16Imm, &cont); |
| } |
| |
| void InstructionSelector::VisitInt64SubWithOverflow(Node* node) { |
| if (Node* ovf = NodeProperties::FindProjection(node, 1)) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); |
| return VisitBinop<Int64BinopMatcher>(this, node, kPPC_Sub, kInt16Imm_Negate, |
| &cont); |
| } |
| FlagsContinuation cont; |
| VisitBinop<Int64BinopMatcher>(this, node, kPPC_Sub, kInt16Imm_Negate, &cont); |
| } |
| #endif |
| |
| static bool CompareLogical(FlagsContinuation* cont) { |
| switch (cont->condition()) { |
| case kUnsignedLessThan: |
| case kUnsignedGreaterThanOrEqual: |
| case kUnsignedLessThanOrEqual: |
| case kUnsignedGreaterThan: |
| return true; |
| default: |
| return false; |
| } |
| UNREACHABLE(); |
| } |
| |
| namespace { |
| |
| // Shared routine for multiple compare operations. |
| void VisitCompare(InstructionSelector* selector, InstructionCode opcode, |
| InstructionOperand left, InstructionOperand right, |
| FlagsContinuation* cont) { |
| selector->EmitWithContinuation(opcode, left, right, cont); |
| } |
| |
| // Shared routine for multiple word compare operations. |
| void VisitWordCompare(InstructionSelector* selector, Node* node, |
| InstructionCode opcode, FlagsContinuation* cont, |
| bool commutative, ImmediateMode immediate_mode) { |
| PPCOperandGenerator g(selector); |
| Node* left = node->InputAt(0); |
| Node* right = node->InputAt(1); |
| |
| // Match immediates on left or right side of comparison. |
| if (g.CanBeImmediate(right, immediate_mode)) { |
| VisitCompare(selector, opcode, g.UseRegister(left), g.UseImmediate(right), |
| cont); |
| } else if (g.CanBeImmediate(left, immediate_mode)) { |
| if (!commutative) cont->Commute(); |
| VisitCompare(selector, opcode, g.UseRegister(right), g.UseImmediate(left), |
| cont); |
| } else { |
| VisitCompare(selector, opcode, g.UseRegister(left), g.UseRegister(right), |
| cont); |
| } |
| } |
| |
| void VisitWord32Compare(InstructionSelector* selector, Node* node, |
| FlagsContinuation* cont) { |
| ImmediateMode mode = (CompareLogical(cont) ? kInt16Imm_Unsigned : kInt16Imm); |
| VisitWordCompare(selector, node, kPPC_Cmp32, cont, false, mode); |
| } |
| |
| #if V8_TARGET_ARCH_PPC64 |
| void VisitWord64Compare(InstructionSelector* selector, Node* node, |
| FlagsContinuation* cont) { |
| ImmediateMode mode = (CompareLogical(cont) ? kInt16Imm_Unsigned : kInt16Imm); |
| VisitWordCompare(selector, node, kPPC_Cmp64, cont, false, mode); |
| } |
| #endif |
| |
| // Shared routine for multiple float32 compare operations. |
| void VisitFloat32Compare(InstructionSelector* selector, Node* node, |
| FlagsContinuation* cont) { |
| PPCOperandGenerator g(selector); |
| Node* left = node->InputAt(0); |
| Node* right = node->InputAt(1); |
| VisitCompare(selector, kPPC_CmpDouble, g.UseRegister(left), |
| g.UseRegister(right), cont); |
| } |
| |
| // Shared routine for multiple float64 compare operations. |
| void VisitFloat64Compare(InstructionSelector* selector, Node* node, |
| FlagsContinuation* cont) { |
| PPCOperandGenerator g(selector); |
| Node* left = node->InputAt(0); |
| Node* right = node->InputAt(1); |
| VisitCompare(selector, kPPC_CmpDouble, g.UseRegister(left), |
| g.UseRegister(right), cont); |
| } |
| |
| } // namespace |
| |
| // Shared routine for word comparisons against zero. |
| void InstructionSelector::VisitWordCompareZero(Node* user, Node* value, |
| FlagsContinuation* cont) { |
| // Try to combine with comparisons against 0 by simply inverting the branch. |
| while (value->opcode() == IrOpcode::kWord32Equal && CanCover(user, value)) { |
| Int32BinopMatcher m(value); |
| if (!m.right().Is(0)) break; |
| |
| user = value; |
| value = m.left().node(); |
| cont->Negate(); |
| } |
| |
| if (CanCover(user, value)) { |
| switch (value->opcode()) { |
| case IrOpcode::kWord32Equal: |
| cont->OverwriteAndNegateIfEqual(kEqual); |
| return VisitWord32Compare(this, value, cont); |
| case IrOpcode::kInt32LessThan: |
| cont->OverwriteAndNegateIfEqual(kSignedLessThan); |
| return VisitWord32Compare(this, value, cont); |
| case IrOpcode::kInt32LessThanOrEqual: |
| cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual); |
| return VisitWord32Compare(this, value, cont); |
| case IrOpcode::kUint32LessThan: |
| cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); |
| return VisitWord32Compare(this, value, cont); |
| case IrOpcode::kUint32LessThanOrEqual: |
| cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); |
| return VisitWord32Compare(this, value, cont); |
| #if V8_TARGET_ARCH_PPC64 |
| case IrOpcode::kWord64Equal: |
| cont->OverwriteAndNegateIfEqual(kEqual); |
| return VisitWord64Compare(this, value, cont); |
| case IrOpcode::kInt64LessThan: |
| cont->OverwriteAndNegateIfEqual(kSignedLessThan); |
| return VisitWord64Compare(this, value, cont); |
| case IrOpcode::kInt64LessThanOrEqual: |
| cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual); |
| return VisitWord64Compare(this, value, cont); |
| case IrOpcode::kUint64LessThan: |
| cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); |
| return VisitWord64Compare(this, value, cont); |
| case IrOpcode::kUint64LessThanOrEqual: |
| cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); |
| return VisitWord64Compare(this, value, cont); |
| #endif |
| case IrOpcode::kFloat32Equal: |
| cont->OverwriteAndNegateIfEqual(kEqual); |
| return VisitFloat32Compare(this, value, cont); |
| case IrOpcode::kFloat32LessThan: |
| cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); |
| return VisitFloat32Compare(this, value, cont); |
| case IrOpcode::kFloat32LessThanOrEqual: |
| cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); |
| return VisitFloat32Compare(this, value, cont); |
| case IrOpcode::kFloat64Equal: |
| cont->OverwriteAndNegateIfEqual(kEqual); |
| return VisitFloat64Compare(this, value, cont); |
| case IrOpcode::kFloat64LessThan: |
| cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); |
| return VisitFloat64Compare(this, value, cont); |
| case IrOpcode::kFloat64LessThanOrEqual: |
| cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); |
| return VisitFloat64Compare(this, value, cont); |
| case IrOpcode::kProjection: |
| // Check if this is the overflow output projection of an |
| // <Operation>WithOverflow node. |
| if (ProjectionIndexOf(value->op()) == 1u) { |
| // We cannot combine the <Operation>WithOverflow with this branch |
| // unless the 0th projection (the use of the actual value of the |
| // <Operation> is either nullptr, which means there's no use of the |
| // actual value, or was already defined, which means it is scheduled |
| // *AFTER* this branch). |
| Node* const node = value->InputAt(0); |
| Node* const result = NodeProperties::FindProjection(node, 0); |
| if (result == nullptr || IsDefined(result)) { |
| switch (node->opcode()) { |
| case IrOpcode::kInt32AddWithOverflow: |
| cont->OverwriteAndNegateIfEqual(kOverflow); |
| return VisitBinop<Int32BinopMatcher>( |
| this, node, kPPC_AddWithOverflow32, kInt16Imm, cont); |
| case IrOpcode::kInt32SubWithOverflow: |
| cont->OverwriteAndNegateIfEqual(kOverflow); |
| return VisitBinop<Int32BinopMatcher>( |
| this, node, kPPC_SubWithOverflow32, kInt16Imm_Negate, cont); |
| case IrOpcode::kInt32MulWithOverflow: |
| cont->OverwriteAndNegateIfEqual(kNotEqual); |
| return EmitInt32MulWithOverflow(this, node, cont); |
| #if V8_TARGET_ARCH_PPC64 |
| case IrOpcode::kInt64AddWithOverflow: |
| cont->OverwriteAndNegateIfEqual(kOverflow); |
| return VisitBinop<Int64BinopMatcher>(this, node, kPPC_Add64, |
| kInt16Imm, cont); |
| case IrOpcode::kInt64SubWithOverflow: |
| cont->OverwriteAndNegateIfEqual(kOverflow); |
| return VisitBinop<Int64BinopMatcher>(this, node, kPPC_Sub, |
| kInt16Imm_Negate, cont); |
| #endif |
| default: |
| break; |
| } |
| } |
| } |
| break; |
| case IrOpcode::kInt32Sub: |
| return VisitWord32Compare(this, value, cont); |
| case IrOpcode::kWord32And: |
| // TODO(mbandy): opportunity for rlwinm? |
| return VisitWordCompare(this, value, kPPC_Tst32, cont, true, |
| kInt16Imm_Unsigned); |
| // TODO(mbrandy): Handle? |
| // case IrOpcode::kInt32Add: |
| // case IrOpcode::kWord32Or: |
| // case IrOpcode::kWord32Xor: |
| // case IrOpcode::kWord32Sar: |
| // case IrOpcode::kWord32Shl: |
| // case IrOpcode::kWord32Shr: |
| // case IrOpcode::kWord32Ror: |
| #if V8_TARGET_ARCH_PPC64 |
| case IrOpcode::kInt64Sub: |
| return VisitWord64Compare(this, value, cont); |
| case IrOpcode::kWord64And: |
| // TODO(mbandy): opportunity for rldic? |
| return VisitWordCompare(this, value, kPPC_Tst64, cont, true, |
| kInt16Imm_Unsigned); |
| // TODO(mbrandy): Handle? |
| // case IrOpcode::kInt64Add: |
| // case IrOpcode::kWord64Or: |
| // case IrOpcode::kWord64Xor: |
| // case IrOpcode::kWord64Sar: |
| // case IrOpcode::kWord64Shl: |
| // case IrOpcode::kWord64Shr: |
| // case IrOpcode::kWord64Ror: |
| #endif |
| case IrOpcode::kStackPointerGreaterThan: |
| cont->OverwriteAndNegateIfEqual(kStackPointerGreaterThanCondition); |
| return VisitStackPointerGreaterThan(value, cont); |
| default: |
| break; |
| } |
| } |
| |
| // Branch could not be combined with a compare, emit compare against 0. |
| PPCOperandGenerator g(this); |
| VisitCompare(this, kPPC_Cmp32, g.UseRegister(value), g.TempImmediate(0), |
| cont); |
| } |
| |
| void InstructionSelector::VisitSwitch(Node* node, const SwitchInfo& sw) { |
| PPCOperandGenerator g(this); |
| InstructionOperand value_operand = g.UseRegister(node->InputAt(0)); |
| |
| // Emit either ArchTableSwitch or ArchBinarySearchSwitch. |
| if (enable_switch_jump_table_ == kEnableSwitchJumpTable) { |
| static const size_t kMaxTableSwitchValueRange = 2 << 16; |
| size_t table_space_cost = 4 + sw.value_range(); |
| size_t table_time_cost = 3; |
| size_t lookup_space_cost = 3 + 2 * sw.case_count(); |
| size_t lookup_time_cost = sw.case_count(); |
| if (sw.case_count() > 0 && |
| table_space_cost + 3 * table_time_cost <= |
| lookup_space_cost + 3 * lookup_time_cost && |
| sw.min_value() > std::numeric_limits<int32_t>::min() && |
| sw.value_range() <= kMaxTableSwitchValueRange) { |
| InstructionOperand index_operand = value_operand; |
| if (sw.min_value()) { |
| index_operand = g.TempRegister(); |
| Emit(kPPC_Sub, index_operand, value_operand, |
| g.TempImmediate(sw.min_value())); |
| } |
| // Generate a table lookup. |
| return EmitTableSwitch(sw, index_operand); |
| } |
| } |
| |
| // Generate a tree of conditional jumps. |
| return EmitBinarySearchSwitch(sw, value_operand); |
| } |
| |
| void InstructionSelector::VisitWord32Equal(Node* const node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); |
| VisitWord32Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitInt32LessThan(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node); |
| VisitWord32Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitInt32LessThanOrEqual(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kSignedLessThanOrEqual, node); |
| VisitWord32Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitUint32LessThan(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); |
| VisitWord32Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitUint32LessThanOrEqual(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); |
| VisitWord32Compare(this, node, &cont); |
| } |
| |
| #if V8_TARGET_ARCH_PPC64 |
| void InstructionSelector::VisitWord64Equal(Node* const node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); |
| VisitWord64Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitInt64LessThan(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node); |
| VisitWord64Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitInt64LessThanOrEqual(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kSignedLessThanOrEqual, node); |
| VisitWord64Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitUint64LessThan(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); |
| VisitWord64Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitUint64LessThanOrEqual(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); |
| VisitWord64Compare(this, node, &cont); |
| } |
| #endif |
| |
| void InstructionSelector::VisitInt32MulWithOverflow(Node* node) { |
| if (Node* ovf = NodeProperties::FindProjection(node, 1)) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kNotEqual, ovf); |
| return EmitInt32MulWithOverflow(this, node, &cont); |
| } |
| FlagsContinuation cont; |
| EmitInt32MulWithOverflow(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitFloat32Equal(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); |
| VisitFloat32Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitFloat32LessThan(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); |
| VisitFloat32Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitFloat32LessThanOrEqual(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); |
| VisitFloat32Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitFloat64Equal(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); |
| VisitFloat64Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitFloat64LessThan(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); |
| VisitFloat64Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitFloat64LessThanOrEqual(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); |
| VisitFloat64Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::EmitPrepareArguments( |
| ZoneVector<PushParameter>* arguments, const CallDescriptor* call_descriptor, |
| Node* node) { |
| PPCOperandGenerator g(this); |
| |
| // Prepare for C function call. |
| if (call_descriptor->IsCFunctionCall()) { |
| Emit(kArchPrepareCallCFunction | MiscField::encode(static_cast<int>( |
| call_descriptor->ParameterCount())), |
| 0, nullptr, 0, nullptr); |
| |
| // Poke any stack arguments. |
| int slot = kStackFrameExtraParamSlot; |
| for (PushParameter input : (*arguments)) { |
| if (input.node == nullptr) continue; |
| Emit(kPPC_StoreToStackSlot, g.NoOutput(), g.UseRegister(input.node), |
| g.TempImmediate(slot)); |
| ++slot; |
| } |
| } else { |
| // Push any stack arguments. |
| for (PushParameter input : base::Reversed(*arguments)) { |
| // Skip any alignment holes in pushed nodes. |
| if (input.node == nullptr) continue; |
| Emit(kPPC_Push, g.NoOutput(), g.UseRegister(input.node)); |
| } |
| } |
| } |
| |
| bool InstructionSelector::IsTailCallAddressImmediate() { return false; } |
| |
| int InstructionSelector::GetTempsCountForTailCallFromJSFunction() { return 3; } |
| |
| void InstructionSelector::VisitFloat64ExtractLowWord32(Node* node) { |
| PPCOperandGenerator g(this); |
| Emit(kPPC_DoubleExtractLowWord32, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0))); |
| } |
| |
| void InstructionSelector::VisitFloat64ExtractHighWord32(Node* node) { |
| PPCOperandGenerator g(this); |
| Emit(kPPC_DoubleExtractHighWord32, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0))); |
| } |
| |
| void InstructionSelector::VisitFloat64InsertLowWord32(Node* node) { |
| PPCOperandGenerator g(this); |
| Node* left = node->InputAt(0); |
| Node* right = node->InputAt(1); |
| if (left->opcode() == IrOpcode::kFloat64InsertHighWord32 && |
| CanCover(node, left)) { |
| left = left->InputAt(1); |
| Emit(kPPC_DoubleConstruct, g.DefineAsRegister(node), g.UseRegister(left), |
| g.UseRegister(right)); |
| return; |
| } |
| Emit(kPPC_DoubleInsertLowWord32, g.DefineSameAsFirst(node), |
| g.UseRegister(left), g.UseRegister(right)); |
| } |
| |
| void InstructionSelector::VisitFloat64InsertHighWord32(Node* node) { |
| PPCOperandGenerator g(this); |
| Node* left = node->InputAt(0); |
| Node* right = node->InputAt(1); |
| if (left->opcode() == IrOpcode::kFloat64InsertLowWord32 && |
| CanCover(node, left)) { |
| left = left->InputAt(1); |
| Emit(kPPC_DoubleConstruct, g.DefineAsRegister(node), g.UseRegister(right), |
| g.UseRegister(left)); |
| return; |
| } |
| Emit(kPPC_DoubleInsertHighWord32, g.DefineSameAsFirst(node), |
| g.UseRegister(left), g.UseRegister(right)); |
| } |
| |
| void InstructionSelector::VisitMemoryBarrier(Node* node) { |
| PPCOperandGenerator g(this); |
| Emit(kPPC_Sync, g.NoOutput()); |
| } |
| |
| void InstructionSelector::VisitWord32AtomicLoad(Node* node) { VisitLoad(node); } |
| |
| void InstructionSelector::VisitWord64AtomicLoad(Node* node) { VisitLoad(node); } |
| |
| void InstructionSelector::VisitWord32AtomicStore(Node* node) { |
| VisitStore(node); |
| } |
| |
| void InstructionSelector::VisitWord64AtomicStore(Node* node) { |
| VisitStore(node); |
| } |
| |
| void VisitAtomicExchange(InstructionSelector* selector, Node* node, |
| ArchOpcode opcode) { |
| PPCOperandGenerator g(selector); |
| Node* base = node->InputAt(0); |
| Node* index = node->InputAt(1); |
| Node* value = node->InputAt(2); |
| |
| AddressingMode addressing_mode = kMode_MRR; |
| InstructionOperand inputs[3]; |
| size_t input_count = 0; |
| inputs[input_count++] = g.UseUniqueRegister(base); |
| inputs[input_count++] = g.UseUniqueRegister(index); |
| inputs[input_count++] = g.UseUniqueRegister(value); |
| InstructionOperand outputs[1]; |
| outputs[0] = g.UseUniqueRegister(node); |
| InstructionCode code = opcode | AddressingModeField::encode(addressing_mode); |
| selector->Emit(code, 1, outputs, input_count, inputs); |
| } |
| |
| void InstructionSelector::VisitWord32AtomicExchange(Node* node) { |
| ArchOpcode opcode; |
| MachineType type = AtomicOpType(node->op()); |
| if (type == MachineType::Int8()) { |
| opcode = kWord32AtomicExchangeInt8; |
| } else if (type == MachineType::Uint8()) { |
| opcode = kPPC_AtomicExchangeUint8; |
| } else if (type == MachineType::Int16()) { |
| opcode = kWord32AtomicExchangeInt16; |
| } else if (type == MachineType::Uint16()) { |
| opcode = kPPC_AtomicExchangeUint16; |
| } else if (type == MachineType::Int32() || type == MachineType::Uint32()) { |
| opcode = kPPC_AtomicExchangeWord32; |
| } else { |
| UNREACHABLE(); |
| } |
| VisitAtomicExchange(this, node, opcode); |
| } |
| |
| void InstructionSelector::VisitWord64AtomicExchange(Node* node) { |
| ArchOpcode opcode; |
| MachineType type = AtomicOpType(node->op()); |
| if (type == MachineType::Uint8()) { |
| opcode = kPPC_AtomicExchangeUint8; |
| } else if (type == MachineType::Uint16()) { |
| opcode = kPPC_AtomicExchangeUint16; |
| } else if (type == MachineType::Uint32()) { |
| opcode = kPPC_AtomicExchangeWord32; |
| } else if (type == MachineType::Uint64()) { |
| opcode = kPPC_AtomicExchangeWord64; |
| } else { |
| UNREACHABLE(); |
| } |
| VisitAtomicExchange(this, node, opcode); |
| } |
| |
| void VisitAtomicCompareExchange(InstructionSelector* selector, Node* node, |
| ArchOpcode opcode) { |
| PPCOperandGenerator g(selector); |
| Node* base = node->InputAt(0); |
| Node* index = node->InputAt(1); |
| Node* old_value = node->InputAt(2); |
| Node* new_value = node->InputAt(3); |
| |
| AddressingMode addressing_mode = kMode_MRR; |
| InstructionCode code = opcode | AddressingModeField::encode(addressing_mode); |
| |
| InstructionOperand inputs[4]; |
| size_t input_count = 0; |
| inputs[input_count++] = g.UseUniqueRegister(base); |
| inputs[input_count++] = g.UseUniqueRegister(index); |
| inputs[input_count++] = g.UseUniqueRegister(old_value); |
| inputs[input_count++] = g.UseUniqueRegister(new_value); |
| |
| InstructionOperand outputs[1]; |
| size_t output_count = 0; |
| outputs[output_count++] = g.DefineAsRegister(node); |
| |
| selector->Emit(code, output_count, outputs, input_count, inputs); |
| } |
| |
| void InstructionSelector::VisitWord32AtomicCompareExchange(Node* node) { |
| MachineType type = AtomicOpType(node->op()); |
| ArchOpcode opcode; |
| if (type == MachineType::Int8()) { |
| opcode = kWord32AtomicCompareExchangeInt8; |
| } else if (type == MachineType::Uint8()) { |
| opcode = kPPC_AtomicCompareExchangeUint8; |
| } else if (type == MachineType::Int16()) { |
| opcode = kWord32AtomicCompareExchangeInt16; |
| } else if (type == MachineType::Uint16()) { |
| opcode = kPPC_AtomicCompareExchangeUint16; |
| } else if (type == MachineType::Int32() || type == MachineType::Uint32()) { |
| opcode = kPPC_AtomicCompareExchangeWord32; |
| } else { |
| UNREACHABLE(); |
| } |
| VisitAtomicCompareExchange(this, node, opcode); |
| } |
| |
| void InstructionSelector::VisitWord64AtomicCompareExchange(Node* node) { |
| MachineType type = AtomicOpType(node->op()); |
| ArchOpcode opcode; |
| if (type == MachineType::Uint8()) { |
| opcode = kPPC_AtomicCompareExchangeUint8; |
| } else if (type == MachineType::Uint16()) { |
| opcode = kPPC_AtomicCompareExchangeUint16; |
| } else if (type == MachineType::Uint32()) { |
| opcode = kPPC_AtomicCompareExchangeWord32; |
| } else if (type == MachineType::Uint64()) { |
| opcode = kPPC_AtomicCompareExchangeWord64; |
| } else { |
| UNREACHABLE(); |
| } |
| VisitAtomicCompareExchange(this, node, opcode); |
| } |
| |
| void VisitAtomicBinaryOperation(InstructionSelector* selector, Node* node, |
| ArchOpcode int8_op, ArchOpcode uint8_op, |
| ArchOpcode int16_op, ArchOpcode uint16_op, |
| ArchOpcode int32_op, ArchOpcode uint32_op, |
| ArchOpcode int64_op, ArchOpcode uint64_op) { |
| PPCOperandGenerator g(selector); |
| Node* base = node->InputAt(0); |
| Node* index = node->InputAt(1); |
| Node* value = node->InputAt(2); |
| MachineType type = AtomicOpType(node->op()); |
| |
| ArchOpcode opcode; |
| |
| if (type == MachineType::Int8()) { |
| opcode = int8_op; |
| } else if (type == MachineType::Uint8()) { |
| opcode = uint8_op; |
| } else if (type == MachineType::Int16()) { |
| opcode = int16_op; |
| } else if (type == MachineType::Uint16()) { |
| opcode = uint16_op; |
| } else if (type == MachineType::Int32()) { |
| opcode = int32_op; |
| } else if (type == MachineType::Uint32()) { |
| opcode = uint32_op; |
| } else if (type == MachineType::Int64()) { |
| opcode = int64_op; |
| } else if (type == MachineType::Uint64()) { |
| opcode = uint64_op; |
| } else { |
| UNREACHABLE(); |
| } |
| |
| AddressingMode addressing_mode = kMode_MRR; |
| InstructionCode code = opcode | AddressingModeField::encode(addressing_mode); |
| InstructionOperand inputs[3]; |
| |
| size_t input_count = 0; |
| inputs[input_count++] = g.UseUniqueRegister(base); |
| inputs[input_count++] = g.UseUniqueRegister(index); |
| inputs[input_count++] = g.UseUniqueRegister(value); |
| |
| InstructionOperand outputs[1]; |
| size_t output_count = 0; |
| outputs[output_count++] = g.DefineAsRegister(node); |
| |
| selector->Emit(code, output_count, outputs, input_count, inputs); |
| } |
| |
| void InstructionSelector::VisitWord32AtomicBinaryOperation( |
| Node* node, ArchOpcode int8_op, ArchOpcode uint8_op, ArchOpcode int16_op, |
| ArchOpcode uint16_op, ArchOpcode word32_op) { |
| // Unused |
| UNREACHABLE(); |
| } |
| |
| void InstructionSelector::VisitWord64AtomicBinaryOperation( |
| Node* node, ArchOpcode uint8_op, ArchOpcode uint16_op, ArchOpcode uint32_op, |
| ArchOpcode uint64_op) { |
| // Unused |
| UNREACHABLE(); |
| } |
| |
| #define VISIT_ATOMIC_BINOP(op) \ |
| void InstructionSelector::VisitWord32Atomic##op(Node* node) { \ |
| VisitAtomicBinaryOperation( \ |
| this, node, kPPC_Atomic##op##Int8, kPPC_Atomic##op##Uint8, \ |
| kPPC_Atomic##op##Int16, kPPC_Atomic##op##Uint16, \ |
| kPPC_Atomic##op##Int32, kPPC_Atomic##op##Uint32, \ |
| kPPC_Atomic##op##Int64, kPPC_Atomic##op##Uint64); \ |
| } \ |
| void InstructionSelector::VisitWord64Atomic##op(Node* node) { \ |
| VisitAtomicBinaryOperation( \ |
| this, node, kPPC_Atomic##op##Int8, kPPC_Atomic##op##Uint8, \ |
| kPPC_Atomic##op##Int16, kPPC_Atomic##op##Uint16, \ |
| kPPC_Atomic##op##Int32, kPPC_Atomic##op##Uint32, \ |
| kPPC_Atomic##op##Int64, kPPC_Atomic##op##Uint64); \ |
| } |
| VISIT_ATOMIC_BINOP(Add) |
| VISIT_ATOMIC_BINOP(Sub) |
| VISIT_ATOMIC_BINOP(And) |
| VISIT_ATOMIC_BINOP(Or) |
| VISIT_ATOMIC_BINOP(Xor) |
| #undef VISIT_ATOMIC_BINOP |
| |
| void InstructionSelector::VisitInt32AbsWithOverflow(Node* node) { |
| UNREACHABLE(); |
| } |
| |
| void InstructionSelector::VisitInt64AbsWithOverflow(Node* node) { |
| UNREACHABLE(); |
| } |
| |
| #define SIMD_TYPES(V) \ |
| V(F64x2) \ |
| V(F32x4) \ |
| V(I32x4) \ |
| V(I16x8) \ |
| V(I8x16) |
| |
| #define SIMD_BINOP_LIST(V) \ |
| V(F64x2Add) \ |
| V(F64x2Sub) \ |
| V(F64x2Mul) \ |
| V(F64x2Eq) \ |
| V(F64x2Ne) \ |
| V(F64x2Le) \ |
| V(F64x2Lt) \ |
| V(F64x2Div) \ |
| V(F64x2Min) \ |
| V(F64x2Max) \ |
| V(F32x4Add) \ |
| V(F32x4AddHoriz) \ |
| V(F32x4Sub) \ |
| V(F32x4Mul) \ |
| V(F32x4Eq) \ |
| V(F32x4Ne) \ |
| V(F32x4Lt) \ |
| V(F32x4Le) \ |
| V(F32x4Div) \ |
| V(F32x4Min) \ |
| V(F32x4Max) \ |
| V(I64x2Add) \ |
| V(I64x2Sub) \ |
| V(I64x2Mul) \ |
| V(I32x4Add) \ |
| V(I32x4AddHoriz) \ |
| V(I32x4Sub) \ |
| V(I32x4Mul) \ |
| V(I32x4MinS) \ |
| V(I32x4MinU) \ |
| V(I32x4MaxS) \ |
| V(I32x4MaxU) \ |
| V(I32x4Eq) \ |
| V(I32x4Ne) \ |
| V(I32x4GtS) \ |
| V(I32x4GeS) \ |
| V(I32x4GtU) \ |
| V(I32x4GeU) \ |
| V(I32x4DotI16x8S) \ |
| V(I16x8Add) \ |
| V(I16x8AddHoriz) \ |
| V(I16x8Sub) \ |
| V(I16x8Mul) \ |
| V(I16x8MinS) \ |
| V(I16x8MinU) \ |
| V(I16x8MaxS) \ |
| V(I16x8MaxU) \ |
| V(I16x8Eq) \ |
| V(I16x8Ne) \ |
| V(I16x8GtS) \ |
| V(I16x8GeS) \ |
| V(I16x8GtU) \ |
| V(I16x8GeU) \ |
| V(I16x8SConvertI32x4) \ |
| V(I16x8UConvertI32x4) \ |
| V(I16x8AddSatS) \ |
| V(I16x8SubSatS) \ |
| V(I16x8AddSatU) \ |
| V(I16x8SubSatU) \ |
| V(I16x8RoundingAverageU) \ |
| V(I8x16Add) \ |
| V(I8x16Sub) \ |
| V(I8x16Mul) \ |
| V(I8x16MinS) \ |
| V(I8x16MinU) \ |
| V(I8x16MaxS) \ |
| V(I8x16MaxU) \ |
| V(I8x16Eq) \ |
| V(I8x16Ne) \ |
| V(I8x16GtS) \ |
| V(I8x16GeS) \ |
| V(I8x16GtU) \ |
| V(I8x16GeU) \ |
| V(I8x16SConvertI16x8) \ |
| V(I8x16UConvertI16x8) \ |
| V(I8x16AddSatS) \ |
| V(I8x16SubSatS) \ |
| V(I8x16AddSatU) \ |
| V(I8x16SubSatU) \ |
| V(I8x16RoundingAverageU) \ |
| V(I8x16Swizzle) \ |
| V(S128And) \ |
| V(S128Or) \ |
| V(S128Xor) \ |
| V(S128AndNot) |
| |
| #define SIMD_UNOP_LIST(V) \ |
| V(F64x2Abs) \ |
| V(F64x2Neg) \ |
| V(F64x2Sqrt) \ |
| V(F64x2Ceil) \ |
| V(F64x2Floor) \ |
| V(F64x2Trunc) \ |
| V(F64x2NearestInt) \ |
| V(F32x4Abs) \ |
| V(F32x4Neg) \ |
| V(F32x4RecipApprox) \ |
| V(F32x4RecipSqrtApprox) \ |
| V(F32x4Sqrt) \ |
| V(F32x4SConvertI32x4) \ |
| V(F32x4UConvertI32x4) \ |
| V(F32x4Ceil) \ |
| V(F32x4Floor) \ |
| V(F32x4Trunc) \ |
| V(F32x4NearestInt) \ |
| V(I64x2Neg) \ |
| V(I32x4Neg) \ |
| V(I32x4Abs) \ |
| V(I32x4SConvertF32x4) \ |
| V(I32x4UConvertF32x4) \ |
| V(I32x4SConvertI16x8Low) \ |
| V(I32x4SConvertI16x8High) \ |
| V(I32x4UConvertI16x8Low) \ |
| V(I32x4UConvertI16x8High) \ |
| V(I16x8Neg) \ |
| V(I16x8Abs) \ |
| V(I8x16Neg) \ |
| V(I8x16Abs) \ |
| V(I16x8SConvertI8x16Low) \ |
| V(I16x8SConvertI8x16High) \ |
| V(I16x8UConvertI8x16Low) \ |
| V(I16x8UConvertI8x16High) \ |
| V(S128Not) |
| |
| #define SIMD_SHIFT_LIST(V) \ |
| V(I64x2Shl) \ |
| V(I64x2ShrS) \ |
| V(I64x2ShrU) \ |
| V(I32x4Shl) \ |
| V(I32x4ShrS) \ |
| V(I32x4ShrU) \ |
| V(I16x8Shl) \ |
| V(I16x8ShrS) \ |
| V(I16x8ShrU) \ |
| V(I8x16Shl) \ |
| V(I8x16ShrS) \ |
| V(I8x16ShrU) |
| |
| #define SIMD_BOOL_LIST(V) \ |
| V(V32x4AnyTrue) \ |
| V(V16x8AnyTrue) \ |
| V(V8x16AnyTrue) \ |
| V(V32x4AllTrue) \ |
| V(V16x8AllTrue) \ |
| V(V8x16AllTrue) |
| |
| #define SIMD_VISIT_SPLAT(Type) \ |
| void InstructionSelector::Visit##Type##Splat(Node* node) { \ |
| PPCOperandGenerator g(this); \ |
| Emit(kPPC_##Type##Splat, g.DefineAsRegister(node), \ |
| g.UseRegister(node->InputAt(0))); \ |
| } |
| SIMD_TYPES(SIMD_VISIT_SPLAT) |
| #undef SIMD_VISIT_SPLAT |
| |
| #define SIMD_VISIT_EXTRACT_LANE(Type, Sign) \ |
| void InstructionSelector::Visit##Type##ExtractLane##Sign(Node* node) { \ |
| PPCOperandGenerator g(this); \ |
| int32_t lane = OpParameter<int32_t>(node->op()); \ |
| Emit(kPPC_##Type##ExtractLane##Sign, g.DefineAsRegister(node), \ |
| g.UseRegister(node->InputAt(0)), g.UseImmediate(lane)); \ |
| } |
| SIMD_VISIT_EXTRACT_LANE(F64x2, ) |
| SIMD_VISIT_EXTRACT_LANE(F32x4, ) |
| SIMD_VISIT_EXTRACT_LANE(I32x4, ) |
| SIMD_VISIT_EXTRACT_LANE(I16x8, U) |
| SIMD_VISIT_EXTRACT_LANE(I16x8, S) |
| SIMD_VISIT_EXTRACT_LANE(I8x16, U) |
| SIMD_VISIT_EXTRACT_LANE(I8x16, S) |
| #undef SIMD_VISIT_EXTRACT_LANE |
| |
| #define SIMD_VISIT_REPLACE_LANE(Type) \ |
| void InstructionSelector::Visit##Type##ReplaceLane(Node* node) { \ |
| PPCOperandGenerator g(this); \ |
| int32_t lane = OpParameter<int32_t>(node->op()); \ |
| Emit(kPPC_##Type##ReplaceLane, g.DefineSameAsFirst(node), \ |
| g.UseRegister(node->InputAt(0)), g.UseImmediate(lane), \ |
| g.UseRegister(node->InputAt(1))); \ |
| } |
| SIMD_TYPES(SIMD_VISIT_REPLACE_LANE) |
| #undef SIMD_VISIT_REPLACE_LANE |
| |
| #define SIMD_VISIT_BINOP(Opcode) \ |
| void InstructionSelector::Visit##Opcode(Node* node) { \ |
| PPCOperandGenerator g(this); \ |
| InstructionOperand temps[] = {g.TempSimd128Register(), \ |
| g.TempSimd128Register()}; \ |
| Emit(kPPC_##Opcode, g.DefineAsRegister(node), \ |
| g.UseUniqueRegister(node->InputAt(0)), \ |
| g.UseUniqueRegister(node->InputAt(1)), arraysize(temps), temps); \ |
| } |
| SIMD_BINOP_LIST(SIMD_VISIT_BINOP) |
| #undef SIMD_VISIT_BINOP |
| #undef SIMD_BINOP_LIST |
| |
| #define SIMD_VISIT_UNOP(Opcode) \ |
| void InstructionSelector::Visit##Opcode(Node* node) { \ |
| PPCOperandGenerator g(this); \ |
| InstructionOperand temps[] = {g.TempSimd128Register()}; \ |
| Emit(kPPC_##Opcode, g.DefineAsRegister(node), \ |
| g.UseRegister(node->InputAt(0)), arraysize(temps), temps); \ |
| } |
| SIMD_UNOP_LIST(SIMD_VISIT_UNOP) |
| #undef SIMD_VISIT_UNOP |
| #undef SIMD_UNOP_LIST |
| |
| #define SIMD_VISIT_SHIFT(Opcode) \ |
| void InstructionSelector::Visit##Opcode(Node* node) { \ |
| PPCOperandGenerator g(this); \ |
| Emit(kPPC_##Opcode, g.DefineAsRegister(node), \ |
| g.UseUniqueRegister(node->InputAt(0)), \ |
| g.UseUniqueRegister(node->InputAt(1))); \ |
| } |
| SIMD_SHIFT_LIST(SIMD_VISIT_SHIFT) |
| #undef SIMD_VISIT_SHIFT |
| #undef SIMD_SHIFT_LIST |
| |
| #define SIMD_VISIT_BOOL(Opcode) \ |
| void InstructionSelector::Visit##Opcode(Node* node) { \ |
| PPCOperandGenerator g(this); \ |
| Emit(kPPC_##Opcode, g.DefineAsRegister(node), \ |
| g.UseUniqueRegister(node->InputAt(0))); \ |
| } |
| SIMD_BOOL_LIST(SIMD_VISIT_BOOL) |
| #undef SIMD_VISIT_BOOL |
| #undef SIMD_BOOL_LIST |
| |
| #define SIMD_VISIT_BITMASK(Opcode) \ |
| void InstructionSelector::Visit##Opcode(Node* node) { \ |
| PPCOperandGenerator g(this); \ |
| InstructionOperand temps[] = {g.TempRegister()}; \ |
| Emit(kPPC_##Opcode, g.DefineAsRegister(node), \ |
| g.UseUniqueRegister(node->InputAt(0)), arraysize(temps), temps); \ |
| } |
| SIMD_VISIT_BITMASK(I8x16BitMask) |
| SIMD_VISIT_BITMASK(I16x8BitMask) |
| SIMD_VISIT_BITMASK(I32x4BitMask) |
| #undef SIMD_VISIT_BITMASK |
| #undef SIMD_TYPES |
| |
| void InstructionSelector::VisitI8x16Shuffle(Node* node) { |
| uint8_t shuffle[kSimd128Size]; |
| bool is_swizzle; |
| CanonicalizeShuffle(node, shuffle, &is_swizzle); |
| PPCOperandGenerator g(this); |
| Node* input0 = node->InputAt(0); |
| Node* input1 = node->InputAt(1); |
| // Remap the shuffle indices to match IBM lane numbering. |
| int max_index = 15; |
| int total_lane_count = 2 * kSimd128Size; |
| uint8_t shuffle_remapped[kSimd128Size]; |
| for (int i = 0; i < kSimd128Size; i++) { |
| uint8_t current_index = shuffle[i]; |
| shuffle_remapped[i] = (current_index <= max_index |
| ? max_index - current_index |
| : total_lane_count - current_index + max_index); |
| } |
| Emit(kPPC_I8x16Shuffle, g.DefineAsRegister(node), g.UseUniqueRegister(input0), |
| g.UseUniqueRegister(input1), |
| g.UseImmediate(wasm::SimdShuffle::Pack4Lanes(shuffle_remapped)), |
| g.UseImmediate(wasm::SimdShuffle::Pack4Lanes(shuffle_remapped + 4)), |
| g.UseImmediate(wasm::SimdShuffle::Pack4Lanes(shuffle_remapped + 8)), |
| g.UseImmediate(wasm::SimdShuffle::Pack4Lanes(shuffle_remapped + 12))); |
| } |
| |
| void InstructionSelector::VisitS128Zero(Node* node) { |
| PPCOperandGenerator g(this); |
| Emit(kPPC_S128Zero, g.DefineAsRegister(node)); |
| } |
| |
| void InstructionSelector::VisitS128Select(Node* node) { |
| PPCOperandGenerator g(this); |
| Emit(kPPC_S128Select, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)), |
| g.UseRegister(node->InputAt(2))); |
| } |
| |
| void InstructionSelector::VisitS128Const(Node* node) { UNIMPLEMENTED(); } |
| |
| void InstructionSelector::EmitPrepareResults( |
| ZoneVector<PushParameter>* results, const CallDescriptor* call_descriptor, |
| Node* node) { |
| PPCOperandGenerator g(this); |
| |
| int reverse_slot = 1; |
| for (PushParameter output : *results) { |
| if (!output.location.IsCallerFrameSlot()) continue; |
| // Skip any alignment holes in nodes. |
| if (output.node != nullptr) { |
| DCHECK(!call_descriptor->IsCFunctionCall()); |
| if (output.location.GetType() == MachineType::Float32()) { |
| MarkAsFloat32(output.node); |
| } else if (output.location.GetType() == MachineType::Float64()) { |
| MarkAsFloat64(output.node); |
| } else if (output.location.GetType() == MachineType::Simd128()) { |
| MarkAsSimd128(output.node); |
| } |
| Emit(kPPC_Peek, g.DefineAsRegister(output.node), |
| g.UseImmediate(reverse_slot)); |
| } |
| reverse_slot += output.location.GetSizeInPointers(); |
| } |
| } |
| |
| void InstructionSelector::VisitLoadTransform(Node* node) { UNIMPLEMENTED(); } |
| |
| void InstructionSelector::VisitF32x4Pmin(Node* node) { UNIMPLEMENTED(); } |
| |
| void InstructionSelector::VisitF32x4Pmax(Node* node) { UNIMPLEMENTED(); } |
| |
| void InstructionSelector::VisitF64x2Pmin(Node* node) { UNIMPLEMENTED(); } |
| |
| void InstructionSelector::VisitF64x2Pmax(Node* node) { UNIMPLEMENTED(); } |
| |
| // static |
| MachineOperatorBuilder::Flags |
| InstructionSelector::SupportedMachineOperatorFlags() { |
| return MachineOperatorBuilder::kFloat32RoundDown | |
| MachineOperatorBuilder::kFloat64RoundDown | |
| MachineOperatorBuilder::kFloat32RoundUp | |
| MachineOperatorBuilder::kFloat64RoundUp | |
| MachineOperatorBuilder::kFloat32RoundTruncate | |
| MachineOperatorBuilder::kFloat64RoundTruncate | |
| MachineOperatorBuilder::kFloat64RoundTiesAway | |
| MachineOperatorBuilder::kWord32Popcnt | |
| MachineOperatorBuilder::kWord64Popcnt; |
| // We omit kWord32ShiftIsSafe as s[rl]w use 0x3F as a mask rather than 0x1F. |
| } |
| |
| // static |
| MachineOperatorBuilder::AlignmentRequirements |
| InstructionSelector::AlignmentRequirements() { |
| return MachineOperatorBuilder::AlignmentRequirements:: |
| FullUnalignedAccessSupport(); |
| } |
| |
| } // namespace compiler |
| } // namespace internal |
| } // namespace v8 |