| /* libFLAC - Free Lossless Audio Codec library |
| * Copyright (C) 2000,2001,2002,2003,2004,2005,2006,2007 Josh Coalson |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * - Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * - Neither the name of the Xiph.org Foundation nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #if HAVE_CONFIG_H |
| # include <config.h> |
| #endif |
| |
| #ifndef STARBOARD |
| #if defined(_MSC_VER) && defined(HAVE_WINSOCK_H) |
| #include <winsock.h> /* for ntohl() */ |
| #elif defined FLAC__SYS_DARWIN |
| #include <machine/endian.h> /* for ntohl() */ |
| #elif defined __MINGW32__ |
| #include <winsock.h> /* for ntohl() */ |
| #else |
| #include <netinet/in.h> /* for ntohl() */ |
| #endif |
| #else // STARBOARD |
| #include "starboard/client_porting/poem/stdio_poem.h" |
| #endif // STARBOARD |
| |
| #include <stdlib.h> /* for malloc() */ |
| #include <string.h> /* for memcpy(), memset() */ |
| |
| #if 0 /* UNUSED */ |
| #include "private/bitmath.h" |
| #endif |
| #include "private/bitwriter.h" |
| #include "private/crc.h" |
| #include "FLAC/assert.h" |
| #include "share/alloc.h" |
| |
| /* Things should be fastest when this matches the machine word size */ |
| /* WATCHOUT: if you change this you must also change the following #defines down to SWAP_BE_WORD_TO_HOST below to match */ |
| /* WATCHOUT: there are a few places where the code will not work unless bwword is >= 32 bits wide */ |
| typedef FLAC__uint32 bwword; |
| #define FLAC__BYTES_PER_WORD 4 |
| #define FLAC__BITS_PER_WORD 32 |
| #define FLAC__WORD_ALL_ONES ((FLAC__uint32)0xffffffff) |
| /* SWAP_BE_WORD_TO_HOST swaps bytes in a bwword (which is always big-endian) if necessary to match host byte order */ |
| #if WORDS_BIGENDIAN |
| #define SWAP_BE_WORD_TO_HOST(x) (x) |
| #else |
| #if defined(_MSC_VER) && !defined(COBALT) |
| #define SWAP_BE_WORD_TO_HOST(x) local_swap32_(x) |
| #elif defined(STARBOARD) |
| #include "starboard/common/byte_swap.h" |
| #define SWAP_BE_WORD_TO_HOST(x) SB_NET_TO_HOST_U32(x) |
| #else |
| #define SWAP_BE_WORD_TO_HOST(x) ntohl(x) |
| #endif |
| #endif |
| |
| /* |
| * The default capacity here doesn't matter too much. The buffer always grows |
| * to hold whatever is written to it. Usually the encoder will stop adding at |
| * a frame or metadata block, then write that out and clear the buffer for the |
| * next one. |
| */ |
| static const unsigned FLAC__BITWRITER_DEFAULT_CAPACITY = 32768u / sizeof(bwword); /* size in words */ |
| /* When growing, increment 4K at a time */ |
| static const unsigned FLAC__BITWRITER_DEFAULT_INCREMENT = 4096u / sizeof(bwword); /* size in words */ |
| |
| #define FLAC__WORDS_TO_BITS(words) ((words) * FLAC__BITS_PER_WORD) |
| #define FLAC__TOTAL_BITS(bw) (FLAC__WORDS_TO_BITS((bw)->words) + (bw)->bits) |
| |
| #ifdef min |
| #undef min |
| #endif |
| #define min(x,y) ((x)<(y)?(x):(y)) |
| |
| /* adjust for compilers that can't understand using LLU suffix for uint64_t literals */ |
| #ifdef _MSC_VER |
| #define FLAC__U64L(x) x |
| #else |
| #define FLAC__U64L(x) x##LLU |
| #endif |
| |
| #ifndef FLaC__INLINE |
| #define FLaC__INLINE |
| #endif |
| |
| struct FLAC__BitWriter { |
| bwword *buffer; |
| bwword accum; /* accumulator; bits are right-justified; when full, accum is appended to buffer */ |
| unsigned capacity; /* capacity of buffer in words */ |
| unsigned words; /* # of complete words in buffer */ |
| unsigned bits; /* # of used bits in accum */ |
| }; |
| |
| #ifdef _MSC_VER |
| /* OPT: an MSVC built-in would be better */ |
| static _inline FLAC__uint32 local_swap32_(FLAC__uint32 x) |
| { |
| x = ((x<<8)&0xFF00FF00) | ((x>>8)&0x00FF00FF); |
| return (x>>16) | (x<<16); |
| } |
| #endif |
| |
| /* * WATCHOUT: The current implementation only grows the buffer. */ |
| static FLAC__bool bitwriter_grow_(FLAC__BitWriter *bw, unsigned bits_to_add) |
| { |
| unsigned new_capacity; |
| bwword *new_buffer; |
| |
| FLAC__ASSERT(0 != bw); |
| FLAC__ASSERT(0 != bw->buffer); |
| |
| /* calculate total words needed to store 'bits_to_add' additional bits */ |
| new_capacity = bw->words + ((bw->bits + bits_to_add + FLAC__BITS_PER_WORD - 1) / FLAC__BITS_PER_WORD); |
| |
| /* it's possible (due to pessimism in the growth estimation that |
| * leads to this call) that we don't actually need to grow |
| */ |
| if(bw->capacity >= new_capacity) |
| return true; |
| |
| /* round up capacity increase to the nearest FLAC__BITWRITER_DEFAULT_INCREMENT */ |
| if((new_capacity - bw->capacity) % FLAC__BITWRITER_DEFAULT_INCREMENT) |
| new_capacity += FLAC__BITWRITER_DEFAULT_INCREMENT - ((new_capacity - bw->capacity) % FLAC__BITWRITER_DEFAULT_INCREMENT); |
| /* make sure we got everything right */ |
| FLAC__ASSERT(0 == (new_capacity - bw->capacity) % FLAC__BITWRITER_DEFAULT_INCREMENT); |
| FLAC__ASSERT(new_capacity > bw->capacity); |
| FLAC__ASSERT(new_capacity >= bw->words + ((bw->bits + bits_to_add + FLAC__BITS_PER_WORD - 1) / FLAC__BITS_PER_WORD)); |
| |
| new_buffer = (bwword*)safe_realloc_mul_2op_(bw->buffer, sizeof(bwword), /*times*/new_capacity); |
| if(new_buffer == 0) |
| return false; |
| bw->buffer = new_buffer; |
| bw->capacity = new_capacity; |
| return true; |
| } |
| |
| |
| /*********************************************************************** |
| * |
| * Class constructor/destructor |
| * |
| ***********************************************************************/ |
| |
| FLAC__BitWriter *FLAC__bitwriter_new(void) |
| { |
| FLAC__BitWriter *bw = (FLAC__BitWriter*)calloc(1, sizeof(FLAC__BitWriter)); |
| /* note that calloc() sets all members to 0 for us */ |
| return bw; |
| } |
| |
| void FLAC__bitwriter_delete(FLAC__BitWriter *bw) |
| { |
| FLAC__ASSERT(0 != bw); |
| |
| FLAC__bitwriter_free(bw); |
| free(bw); |
| } |
| |
| /*********************************************************************** |
| * |
| * Public class methods |
| * |
| ***********************************************************************/ |
| |
| FLAC__bool FLAC__bitwriter_init(FLAC__BitWriter *bw) |
| { |
| FLAC__ASSERT(0 != bw); |
| |
| bw->words = bw->bits = 0; |
| bw->capacity = FLAC__BITWRITER_DEFAULT_CAPACITY; |
| bw->buffer = (bwword*)malloc(sizeof(bwword) * bw->capacity); |
| if(bw->buffer == 0) |
| return false; |
| |
| return true; |
| } |
| |
| void FLAC__bitwriter_free(FLAC__BitWriter *bw) |
| { |
| FLAC__ASSERT(0 != bw); |
| |
| if(0 != bw->buffer) |
| free(bw->buffer); |
| bw->buffer = 0; |
| bw->capacity = 0; |
| bw->words = bw->bits = 0; |
| } |
| |
| void FLAC__bitwriter_clear(FLAC__BitWriter *bw) |
| { |
| bw->words = bw->bits = 0; |
| } |
| |
| #ifndef COBALT |
| void FLAC__bitwriter_dump(const FLAC__BitWriter *bw, FILE *out) |
| { |
| unsigned i, j; |
| if(bw == 0) { |
| fprintf(out, "bitwriter is NULL\n"); |
| } |
| else { |
| fprintf(out, "bitwriter: capacity=%u words=%u bits=%u total_bits=%u\n", bw->capacity, bw->words, bw->bits, FLAC__TOTAL_BITS(bw)); |
| |
| for(i = 0; i < bw->words; i++) { |
| fprintf(out, "%08X: ", i); |
| for(j = 0; j < FLAC__BITS_PER_WORD; j++) |
| fprintf(out, "%01u", bw->buffer[i] & (1 << (FLAC__BITS_PER_WORD-j-1)) ? 1:0); |
| fprintf(out, "\n"); |
| } |
| if(bw->bits > 0) { |
| fprintf(out, "%08X: ", i); |
| for(j = 0; j < bw->bits; j++) |
| fprintf(out, "%01u", bw->accum & (1 << (bw->bits-j-1)) ? 1:0); |
| fprintf(out, "\n"); |
| } |
| } |
| } |
| #endif // COBALT |
| |
| FLAC__bool FLAC__bitwriter_get_write_crc16(FLAC__BitWriter *bw, FLAC__uint16 *crc) |
| { |
| const FLAC__byte *buffer; |
| size_t bytes; |
| |
| FLAC__ASSERT((bw->bits & 7) == 0); /* assert that we're byte-aligned */ |
| |
| if(!FLAC__bitwriter_get_buffer(bw, &buffer, &bytes)) |
| return false; |
| |
| *crc = (FLAC__uint16)FLAC__crc16(buffer, bytes); |
| FLAC__bitwriter_release_buffer(bw); |
| return true; |
| } |
| |
| FLAC__bool FLAC__bitwriter_get_write_crc8(FLAC__BitWriter *bw, FLAC__byte *crc) |
| { |
| const FLAC__byte *buffer; |
| size_t bytes; |
| |
| FLAC__ASSERT((bw->bits & 7) == 0); /* assert that we're byte-aligned */ |
| |
| if(!FLAC__bitwriter_get_buffer(bw, &buffer, &bytes)) |
| return false; |
| |
| *crc = FLAC__crc8(buffer, bytes); |
| FLAC__bitwriter_release_buffer(bw); |
| return true; |
| } |
| |
| FLAC__bool FLAC__bitwriter_is_byte_aligned(const FLAC__BitWriter *bw) |
| { |
| return ((bw->bits & 7) == 0); |
| } |
| |
| unsigned FLAC__bitwriter_get_input_bits_unconsumed(const FLAC__BitWriter *bw) |
| { |
| return FLAC__TOTAL_BITS(bw); |
| } |
| |
| FLAC__bool FLAC__bitwriter_get_buffer(FLAC__BitWriter *bw, const FLAC__byte **buffer, size_t *bytes) |
| { |
| FLAC__ASSERT((bw->bits & 7) == 0); |
| /* double protection */ |
| if(bw->bits & 7) |
| return false; |
| /* if we have bits in the accumulator we have to flush those to the buffer first */ |
| if(bw->bits) { |
| FLAC__ASSERT(bw->words <= bw->capacity); |
| if(bw->words == bw->capacity && !bitwriter_grow_(bw, FLAC__BITS_PER_WORD)) |
| return false; |
| /* append bits as complete word to buffer, but don't change bw->accum or bw->bits */ |
| bw->buffer[bw->words] = SWAP_BE_WORD_TO_HOST(bw->accum << (FLAC__BITS_PER_WORD-bw->bits)); |
| } |
| /* now we can just return what we have */ |
| *buffer = (FLAC__byte*)bw->buffer; |
| *bytes = (FLAC__BYTES_PER_WORD * bw->words) + (bw->bits >> 3); |
| return true; |
| } |
| |
| void FLAC__bitwriter_release_buffer(FLAC__BitWriter *bw) |
| { |
| /* nothing to do. in the future, strict checking of a 'writer-is-in- |
| * get-mode' flag could be added everywhere and then cleared here |
| */ |
| (void)bw; |
| } |
| |
| FLaC__INLINE FLAC__bool FLAC__bitwriter_write_zeroes(FLAC__BitWriter *bw, unsigned bits) |
| { |
| unsigned n; |
| |
| FLAC__ASSERT(0 != bw); |
| FLAC__ASSERT(0 != bw->buffer); |
| |
| if(bits == 0) |
| return true; |
| /* slightly pessimistic size check but faster than "<= bw->words + (bw->bits+bits+FLAC__BITS_PER_WORD-1)/FLAC__BITS_PER_WORD" */ |
| if(bw->capacity <= bw->words + bits && !bitwriter_grow_(bw, bits)) |
| return false; |
| /* first part gets to word alignment */ |
| if(bw->bits) { |
| n = min(FLAC__BITS_PER_WORD - bw->bits, bits); |
| bw->accum <<= n; |
| bits -= n; |
| bw->bits += n; |
| if(bw->bits == FLAC__BITS_PER_WORD) { |
| bw->buffer[bw->words++] = SWAP_BE_WORD_TO_HOST(bw->accum); |
| bw->bits = 0; |
| } |
| else |
| return true; |
| } |
| /* do whole words */ |
| while(bits >= FLAC__BITS_PER_WORD) { |
| bw->buffer[bw->words++] = 0; |
| bits -= FLAC__BITS_PER_WORD; |
| } |
| /* do any leftovers */ |
| if(bits > 0) { |
| bw->accum = 0; |
| bw->bits = bits; |
| } |
| return true; |
| } |
| |
| FLaC__INLINE FLAC__bool FLAC__bitwriter_write_raw_uint32(FLAC__BitWriter *bw, FLAC__uint32 val, unsigned bits) |
| { |
| register unsigned left; |
| |
| /* WATCHOUT: code does not work with <32bit words; we can make things much faster with this assertion */ |
| FLAC__ASSERT(FLAC__BITS_PER_WORD >= 32); |
| |
| FLAC__ASSERT(0 != bw); |
| FLAC__ASSERT(0 != bw->buffer); |
| |
| FLAC__ASSERT(bits <= 32); |
| if(bits == 0) |
| return true; |
| |
| /* slightly pessimistic size check but faster than "<= bw->words + (bw->bits+bits+FLAC__BITS_PER_WORD-1)/FLAC__BITS_PER_WORD" */ |
| if(bw->capacity <= bw->words + bits && !bitwriter_grow_(bw, bits)) |
| return false; |
| |
| left = FLAC__BITS_PER_WORD - bw->bits; |
| if(bits < left) { |
| bw->accum <<= bits; |
| bw->accum |= val; |
| bw->bits += bits; |
| } |
| else if(bw->bits) { /* WATCHOUT: if bw->bits == 0, left==FLAC__BITS_PER_WORD and bw->accum<<=left is a NOP instead of setting to 0 */ |
| bw->accum <<= left; |
| bw->accum |= val >> (bw->bits = bits - left); |
| bw->buffer[bw->words++] = SWAP_BE_WORD_TO_HOST(bw->accum); |
| bw->accum = val; |
| } |
| else { |
| bw->accum = val; |
| bw->bits = 0; |
| bw->buffer[bw->words++] = SWAP_BE_WORD_TO_HOST(val); |
| } |
| |
| return true; |
| } |
| |
| FLaC__INLINE FLAC__bool FLAC__bitwriter_write_raw_int32(FLAC__BitWriter *bw, FLAC__int32 val, unsigned bits) |
| { |
| /* zero-out unused bits */ |
| if(bits < 32) |
| val &= (~(0xffffffff << bits)); |
| |
| return FLAC__bitwriter_write_raw_uint32(bw, (FLAC__uint32)val, bits); |
| } |
| |
| FLaC__INLINE FLAC__bool FLAC__bitwriter_write_raw_uint64(FLAC__BitWriter *bw, FLAC__uint64 val, unsigned bits) |
| { |
| /* this could be a little faster but it's not used for much */ |
| if(bits > 32) { |
| return |
| FLAC__bitwriter_write_raw_uint32(bw, (FLAC__uint32)(val>>32), bits-32) && |
| FLAC__bitwriter_write_raw_uint32(bw, (FLAC__uint32)val, 32); |
| } |
| else |
| return FLAC__bitwriter_write_raw_uint32(bw, (FLAC__uint32)val, bits); |
| } |
| |
| FLaC__INLINE FLAC__bool FLAC__bitwriter_write_raw_uint32_little_endian(FLAC__BitWriter *bw, FLAC__uint32 val) |
| { |
| /* this doesn't need to be that fast as currently it is only used for vorbis comments */ |
| |
| if(!FLAC__bitwriter_write_raw_uint32(bw, val & 0xff, 8)) |
| return false; |
| if(!FLAC__bitwriter_write_raw_uint32(bw, (val>>8) & 0xff, 8)) |
| return false; |
| if(!FLAC__bitwriter_write_raw_uint32(bw, (val>>16) & 0xff, 8)) |
| return false; |
| if(!FLAC__bitwriter_write_raw_uint32(bw, val>>24, 8)) |
| return false; |
| |
| return true; |
| } |
| |
| FLaC__INLINE FLAC__bool FLAC__bitwriter_write_byte_block(FLAC__BitWriter *bw, const FLAC__byte vals[], unsigned nvals) |
| { |
| unsigned i; |
| |
| /* this could be faster but currently we don't need it to be since it's only used for writing metadata */ |
| for(i = 0; i < nvals; i++) { |
| if(!FLAC__bitwriter_write_raw_uint32(bw, (FLAC__uint32)(vals[i]), 8)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| FLAC__bool FLAC__bitwriter_write_unary_unsigned(FLAC__BitWriter *bw, unsigned val) |
| { |
| if(val < 32) |
| return FLAC__bitwriter_write_raw_uint32(bw, 1, ++val); |
| else |
| return |
| FLAC__bitwriter_write_zeroes(bw, val) && |
| FLAC__bitwriter_write_raw_uint32(bw, 1, 1); |
| } |
| |
| unsigned FLAC__bitwriter_rice_bits(FLAC__int32 val, unsigned parameter) |
| { |
| FLAC__uint32 uval; |
| |
| FLAC__ASSERT(parameter < sizeof(unsigned)*8); |
| |
| /* fold signed to unsigned; actual formula is: negative(v)? -2v-1 : 2v */ |
| uval = (val<<1) ^ (val>>31); |
| |
| return 1 + parameter + (uval >> parameter); |
| } |
| |
| #if 0 /* UNUSED */ |
| unsigned FLAC__bitwriter_golomb_bits_signed(int val, unsigned parameter) |
| { |
| unsigned bits, msbs, uval; |
| unsigned k; |
| |
| FLAC__ASSERT(parameter > 0); |
| |
| /* fold signed to unsigned */ |
| if(val < 0) |
| uval = (unsigned)(((-(++val)) << 1) + 1); |
| else |
| uval = (unsigned)(val << 1); |
| |
| k = FLAC__bitmath_ilog2(parameter); |
| if(parameter == 1u<<k) { |
| FLAC__ASSERT(k <= 30); |
| |
| msbs = uval >> k; |
| bits = 1 + k + msbs; |
| } |
| else { |
| unsigned q, r, d; |
| |
| d = (1 << (k+1)) - parameter; |
| q = uval / parameter; |
| r = uval - (q * parameter); |
| |
| bits = 1 + q + k; |
| if(r >= d) |
| bits++; |
| } |
| return bits; |
| } |
| |
| unsigned FLAC__bitwriter_golomb_bits_unsigned(unsigned uval, unsigned parameter) |
| { |
| unsigned bits, msbs; |
| unsigned k; |
| |
| FLAC__ASSERT(parameter > 0); |
| |
| k = FLAC__bitmath_ilog2(parameter); |
| if(parameter == 1u<<k) { |
| FLAC__ASSERT(k <= 30); |
| |
| msbs = uval >> k; |
| bits = 1 + k + msbs; |
| } |
| else { |
| unsigned q, r, d; |
| |
| d = (1 << (k+1)) - parameter; |
| q = uval / parameter; |
| r = uval - (q * parameter); |
| |
| bits = 1 + q + k; |
| if(r >= d) |
| bits++; |
| } |
| return bits; |
| } |
| #endif /* UNUSED */ |
| |
| FLAC__bool FLAC__bitwriter_write_rice_signed(FLAC__BitWriter *bw, FLAC__int32 val, unsigned parameter) |
| { |
| unsigned total_bits, interesting_bits, msbs; |
| FLAC__uint32 uval, pattern; |
| |
| FLAC__ASSERT(0 != bw); |
| FLAC__ASSERT(0 != bw->buffer); |
| FLAC__ASSERT(parameter < 8*sizeof(uval)); |
| |
| /* fold signed to unsigned; actual formula is: negative(v)? -2v-1 : 2v */ |
| uval = (val<<1) ^ (val>>31); |
| |
| msbs = uval >> parameter; |
| interesting_bits = 1 + parameter; |
| total_bits = interesting_bits + msbs; |
| pattern = 1 << parameter; /* the unary end bit */ |
| pattern |= (uval & ((1<<parameter)-1)); /* the binary LSBs */ |
| |
| if(total_bits <= 32) |
| return FLAC__bitwriter_write_raw_uint32(bw, pattern, total_bits); |
| else |
| return |
| FLAC__bitwriter_write_zeroes(bw, msbs) && /* write the unary MSBs */ |
| FLAC__bitwriter_write_raw_uint32(bw, pattern, interesting_bits); /* write the unary end bit and binary LSBs */ |
| } |
| |
| FLAC__bool FLAC__bitwriter_write_rice_signed_block(FLAC__BitWriter *bw, const FLAC__int32 *vals, unsigned nvals, unsigned parameter) |
| { |
| const FLAC__uint32 mask1 = FLAC__WORD_ALL_ONES << parameter; /* we val|=mask1 to set the stop bit above it... */ |
| const FLAC__uint32 mask2 = FLAC__WORD_ALL_ONES >> (31-parameter); /* ...then mask off the bits above the stop bit with val&=mask2*/ |
| FLAC__uint32 uval; |
| unsigned left; |
| const unsigned lsbits = 1 + parameter; |
| unsigned msbits; |
| |
| FLAC__ASSERT(0 != bw); |
| FLAC__ASSERT(0 != bw->buffer); |
| FLAC__ASSERT(parameter < 8*sizeof(bwword)-1); |
| /* WATCHOUT: code does not work with <32bit words; we can make things much faster with this assertion */ |
| FLAC__ASSERT(FLAC__BITS_PER_WORD >= 32); |
| |
| while(nvals) { |
| /* fold signed to unsigned; actual formula is: negative(v)? -2v-1 : 2v */ |
| uval = (*vals<<1) ^ (*vals>>31); |
| |
| msbits = uval >> parameter; |
| |
| #if 0 /* OPT: can remove this special case if it doesn't make up for the extra compare (doesn't make a statistically significant difference with msvc or gcc/x86) */ |
| if(bw->bits && bw->bits + msbits + lsbits <= FLAC__BITS_PER_WORD) { /* i.e. if the whole thing fits in the current bwword */ |
| /* ^^^ if bw->bits is 0 then we may have filled the buffer and have no free bwword to work in */ |
| bw->bits = bw->bits + msbits + lsbits; |
| uval |= mask1; /* set stop bit */ |
| uval &= mask2; /* mask off unused top bits */ |
| /* NOT: bw->accum <<= msbits + lsbits because msbits+lsbits could be 32, then the shift would be a NOP */ |
| bw->accum <<= msbits; |
| bw->accum <<= lsbits; |
| bw->accum |= uval; |
| if(bw->bits == FLAC__BITS_PER_WORD) { |
| bw->buffer[bw->words++] = SWAP_BE_WORD_TO_HOST(bw->accum); |
| bw->bits = 0; |
| /* burying the capacity check down here means we have to grow the buffer a little if there are more vals to do */ |
| if(bw->capacity <= bw->words && nvals > 1 && !bitwriter_grow_(bw, 1)) { |
| FLAC__ASSERT(bw->capacity == bw->words); |
| return false; |
| } |
| } |
| } |
| else { |
| #elif 1 /*@@@@@@ OPT: try this version with MSVC6 to see if better, not much difference for gcc-4 */ |
| if(bw->bits && bw->bits + msbits + lsbits < FLAC__BITS_PER_WORD) { /* i.e. if the whole thing fits in the current bwword */ |
| /* ^^^ if bw->bits is 0 then we may have filled the buffer and have no free bwword to work in */ |
| bw->bits = bw->bits + msbits + lsbits; |
| uval |= mask1; /* set stop bit */ |
| uval &= mask2; /* mask off unused top bits */ |
| bw->accum <<= msbits + lsbits; |
| bw->accum |= uval; |
| } |
| else { |
| #endif |
| /* slightly pessimistic size check but faster than "<= bw->words + (bw->bits+msbits+lsbits+FLAC__BITS_PER_WORD-1)/FLAC__BITS_PER_WORD" */ |
| /* OPT: pessimism may cause flurry of false calls to grow_ which eat up all savings before it */ |
| if(bw->capacity <= bw->words + bw->bits + msbits + 1/*lsbits always fit in 1 bwword*/ && !bitwriter_grow_(bw, msbits+lsbits)) |
| return false; |
| |
| if(msbits) { |
| /* first part gets to word alignment */ |
| if(bw->bits) { |
| left = FLAC__BITS_PER_WORD - bw->bits; |
| if(msbits < left) { |
| bw->accum <<= msbits; |
| bw->bits += msbits; |
| goto break1; |
| } |
| else { |
| bw->accum <<= left; |
| msbits -= left; |
| bw->buffer[bw->words++] = SWAP_BE_WORD_TO_HOST(bw->accum); |
| bw->bits = 0; |
| } |
| } |
| /* do whole words */ |
| while(msbits >= FLAC__BITS_PER_WORD) { |
| bw->buffer[bw->words++] = 0; |
| msbits -= FLAC__BITS_PER_WORD; |
| } |
| /* do any leftovers */ |
| if(msbits > 0) { |
| bw->accum = 0; |
| bw->bits = msbits; |
| } |
| } |
| break1: |
| uval |= mask1; /* set stop bit */ |
| uval &= mask2; /* mask off unused top bits */ |
| |
| left = FLAC__BITS_PER_WORD - bw->bits; |
| if(lsbits < left) { |
| bw->accum <<= lsbits; |
| bw->accum |= uval; |
| bw->bits += lsbits; |
| } |
| else { |
| /* if bw->bits == 0, left==FLAC__BITS_PER_WORD which will always |
| * be > lsbits (because of previous assertions) so it would have |
| * triggered the (lsbits<left) case above. |
| */ |
| FLAC__ASSERT(bw->bits); |
| FLAC__ASSERT(left < FLAC__BITS_PER_WORD); |
| bw->accum <<= left; |
| bw->accum |= uval >> (bw->bits = lsbits - left); |
| bw->buffer[bw->words++] = SWAP_BE_WORD_TO_HOST(bw->accum); |
| bw->accum = uval; |
| } |
| #if 1 |
| } |
| #endif |
| vals++; |
| nvals--; |
| } |
| return true; |
| } |
| |
| #if 0 /* UNUSED */ |
| FLAC__bool FLAC__bitwriter_write_golomb_signed(FLAC__BitWriter *bw, int val, unsigned parameter) |
| { |
| unsigned total_bits, msbs, uval; |
| unsigned k; |
| |
| FLAC__ASSERT(0 != bw); |
| FLAC__ASSERT(0 != bw->buffer); |
| FLAC__ASSERT(parameter > 0); |
| |
| /* fold signed to unsigned */ |
| if(val < 0) |
| uval = (unsigned)(((-(++val)) << 1) + 1); |
| else |
| uval = (unsigned)(val << 1); |
| |
| k = FLAC__bitmath_ilog2(parameter); |
| if(parameter == 1u<<k) { |
| unsigned pattern; |
| |
| FLAC__ASSERT(k <= 30); |
| |
| msbs = uval >> k; |
| total_bits = 1 + k + msbs; |
| pattern = 1 << k; /* the unary end bit */ |
| pattern |= (uval & ((1u<<k)-1)); /* the binary LSBs */ |
| |
| if(total_bits <= 32) { |
| if(!FLAC__bitwriter_write_raw_uint32(bw, pattern, total_bits)) |
| return false; |
| } |
| else { |
| /* write the unary MSBs */ |
| if(!FLAC__bitwriter_write_zeroes(bw, msbs)) |
| return false; |
| /* write the unary end bit and binary LSBs */ |
| if(!FLAC__bitwriter_write_raw_uint32(bw, pattern, k+1)) |
| return false; |
| } |
| } |
| else { |
| unsigned q, r, d; |
| |
| d = (1 << (k+1)) - parameter; |
| q = uval / parameter; |
| r = uval - (q * parameter); |
| /* write the unary MSBs */ |
| if(!FLAC__bitwriter_write_zeroes(bw, q)) |
| return false; |
| /* write the unary end bit */ |
| if(!FLAC__bitwriter_write_raw_uint32(bw, 1, 1)) |
| return false; |
| /* write the binary LSBs */ |
| if(r >= d) { |
| if(!FLAC__bitwriter_write_raw_uint32(bw, r+d, k+1)) |
| return false; |
| } |
| else { |
| if(!FLAC__bitwriter_write_raw_uint32(bw, r, k)) |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| FLAC__bool FLAC__bitwriter_write_golomb_unsigned(FLAC__BitWriter *bw, unsigned uval, unsigned parameter) |
| { |
| unsigned total_bits, msbs; |
| unsigned k; |
| |
| FLAC__ASSERT(0 != bw); |
| FLAC__ASSERT(0 != bw->buffer); |
| FLAC__ASSERT(parameter > 0); |
| |
| k = FLAC__bitmath_ilog2(parameter); |
| if(parameter == 1u<<k) { |
| unsigned pattern; |
| |
| FLAC__ASSERT(k <= 30); |
| |
| msbs = uval >> k; |
| total_bits = 1 + k + msbs; |
| pattern = 1 << k; /* the unary end bit */ |
| pattern |= (uval & ((1u<<k)-1)); /* the binary LSBs */ |
| |
| if(total_bits <= 32) { |
| if(!FLAC__bitwriter_write_raw_uint32(bw, pattern, total_bits)) |
| return false; |
| } |
| else { |
| /* write the unary MSBs */ |
| if(!FLAC__bitwriter_write_zeroes(bw, msbs)) |
| return false; |
| /* write the unary end bit and binary LSBs */ |
| if(!FLAC__bitwriter_write_raw_uint32(bw, pattern, k+1)) |
| return false; |
| } |
| } |
| else { |
| unsigned q, r, d; |
| |
| d = (1 << (k+1)) - parameter; |
| q = uval / parameter; |
| r = uval - (q * parameter); |
| /* write the unary MSBs */ |
| if(!FLAC__bitwriter_write_zeroes(bw, q)) |
| return false; |
| /* write the unary end bit */ |
| if(!FLAC__bitwriter_write_raw_uint32(bw, 1, 1)) |
| return false; |
| /* write the binary LSBs */ |
| if(r >= d) { |
| if(!FLAC__bitwriter_write_raw_uint32(bw, r+d, k+1)) |
| return false; |
| } |
| else { |
| if(!FLAC__bitwriter_write_raw_uint32(bw, r, k)) |
| return false; |
| } |
| } |
| return true; |
| } |
| #endif /* UNUSED */ |
| |
| FLAC__bool FLAC__bitwriter_write_utf8_uint32(FLAC__BitWriter *bw, FLAC__uint32 val) |
| { |
| FLAC__bool ok = 1; |
| |
| FLAC__ASSERT(0 != bw); |
| FLAC__ASSERT(0 != bw->buffer); |
| |
| FLAC__ASSERT(!(val & 0x80000000)); /* this version only handles 31 bits */ |
| |
| if(val < 0x80) { |
| return FLAC__bitwriter_write_raw_uint32(bw, val, 8); |
| } |
| else if(val < 0x800) { |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0xC0 | (val>>6), 8); |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (val&0x3F), 8); |
| } |
| else if(val < 0x10000) { |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0xE0 | (val>>12), 8); |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | ((val>>6)&0x3F), 8); |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (val&0x3F), 8); |
| } |
| else if(val < 0x200000) { |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0xF0 | (val>>18), 8); |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | ((val>>12)&0x3F), 8); |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | ((val>>6)&0x3F), 8); |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (val&0x3F), 8); |
| } |
| else if(val < 0x4000000) { |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0xF8 | (val>>24), 8); |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | ((val>>18)&0x3F), 8); |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | ((val>>12)&0x3F), 8); |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | ((val>>6)&0x3F), 8); |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (val&0x3F), 8); |
| } |
| else { |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0xFC | (val>>30), 8); |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | ((val>>24)&0x3F), 8); |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | ((val>>18)&0x3F), 8); |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | ((val>>12)&0x3F), 8); |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | ((val>>6)&0x3F), 8); |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (val&0x3F), 8); |
| } |
| |
| return ok; |
| } |
| |
| FLAC__bool FLAC__bitwriter_write_utf8_uint64(FLAC__BitWriter *bw, FLAC__uint64 val) |
| { |
| FLAC__bool ok = 1; |
| |
| FLAC__ASSERT(0 != bw); |
| FLAC__ASSERT(0 != bw->buffer); |
| |
| FLAC__ASSERT(!(val & FLAC__U64L(0xFFFFFFF000000000))); /* this version only handles 36 bits */ |
| |
| if(val < 0x80) { |
| return FLAC__bitwriter_write_raw_uint32(bw, (FLAC__uint32)val, 8); |
| } |
| else if(val < 0x800) { |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0xC0 | (FLAC__uint32)(val>>6), 8); |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)(val&0x3F), 8); |
| } |
| else if(val < 0x10000) { |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0xE0 | (FLAC__uint32)(val>>12), 8); |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)((val>>6)&0x3F), 8); |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)(val&0x3F), 8); |
| } |
| else if(val < 0x200000) { |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0xF0 | (FLAC__uint32)(val>>18), 8); |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)((val>>12)&0x3F), 8); |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)((val>>6)&0x3F), 8); |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)(val&0x3F), 8); |
| } |
| else if(val < 0x4000000) { |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0xF8 | (FLAC__uint32)(val>>24), 8); |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)((val>>18)&0x3F), 8); |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)((val>>12)&0x3F), 8); |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)((val>>6)&0x3F), 8); |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)(val&0x3F), 8); |
| } |
| else if(val < 0x80000000) { |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0xFC | (FLAC__uint32)(val>>30), 8); |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)((val>>24)&0x3F), 8); |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)((val>>18)&0x3F), 8); |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)((val>>12)&0x3F), 8); |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)((val>>6)&0x3F), 8); |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)(val&0x3F), 8); |
| } |
| else { |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0xFE, 8); |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)((val>>30)&0x3F), 8); |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)((val>>24)&0x3F), 8); |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)((val>>18)&0x3F), 8); |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)((val>>12)&0x3F), 8); |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)((val>>6)&0x3F), 8); |
| ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)(val&0x3F), 8); |
| } |
| |
| return ok; |
| } |
| |
| FLAC__bool FLAC__bitwriter_zero_pad_to_byte_boundary(FLAC__BitWriter *bw) |
| { |
| /* 0-pad to byte boundary */ |
| if(bw->bits & 7u) |
| return FLAC__bitwriter_write_zeroes(bw, 8 - (bw->bits & 7u)); |
| else |
| return true; |
| } |