| // Copyright 2022 Google Inc. All Rights Reserved. |
| // |
| // Use of this source code is governed by a BSD-style license |
| // that can be found in the COPYING file in the root of the source |
| // tree. An additional intellectual property rights grant can be found |
| // in the file PATENTS. All contributing project authors may |
| // be found in the AUTHORS file in the root of the source tree. |
| // ----------------------------------------------------------------------------- |
| // |
| // Gamma correction utilities. |
| |
| #include "sharpyuv/sharpyuv_gamma.h" |
| |
| #include <assert.h> |
| #include <math.h> |
| |
| #include "src/webp/types.h" |
| |
| // Gamma correction compensates loss of resolution during chroma subsampling. |
| // Size of pre-computed table for converting from gamma to linear. |
| #define GAMMA_TO_LINEAR_TAB_BITS 10 |
| #define GAMMA_TO_LINEAR_TAB_SIZE (1 << GAMMA_TO_LINEAR_TAB_BITS) |
| static uint32_t kGammaToLinearTabS[GAMMA_TO_LINEAR_TAB_SIZE + 2]; |
| #define LINEAR_TO_GAMMA_TAB_BITS 9 |
| #define LINEAR_TO_GAMMA_TAB_SIZE (1 << LINEAR_TO_GAMMA_TAB_BITS) |
| static uint32_t kLinearToGammaTabS[LINEAR_TO_GAMMA_TAB_SIZE + 2]; |
| |
| static const double kGammaF = 1. / 0.45; |
| #define GAMMA_TO_LINEAR_BITS 16 |
| |
| static volatile int kGammaTablesSOk = 0; |
| void SharpYuvInitGammaTables(void) { |
| assert(GAMMA_TO_LINEAR_BITS <= 16); |
| if (!kGammaTablesSOk) { |
| int v; |
| const double a = 0.09929682680944; |
| const double thresh = 0.018053968510807; |
| const double final_scale = 1 << GAMMA_TO_LINEAR_BITS; |
| // Precompute gamma to linear table. |
| { |
| const double norm = 1. / GAMMA_TO_LINEAR_TAB_SIZE; |
| const double a_rec = 1. / (1. + a); |
| for (v = 0; v <= GAMMA_TO_LINEAR_TAB_SIZE; ++v) { |
| const double g = norm * v; |
| double value; |
| if (g <= thresh * 4.5) { |
| value = g / 4.5; |
| } else { |
| value = pow(a_rec * (g + a), kGammaF); |
| } |
| kGammaToLinearTabS[v] = (uint32_t)(value * final_scale + .5); |
| } |
| // to prevent small rounding errors to cause read-overflow: |
| kGammaToLinearTabS[GAMMA_TO_LINEAR_TAB_SIZE + 1] = |
| kGammaToLinearTabS[GAMMA_TO_LINEAR_TAB_SIZE]; |
| } |
| // Precompute linear to gamma table. |
| { |
| const double scale = 1. / LINEAR_TO_GAMMA_TAB_SIZE; |
| for (v = 0; v <= LINEAR_TO_GAMMA_TAB_SIZE; ++v) { |
| const double g = scale * v; |
| double value; |
| if (g <= thresh) { |
| value = 4.5 * g; |
| } else { |
| value = (1. + a) * pow(g, 1. / kGammaF) - a; |
| } |
| kLinearToGammaTabS[v] = |
| (uint32_t)(final_scale * value + 0.5); |
| } |
| // to prevent small rounding errors to cause read-overflow: |
| kLinearToGammaTabS[LINEAR_TO_GAMMA_TAB_SIZE + 1] = |
| kLinearToGammaTabS[LINEAR_TO_GAMMA_TAB_SIZE]; |
| } |
| kGammaTablesSOk = 1; |
| } |
| } |
| |
| static WEBP_INLINE int Shift(int v, int shift) { |
| return (shift >= 0) ? (v << shift) : (v >> -shift); |
| } |
| |
| static WEBP_INLINE uint32_t FixedPointInterpolation(int v, uint32_t* tab, |
| int tab_pos_shift_right, |
| int tab_value_shift) { |
| const uint32_t tab_pos = Shift(v, -tab_pos_shift_right); |
| // fractional part, in 'tab_pos_shift' fixed-point precision |
| const uint32_t x = v - (tab_pos << tab_pos_shift_right); // fractional part |
| // v0 / v1 are in kGammaToLinearBits fixed-point precision (range [0..1]) |
| const uint32_t v0 = Shift(tab[tab_pos + 0], tab_value_shift); |
| const uint32_t v1 = Shift(tab[tab_pos + 1], tab_value_shift); |
| // Final interpolation. |
| const uint32_t v2 = (v1 - v0) * x; // note: v1 >= v0. |
| const int half = |
| (tab_pos_shift_right > 0) ? 1 << (tab_pos_shift_right - 1) : 0; |
| const uint32_t result = v0 + ((v2 + half) >> tab_pos_shift_right); |
| return result; |
| } |
| |
| uint32_t SharpYuvGammaToLinear(uint16_t v, int bit_depth) { |
| const int shift = GAMMA_TO_LINEAR_TAB_BITS - bit_depth; |
| if (shift > 0) { |
| return kGammaToLinearTabS[v << shift]; |
| } |
| return FixedPointInterpolation(v, kGammaToLinearTabS, -shift, 0); |
| } |
| |
| uint16_t SharpYuvLinearToGamma(uint32_t value, int bit_depth) { |
| return FixedPointInterpolation( |
| value, kLinearToGammaTabS, |
| (GAMMA_TO_LINEAR_BITS - LINEAR_TO_GAMMA_TAB_BITS), |
| bit_depth - GAMMA_TO_LINEAR_BITS); |
| } |