blob: d0a3c1e12dd3747f3ec9cad08b5728df7f5b82ff [file] [log] [blame]
/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrGrCCFillGeometry_DEFINED
#define GrGrCCFillGeometry_DEFINED
#include "include/core/SkPoint.h"
#include "include/private/SkNx.h"
#include "include/private/SkTArray.h"
#include "src/core/SkGeometry.h"
/**
* This class chops device-space contours up into a series of segments that CCPR knows how to
* fill. (See GrCCFillGeometry::Verb.)
*
* NOTE: This must be done in device space, since an affine transformation can change whether a
* curve is monotonic.
*/
class GrCCFillGeometry {
public:
// These are the verbs that CCPR knows how to fill. If a path has any segments that don't map to
// this list, then they are chopped into smaller ones that do. A list of these comprise a
// compact representation of what can later be expanded into GPU instance data.
enum class Verb : uint8_t {
kBeginPath, // Included only for caller convenience.
kBeginContour,
kLineTo,
kMonotonicQuadraticTo, // Monotonic relative to the vector between its endpoints [P2 - P0].
kMonotonicCubicTo,
kMonotonicConicTo,
kEndClosedContour, // endPt == startPt.
kEndOpenContour // endPt != startPt.
};
// These tallies track numbers of CCPR primitives that are required to draw a contour.
struct PrimitiveTallies {
int fTriangles; // Number of triangles in the contour's fan.
int fWeightedTriangles; // Triangles (from the tessellator) whose winding magnitude > 1.
int fQuadratics;
int fCubics;
int fConics;
void operator+=(const PrimitiveTallies&);
PrimitiveTallies operator-(const PrimitiveTallies&) const;
bool operator==(const PrimitiveTallies&);
};
GrCCFillGeometry(int numSkPoints = 0, int numSkVerbs = 0, int numConicWeights = 0)
: fPoints(numSkPoints * 3) // Reserve for a 3x expansion in points and verbs.
, fVerbs(numSkVerbs * 3)
, fConicWeights(numConicWeights * 3/2) {}
const SkTArray<SkPoint, true>& points() const { SkASSERT(!fBuildingContour); return fPoints; }
const SkTArray<Verb, true>& verbs() const { SkASSERT(!fBuildingContour); return fVerbs; }
float getConicWeight(int idx) const { SkASSERT(!fBuildingContour); return fConicWeights[idx]; }
void reset() {
SkASSERT(!fBuildingContour);
fPoints.reset();
fVerbs.reset();
}
void beginPath();
void beginContour(const SkPoint&);
void lineTo(const SkPoint P[2]);
void quadraticTo(const SkPoint[3]);
// We pass through inflection points and loop intersections using a line and quadratic(s)
// respectively. 'inflectPad' and 'loopIntersectPad' specify how close (in pixels) cubic
// segments are allowed to get to these points. For normal rendering you will want to use the
// default values, but these can be overridden for testing purposes.
//
// NOTE: loops do appear to require two full pixels of padding around the intersection point.
// With just one pixel-width of pad, we start to see bad pixels. Ultimately this has a
// minimal effect on the total amount of segments produced. Most sections that pass
// through the loop intersection can be approximated with a single quadratic anyway,
// regardless of whether we are use one pixel of pad or two (1.622 avg. quads per loop
// intersection vs. 1.489 on the tiger).
void cubicTo(const SkPoint[4], float inflectPad = 0.55f, float loopIntersectPad = 2);
void conicTo(const SkPoint[3], float w);
PrimitiveTallies endContour(); // Returns the numbers of primitives needed to draw the contour.
private:
inline void appendLine(const Sk2f& p0, const Sk2f& p1);
inline void appendQuadratics(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2);
inline void appendMonotonicQuadratic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2);
enum class AppendCubicMode : bool {
kLiteral,
kApproximate
};
void appendCubics(AppendCubicMode, const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
const Sk2f& p3, const float chops[], int numChops, float localT0 = 0,
float localT1 = 1);
void appendCubics(AppendCubicMode, const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
const Sk2f& p3, int maxSubdivisions = 2);
void chopAndAppendCubicAtMidTangent(AppendCubicMode, const Sk2f& p0, const Sk2f& p1,
const Sk2f& p2, const Sk2f& p3, const Sk2f& tan0,
const Sk2f& tan1, int maxFutureSubdivisions);
void appendMonotonicConic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, float w);
// Transient state used while building a contour.
SkPoint fCurrAnchorPoint;
PrimitiveTallies fCurrContourTallies;
SkCubicType fCurrCubicType;
SkDEBUGCODE(bool fBuildingContour = false);
SkSTArray<128, SkPoint, true> fPoints;
SkSTArray<128, Verb, true> fVerbs;
SkSTArray<32, float, true> fConicWeights;
};
inline void GrCCFillGeometry::PrimitiveTallies::operator+=(const PrimitiveTallies& b) {
fTriangles += b.fTriangles;
fWeightedTriangles += b.fWeightedTriangles;
fQuadratics += b.fQuadratics;
fCubics += b.fCubics;
fConics += b.fConics;
}
GrCCFillGeometry::PrimitiveTallies
inline GrCCFillGeometry::PrimitiveTallies::operator-(const PrimitiveTallies& b) const {
return {fTriangles - b.fTriangles,
fWeightedTriangles - b.fWeightedTriangles,
fQuadratics - b.fQuadratics,
fCubics - b.fCubics,
fConics - b.fConics};
}
inline bool GrCCFillGeometry::PrimitiveTallies::operator==(const PrimitiveTallies& b) {
return fTriangles == b.fTriangles && fWeightedTriangles == b.fWeightedTriangles &&
fQuadratics == b.fQuadratics && fCubics == b.fCubics && fConics == b.fConics;
}
#endif