| /* |
| * Copyright 2017 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef GrGrCCFillGeometry_DEFINED |
| #define GrGrCCFillGeometry_DEFINED |
| |
| #include "include/core/SkPoint.h" |
| #include "include/private/SkNx.h" |
| #include "include/private/SkTArray.h" |
| #include "src/core/SkGeometry.h" |
| |
| /** |
| * This class chops device-space contours up into a series of segments that CCPR knows how to |
| * fill. (See GrCCFillGeometry::Verb.) |
| * |
| * NOTE: This must be done in device space, since an affine transformation can change whether a |
| * curve is monotonic. |
| */ |
| class GrCCFillGeometry { |
| public: |
| // These are the verbs that CCPR knows how to fill. If a path has any segments that don't map to |
| // this list, then they are chopped into smaller ones that do. A list of these comprise a |
| // compact representation of what can later be expanded into GPU instance data. |
| enum class Verb : uint8_t { |
| kBeginPath, // Included only for caller convenience. |
| kBeginContour, |
| kLineTo, |
| kMonotonicQuadraticTo, // Monotonic relative to the vector between its endpoints [P2 - P0]. |
| kMonotonicCubicTo, |
| kMonotonicConicTo, |
| kEndClosedContour, // endPt == startPt. |
| kEndOpenContour // endPt != startPt. |
| }; |
| |
| // These tallies track numbers of CCPR primitives that are required to draw a contour. |
| struct PrimitiveTallies { |
| int fTriangles; // Number of triangles in the contour's fan. |
| int fWeightedTriangles; // Triangles (from the tessellator) whose winding magnitude > 1. |
| int fQuadratics; |
| int fCubics; |
| int fConics; |
| |
| void operator+=(const PrimitiveTallies&); |
| PrimitiveTallies operator-(const PrimitiveTallies&) const; |
| bool operator==(const PrimitiveTallies&); |
| }; |
| |
| GrCCFillGeometry(int numSkPoints = 0, int numSkVerbs = 0, int numConicWeights = 0) |
| : fPoints(numSkPoints * 3) // Reserve for a 3x expansion in points and verbs. |
| , fVerbs(numSkVerbs * 3) |
| , fConicWeights(numConicWeights * 3/2) {} |
| |
| const SkTArray<SkPoint, true>& points() const { SkASSERT(!fBuildingContour); return fPoints; } |
| const SkTArray<Verb, true>& verbs() const { SkASSERT(!fBuildingContour); return fVerbs; } |
| float getConicWeight(int idx) const { SkASSERT(!fBuildingContour); return fConicWeights[idx]; } |
| |
| void reset() { |
| SkASSERT(!fBuildingContour); |
| fPoints.reset(); |
| fVerbs.reset(); |
| } |
| |
| void beginPath(); |
| void beginContour(const SkPoint&); |
| void lineTo(const SkPoint P[2]); |
| void quadraticTo(const SkPoint[3]); |
| |
| // We pass through inflection points and loop intersections using a line and quadratic(s) |
| // respectively. 'inflectPad' and 'loopIntersectPad' specify how close (in pixels) cubic |
| // segments are allowed to get to these points. For normal rendering you will want to use the |
| // default values, but these can be overridden for testing purposes. |
| // |
| // NOTE: loops do appear to require two full pixels of padding around the intersection point. |
| // With just one pixel-width of pad, we start to see bad pixels. Ultimately this has a |
| // minimal effect on the total amount of segments produced. Most sections that pass |
| // through the loop intersection can be approximated with a single quadratic anyway, |
| // regardless of whether we are use one pixel of pad or two (1.622 avg. quads per loop |
| // intersection vs. 1.489 on the tiger). |
| void cubicTo(const SkPoint[4], float inflectPad = 0.55f, float loopIntersectPad = 2); |
| |
| void conicTo(const SkPoint[3], float w); |
| |
| PrimitiveTallies endContour(); // Returns the numbers of primitives needed to draw the contour. |
| |
| private: |
| inline void appendLine(const Sk2f& p0, const Sk2f& p1); |
| |
| inline void appendQuadratics(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2); |
| inline void appendMonotonicQuadratic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2); |
| |
| enum class AppendCubicMode : bool { |
| kLiteral, |
| kApproximate |
| }; |
| void appendCubics(AppendCubicMode, const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, |
| const Sk2f& p3, const float chops[], int numChops, float localT0 = 0, |
| float localT1 = 1); |
| void appendCubics(AppendCubicMode, const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, |
| const Sk2f& p3, int maxSubdivisions = 2); |
| void chopAndAppendCubicAtMidTangent(AppendCubicMode, const Sk2f& p0, const Sk2f& p1, |
| const Sk2f& p2, const Sk2f& p3, const Sk2f& tan0, |
| const Sk2f& tan1, int maxFutureSubdivisions); |
| |
| void appendMonotonicConic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, float w); |
| |
| // Transient state used while building a contour. |
| SkPoint fCurrAnchorPoint; |
| PrimitiveTallies fCurrContourTallies; |
| SkCubicType fCurrCubicType; |
| SkDEBUGCODE(bool fBuildingContour = false); |
| |
| SkSTArray<128, SkPoint, true> fPoints; |
| SkSTArray<128, Verb, true> fVerbs; |
| SkSTArray<32, float, true> fConicWeights; |
| }; |
| |
| inline void GrCCFillGeometry::PrimitiveTallies::operator+=(const PrimitiveTallies& b) { |
| fTriangles += b.fTriangles; |
| fWeightedTriangles += b.fWeightedTriangles; |
| fQuadratics += b.fQuadratics; |
| fCubics += b.fCubics; |
| fConics += b.fConics; |
| } |
| |
| GrCCFillGeometry::PrimitiveTallies |
| inline GrCCFillGeometry::PrimitiveTallies::operator-(const PrimitiveTallies& b) const { |
| return {fTriangles - b.fTriangles, |
| fWeightedTriangles - b.fWeightedTriangles, |
| fQuadratics - b.fQuadratics, |
| fCubics - b.fCubics, |
| fConics - b.fConics}; |
| } |
| |
| inline bool GrCCFillGeometry::PrimitiveTallies::operator==(const PrimitiveTallies& b) { |
| return fTriangles == b.fTriangles && fWeightedTriangles == b.fWeightedTriangles && |
| fQuadratics == b.fQuadratics && fCubics == b.fCubics && fConics == b.fConics; |
| } |
| |
| #endif |