| /* |
| * Copyright 2017 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/gpu/ccpr/GrCCFiller.h" |
| |
| #include "include/core/SkPath.h" |
| #include "include/core/SkPoint.h" |
| #include "src/core/SkMathPriv.h" |
| #include "src/core/SkPathPriv.h" |
| #include "src/gpu/GrCaps.h" |
| #include "src/gpu/GrOnFlushResourceProvider.h" |
| #include "src/gpu/GrOpFlushState.h" |
| #include <stdlib.h> |
| |
| using TriPointInstance = GrCCCoverageProcessor::TriPointInstance; |
| using QuadPointInstance = GrCCCoverageProcessor::QuadPointInstance; |
| |
| GrCCFiller::GrCCFiller(Algorithm algorithm, int numPaths, int numSkPoints, int numSkVerbs, |
| int numConicWeights) |
| : fAlgorithm(algorithm) |
| , fGeometry(numSkPoints, numSkVerbs, numConicWeights) |
| , fPathInfos(numPaths) |
| , fScissorSubBatches(numPaths) |
| , fTotalPrimitiveCounts{PrimitiveTallies(), PrimitiveTallies()} { |
| // Batches decide what to draw by looking where the previous one ended. Define initial batches |
| // that "end" at the beginning of the data. These will not be drawn, but will only be be read by |
| // the first actual batch. |
| fScissorSubBatches.push_back() = {PrimitiveTallies(), SkIRect::MakeEmpty()}; |
| fBatches.push_back() = {PrimitiveTallies(), fScissorSubBatches.count(), PrimitiveTallies()}; |
| } |
| |
| void GrCCFiller::parseDeviceSpaceFill(const SkPath& path, const SkPoint* deviceSpacePts, |
| GrScissorTest scissorTest, const SkIRect& clippedDevIBounds, |
| const SkIVector& devToAtlasOffset) { |
| SkASSERT(!fInstanceBuffer); // Can't call after prepareToDraw(). |
| SkASSERT(!path.isEmpty()); |
| |
| int currPathPointsIdx = fGeometry.points().count(); |
| int currPathVerbsIdx = fGeometry.verbs().count(); |
| PrimitiveTallies currPathPrimitiveCounts = PrimitiveTallies(); |
| |
| fGeometry.beginPath(); |
| |
| const float* conicWeights = SkPathPriv::ConicWeightData(path); |
| int ptsIdx = 0; |
| int conicWeightsIdx = 0; |
| bool insideContour = false; |
| |
| for (SkPath::Verb verb : SkPathPriv::Verbs(path)) { |
| switch (verb) { |
| case SkPath::kMove_Verb: |
| if (insideContour) { |
| currPathPrimitiveCounts += fGeometry.endContour(); |
| } |
| fGeometry.beginContour(deviceSpacePts[ptsIdx]); |
| ++ptsIdx; |
| insideContour = true; |
| continue; |
| case SkPath::kClose_Verb: |
| if (insideContour) { |
| currPathPrimitiveCounts += fGeometry.endContour(); |
| } |
| insideContour = false; |
| continue; |
| case SkPath::kLine_Verb: |
| fGeometry.lineTo(&deviceSpacePts[ptsIdx - 1]); |
| ++ptsIdx; |
| continue; |
| case SkPath::kQuad_Verb: |
| fGeometry.quadraticTo(&deviceSpacePts[ptsIdx - 1]); |
| ptsIdx += 2; |
| continue; |
| case SkPath::kCubic_Verb: |
| fGeometry.cubicTo(&deviceSpacePts[ptsIdx - 1]); |
| ptsIdx += 3; |
| continue; |
| case SkPath::kConic_Verb: |
| fGeometry.conicTo(&deviceSpacePts[ptsIdx - 1], conicWeights[conicWeightsIdx]); |
| ptsIdx += 2; |
| ++conicWeightsIdx; |
| continue; |
| default: |
| SK_ABORT("Unexpected path verb."); |
| } |
| } |
| SkASSERT(ptsIdx == path.countPoints()); |
| SkASSERT(conicWeightsIdx == SkPathPriv::ConicWeightCnt(path)); |
| |
| if (insideContour) { |
| currPathPrimitiveCounts += fGeometry.endContour(); |
| } |
| |
| fPathInfos.emplace_back(scissorTest, devToAtlasOffset); |
| |
| // Tessellate fans from very large and/or simple paths, in order to reduce overdraw. |
| int numVerbs = fGeometry.verbs().count() - currPathVerbsIdx - 1; |
| int64_t tessellationWork = (int64_t)numVerbs * (32 - SkCLZ(numVerbs)); // N log N. |
| int64_t fanningWork = (int64_t)clippedDevIBounds.height() * clippedDevIBounds.width(); |
| if (tessellationWork * (50*50) + (100*100) < fanningWork) { // Don't tessellate under 100x100. |
| fPathInfos.back().tessellateFan( |
| fAlgorithm, path, fGeometry, currPathVerbsIdx, currPathPointsIdx, clippedDevIBounds, |
| &currPathPrimitiveCounts); |
| } |
| |
| fTotalPrimitiveCounts[(int)scissorTest] += currPathPrimitiveCounts; |
| |
| if (GrScissorTest::kEnabled == scissorTest) { |
| fScissorSubBatches.push_back() = {fTotalPrimitiveCounts[(int)GrScissorTest::kEnabled], |
| clippedDevIBounds.makeOffset(devToAtlasOffset)}; |
| } |
| } |
| |
| void GrCCFiller::PathInfo::tessellateFan( |
| Algorithm algorithm, const SkPath& originalPath, const GrCCFillGeometry& geometry, |
| int verbsIdx, int ptsIdx, const SkIRect& clippedDevIBounds, |
| PrimitiveTallies* newTriangleCounts) { |
| using Verb = GrCCFillGeometry::Verb; |
| SkASSERT(-1 == fFanTessellationCount); |
| SkASSERT(!fFanTessellation); |
| |
| const SkTArray<Verb, true>& verbs = geometry.verbs(); |
| const SkTArray<SkPoint, true>& pts = geometry.points(); |
| |
| newTriangleCounts->fTriangles = |
| newTriangleCounts->fWeightedTriangles = 0; |
| |
| // Build an SkPath of the Redbook fan. |
| SkPath fan; |
| if (Algorithm::kCoverageCount == algorithm) { |
| // We use "winding" fill type right now because we are producing a coverage count, and must |
| // fill in every region that has non-zero wind. The path processor will convert coverage |
| // count to the appropriate fill type later. |
| fan.setFillType(SkPathFillType::kWinding); |
| } else { |
| // When counting winding numbers in the stencil buffer, it works to use even/odd for the fan |
| // tessellation (where applicable). But we need to strip out inverse fill info because |
| // inverse-ness gets accounted for later on. |
| fan.setFillType(SkPathFillType_ConvertToNonInverse(originalPath.getNewFillType())); |
| } |
| SkASSERT(Verb::kBeginPath == verbs[verbsIdx]); |
| for (int i = verbsIdx + 1; i < verbs.count(); ++i) { |
| switch (verbs[i]) { |
| case Verb::kBeginPath: |
| SK_ABORT("Invalid GrCCFillGeometry"); |
| continue; |
| |
| case Verb::kBeginContour: |
| fan.moveTo(pts[ptsIdx++]); |
| continue; |
| |
| case Verb::kLineTo: |
| fan.lineTo(pts[ptsIdx++]); |
| continue; |
| |
| case Verb::kMonotonicQuadraticTo: |
| case Verb::kMonotonicConicTo: |
| fan.lineTo(pts[ptsIdx + 1]); |
| ptsIdx += 2; |
| continue; |
| |
| case Verb::kMonotonicCubicTo: |
| fan.lineTo(pts[ptsIdx + 2]); |
| ptsIdx += 3; |
| continue; |
| |
| case Verb::kEndClosedContour: |
| case Verb::kEndOpenContour: |
| fan.close(); |
| continue; |
| } |
| } |
| |
| GrTessellator::WindingVertex* vertices = nullptr; |
| SkASSERT(!fan.isInverseFillType()); |
| fFanTessellationCount = GrTessellator::PathToVertices( |
| fan, std::numeric_limits<float>::infinity(), SkRect::Make(clippedDevIBounds), |
| &vertices); |
| if (fFanTessellationCount <= 0) { |
| SkASSERT(0 == fFanTessellationCount); |
| SkASSERT(nullptr == vertices); |
| return; |
| } |
| |
| SkASSERT(0 == fFanTessellationCount % 3); |
| for (int i = 0; i < fFanTessellationCount; i += 3) { |
| int tessWinding = vertices[i].fWinding; |
| SkASSERT(tessWinding == vertices[i + 1].fWinding); |
| SkASSERT(tessWinding == vertices[i + 2].fWinding); |
| |
| // Ensure this triangle's points actually wind in the same direction as tessWinding. |
| // CCPR shaders use the sign of wind to determine which direction to bloat, so even for |
| // "wound" triangles the winding sign and point ordering need to agree. |
| float ax = vertices[i].fPos.fX - vertices[i + 1].fPos.fX; |
| float ay = vertices[i].fPos.fY - vertices[i + 1].fPos.fY; |
| float bx = vertices[i].fPos.fX - vertices[i + 2].fPos.fX; |
| float by = vertices[i].fPos.fY - vertices[i + 2].fPos.fY; |
| float wind = ax*by - ay*bx; |
| if ((wind > 0) != (-tessWinding > 0)) { // Tessellator has opposite winding sense. |
| std::swap(vertices[i + 1].fPos, vertices[i + 2].fPos); |
| } |
| |
| int weight = abs(tessWinding); |
| if (SkPathFillType::kEvenOdd == fan.getNewFillType()) { |
| SkASSERT(Algorithm::kCoverageCount != algorithm); // Covg. count always uses winding. |
| if (weight != 1) { |
| // The tessellator doesn't wrap weights modulo 2 when we request even/odd fill type. |
| SkASSERT(weight & 1); // Even wind regions are empty and should have been omitted. |
| weight = 1; |
| } |
| } |
| if (weight > 1 && Algorithm::kCoverageCount == algorithm) { |
| ++newTriangleCounts->fWeightedTriangles; |
| } else { |
| newTriangleCounts->fTriangles += weight; |
| } |
| vertices[i].fWinding = weight; |
| } |
| |
| fFanTessellation.reset(static_cast<const GrTessellator::WindingVertex*>(vertices)); |
| } |
| |
| GrCCFiller::BatchID GrCCFiller::closeCurrentBatch() { |
| SkASSERT(!fInstanceBuffer); |
| SkASSERT(!fBatches.empty()); |
| |
| const auto& lastBatch = fBatches.back(); |
| int maxMeshes = 1 + fScissorSubBatches.count() - lastBatch.fEndScissorSubBatchIdx; |
| fMaxMeshesPerDraw = SkTMax(fMaxMeshesPerDraw, maxMeshes); |
| |
| const auto& lastScissorSubBatch = fScissorSubBatches[lastBatch.fEndScissorSubBatchIdx - 1]; |
| PrimitiveTallies batchTotalCounts = fTotalPrimitiveCounts[(int)GrScissorTest::kDisabled] - |
| lastBatch.fEndNonScissorIndices; |
| batchTotalCounts += fTotalPrimitiveCounts[(int)GrScissorTest::kEnabled] - |
| lastScissorSubBatch.fEndPrimitiveIndices; |
| |
| // This will invalidate lastBatch. |
| fBatches.push_back() = { |
| fTotalPrimitiveCounts[(int)GrScissorTest::kDisabled], |
| fScissorSubBatches.count(), |
| batchTotalCounts |
| }; |
| return fBatches.count() - 1; |
| } |
| |
| // Emits a contour's triangle fan. |
| // |
| // Classic Redbook fanning would be the triangles: [0 1 2], [0 2 3], ..., [0 n-2 n-1]. |
| // |
| // This function emits the triangle: [0 n/3 n*2/3], and then recurses on all three sides. The |
| // advantage to this approach is that for a convex-ish contour, it generates larger triangles. |
| // Classic fanning tends to generate long, skinny triangles, which are expensive to draw since they |
| // have a longer perimeter to rasterize and antialias. |
| // |
| // The indices array indexes the fan's points (think: glDrawElements), and must have at least log3 |
| // elements past the end for this method to use as scratch space. |
| // |
| // Returns the next triangle instance after the final one emitted. |
| static TriPointInstance* emit_recursive_fan( |
| const SkTArray<SkPoint, true>& pts, SkTArray<int32_t, true>& indices, int firstIndex, |
| int indexCount, const Sk2f& devToAtlasOffset, TriPointInstance::Ordering ordering, |
| TriPointInstance out[]) { |
| if (indexCount < 3) { |
| return out; |
| } |
| |
| int32_t oneThirdCount = indexCount / 3; |
| int32_t twoThirdsCount = (2 * indexCount) / 3; |
| out++->set(pts[indices[firstIndex]], pts[indices[firstIndex + oneThirdCount]], |
| pts[indices[firstIndex + twoThirdsCount]], devToAtlasOffset, ordering); |
| |
| out = emit_recursive_fan( |
| pts, indices, firstIndex, oneThirdCount + 1, devToAtlasOffset, ordering, out); |
| out = emit_recursive_fan( |
| pts, indices, firstIndex + oneThirdCount, twoThirdsCount - oneThirdCount + 1, |
| devToAtlasOffset, ordering, out); |
| |
| int endIndex = firstIndex + indexCount; |
| int32_t oldValue = indices[endIndex]; |
| indices[endIndex] = indices[firstIndex]; |
| out = emit_recursive_fan( |
| pts, indices, firstIndex + twoThirdsCount, indexCount - twoThirdsCount + 1, |
| devToAtlasOffset, ordering, out); |
| indices[endIndex] = oldValue; |
| |
| return out; |
| } |
| |
| void GrCCFiller::emitTessellatedFan( |
| const GrTessellator::WindingVertex* vertices, int numVertices, const Sk2f& devToAtlasOffset, |
| TriPointInstance::Ordering ordering, TriPointInstance* triPointInstanceData, |
| QuadPointInstance* quadPointInstanceData, GrCCFillGeometry::PrimitiveTallies* indices) { |
| for (int i = 0; i < numVertices; i += 3) { |
| int weight = vertices[i].fWinding; |
| SkASSERT(weight >= 1); |
| if (weight > 1 && Algorithm::kStencilWindingCount != fAlgorithm) { |
| quadPointInstanceData[indices->fWeightedTriangles++].setW( |
| vertices[i].fPos, vertices[i+1].fPos, vertices[i + 2].fPos, devToAtlasOffset, |
| static_cast<float>(abs(vertices[i].fWinding))); |
| } else for (int j = 0; j < weight; ++j) { |
| // Unfortunately, there is not a way to increment stencil values by an amount larger |
| // than 1. Instead we draw the triangle 'weight' times. |
| triPointInstanceData[indices->fTriangles++].set( |
| vertices[i].fPos, vertices[i + 1].fPos, vertices[i + 2].fPos, devToAtlasOffset, |
| ordering); |
| } |
| } |
| } |
| |
| bool GrCCFiller::prepareToDraw(GrOnFlushResourceProvider* onFlushRP) { |
| using Verb = GrCCFillGeometry::Verb; |
| SkASSERT(!fInstanceBuffer); |
| SkASSERT(fBatches.back().fEndNonScissorIndices == // Call closeCurrentBatch(). |
| fTotalPrimitiveCounts[(int)GrScissorTest::kDisabled]); |
| SkASSERT(fBatches.back().fEndScissorSubBatchIdx == fScissorSubBatches.count()); |
| |
| auto triangleOrdering = (Algorithm::kCoverageCount == fAlgorithm) |
| ? TriPointInstance::Ordering::kXYTransposed |
| : TriPointInstance::Ordering::kXYInterleaved; |
| |
| // Here we build a single instance buffer to share with every internal batch. |
| // |
| // CCPR processs 3 different types of primitives: triangles, quadratics, cubics. Each primitive |
| // type is further divided into instances that require a scissor and those that don't. This |
| // leaves us with 3*2 = 6 independent instance arrays to build for the GPU. |
| // |
| // Rather than place each instance array in its own GPU buffer, we allocate a single |
| // megabuffer and lay them all out side-by-side. We can offset the "baseInstance" parameter in |
| // our draw calls to direct the GPU to the applicable elements within a given array. |
| // |
| // We already know how big to make each of the 6 arrays from fTotalPrimitiveCounts, so layout is |
| // straightforward. Start with triangles and quadratics. They both view the instance buffer as |
| // an array of TriPointInstance[], so we can begin at zero and lay them out one after the other. |
| fBaseInstances[0].fTriangles = 0; |
| fBaseInstances[1].fTriangles = fBaseInstances[0].fTriangles + |
| fTotalPrimitiveCounts[0].fTriangles; |
| fBaseInstances[0].fQuadratics = fBaseInstances[1].fTriangles + |
| fTotalPrimitiveCounts[1].fTriangles; |
| fBaseInstances[1].fQuadratics = fBaseInstances[0].fQuadratics + |
| fTotalPrimitiveCounts[0].fQuadratics; |
| int triEndIdx = fBaseInstances[1].fQuadratics + fTotalPrimitiveCounts[1].fQuadratics; |
| |
| // Wound triangles and cubics both view the same instance buffer as an array of |
| // QuadPointInstance[]. So, reinterpreting the instance data as QuadPointInstance[], we start |
| // them on the first index that will not overwrite previous TriPointInstance data. |
| int quadBaseIdx = |
| GrSizeDivRoundUp(triEndIdx * sizeof(TriPointInstance), sizeof(QuadPointInstance)); |
| fBaseInstances[0].fWeightedTriangles = quadBaseIdx; |
| fBaseInstances[1].fWeightedTriangles = fBaseInstances[0].fWeightedTriangles + |
| fTotalPrimitiveCounts[0].fWeightedTriangles; |
| fBaseInstances[0].fCubics = fBaseInstances[1].fWeightedTriangles + |
| fTotalPrimitiveCounts[1].fWeightedTriangles; |
| fBaseInstances[1].fCubics = fBaseInstances[0].fCubics + fTotalPrimitiveCounts[0].fCubics; |
| fBaseInstances[0].fConics = fBaseInstances[1].fCubics + fTotalPrimitiveCounts[1].fCubics; |
| fBaseInstances[1].fConics = fBaseInstances[0].fConics + fTotalPrimitiveCounts[0].fConics; |
| int quadEndIdx = fBaseInstances[1].fConics + fTotalPrimitiveCounts[1].fConics; |
| |
| fInstanceBuffer = |
| onFlushRP->makeBuffer(GrGpuBufferType::kVertex, quadEndIdx * sizeof(QuadPointInstance)); |
| if (!fInstanceBuffer) { |
| SkDebugf("WARNING: failed to allocate CCPR fill instance buffer.\n"); |
| return false; |
| } |
| |
| TriPointInstance* triPointInstanceData = static_cast<TriPointInstance*>(fInstanceBuffer->map()); |
| QuadPointInstance* quadPointInstanceData = |
| reinterpret_cast<QuadPointInstance*>(triPointInstanceData); |
| SkASSERT(quadPointInstanceData); |
| |
| PathInfo* nextPathInfo = fPathInfos.begin(); |
| Sk2f devToAtlasOffset; |
| PrimitiveTallies instanceIndices[2] = {fBaseInstances[0], fBaseInstances[1]}; |
| PrimitiveTallies* currIndices = nullptr; |
| SkSTArray<256, int32_t, true> currFan; |
| bool currFanIsTessellated = false; |
| |
| const SkTArray<SkPoint, true>& pts = fGeometry.points(); |
| int ptsIdx = -1; |
| int nextConicWeightIdx = 0; |
| |
| // Expand the ccpr verbs into GPU instance buffers. |
| for (Verb verb : fGeometry.verbs()) { |
| switch (verb) { |
| case Verb::kBeginPath: |
| SkASSERT(currFan.empty()); |
| currIndices = &instanceIndices[(int)nextPathInfo->scissorTest()]; |
| devToAtlasOffset = Sk2f(static_cast<float>(nextPathInfo->devToAtlasOffset().fX), |
| static_cast<float>(nextPathInfo->devToAtlasOffset().fY)); |
| currFanIsTessellated = nextPathInfo->hasFanTessellation(); |
| if (currFanIsTessellated) { |
| this->emitTessellatedFan( |
| nextPathInfo->fanTessellation(), nextPathInfo->fanTessellationCount(), |
| devToAtlasOffset, triangleOrdering, triPointInstanceData, |
| quadPointInstanceData, currIndices); |
| } |
| ++nextPathInfo; |
| continue; |
| |
| case Verb::kBeginContour: |
| SkASSERT(currFan.empty()); |
| ++ptsIdx; |
| if (!currFanIsTessellated) { |
| currFan.push_back(ptsIdx); |
| } |
| continue; |
| |
| case Verb::kLineTo: |
| ++ptsIdx; |
| if (!currFanIsTessellated) { |
| SkASSERT(!currFan.empty()); |
| currFan.push_back(ptsIdx); |
| } |
| continue; |
| |
| case Verb::kMonotonicQuadraticTo: |
| triPointInstanceData[currIndices->fQuadratics++].set( |
| &pts[ptsIdx], devToAtlasOffset, TriPointInstance::Ordering::kXYTransposed); |
| ptsIdx += 2; |
| if (!currFanIsTessellated) { |
| SkASSERT(!currFan.empty()); |
| currFan.push_back(ptsIdx); |
| } |
| continue; |
| |
| case Verb::kMonotonicCubicTo: |
| quadPointInstanceData[currIndices->fCubics++].set( |
| &pts[ptsIdx], devToAtlasOffset[0], devToAtlasOffset[1]); |
| ptsIdx += 3; |
| if (!currFanIsTessellated) { |
| SkASSERT(!currFan.empty()); |
| currFan.push_back(ptsIdx); |
| } |
| continue; |
| |
| case Verb::kMonotonicConicTo: |
| quadPointInstanceData[currIndices->fConics++].setW( |
| &pts[ptsIdx], devToAtlasOffset, |
| fGeometry.getConicWeight(nextConicWeightIdx)); |
| ptsIdx += 2; |
| ++nextConicWeightIdx; |
| if (!currFanIsTessellated) { |
| SkASSERT(!currFan.empty()); |
| currFan.push_back(ptsIdx); |
| } |
| continue; |
| |
| case Verb::kEndClosedContour: // endPt == startPt. |
| if (!currFanIsTessellated) { |
| SkASSERT(!currFan.empty()); |
| currFan.pop_back(); |
| } |
| // fallthru. |
| case Verb::kEndOpenContour: // endPt != startPt. |
| SkASSERT(!currFanIsTessellated || currFan.empty()); |
| if (!currFanIsTessellated && currFan.count() >= 3) { |
| int fanSize = currFan.count(); |
| // Reserve space for emit_recursive_fan. Technically this can grow to |
| // fanSize + log3(fanSize), but we approximate with log2. |
| currFan.push_back_n(SkNextLog2(fanSize)); |
| SkDEBUGCODE(TriPointInstance* end =) emit_recursive_fan( |
| pts, currFan, 0, fanSize, devToAtlasOffset, triangleOrdering, |
| triPointInstanceData + currIndices->fTriangles); |
| currIndices->fTriangles += fanSize - 2; |
| SkASSERT(triPointInstanceData + currIndices->fTriangles == end); |
| } |
| currFan.reset(); |
| continue; |
| } |
| } |
| |
| fInstanceBuffer->unmap(); |
| |
| SkASSERT(nextPathInfo == fPathInfos.end()); |
| SkASSERT(ptsIdx == pts.count() - 1); |
| SkASSERT(instanceIndices[0].fTriangles == fBaseInstances[1].fTriangles); |
| SkASSERT(instanceIndices[1].fTriangles == fBaseInstances[0].fQuadratics); |
| SkASSERT(instanceIndices[0].fQuadratics == fBaseInstances[1].fQuadratics); |
| SkASSERT(instanceIndices[1].fQuadratics == triEndIdx); |
| SkASSERT(instanceIndices[0].fWeightedTriangles == fBaseInstances[1].fWeightedTriangles); |
| SkASSERT(instanceIndices[1].fWeightedTriangles == fBaseInstances[0].fCubics); |
| SkASSERT(instanceIndices[0].fCubics == fBaseInstances[1].fCubics); |
| SkASSERT(instanceIndices[1].fCubics == fBaseInstances[0].fConics); |
| SkASSERT(instanceIndices[0].fConics == fBaseInstances[1].fConics); |
| SkASSERT(instanceIndices[1].fConics == quadEndIdx); |
| |
| fMeshesScratchBuffer.reserve(fMaxMeshesPerDraw); |
| fScissorRectScratchBuffer.reserve(fMaxMeshesPerDraw); |
| |
| return true; |
| } |
| |
| void GrCCFiller::drawFills( |
| GrOpFlushState* flushState, GrCCCoverageProcessor* proc, const GrPipeline& pipeline, |
| BatchID batchID, const SkIRect& drawBounds) const { |
| using PrimitiveType = GrCCCoverageProcessor::PrimitiveType; |
| |
| SkASSERT(fInstanceBuffer); |
| |
| GrResourceProvider* rp = flushState->resourceProvider(); |
| const PrimitiveTallies& batchTotalCounts = fBatches[batchID].fTotalPrimitiveCounts; |
| |
| if (batchTotalCounts.fTriangles) { |
| proc->reset(PrimitiveType::kTriangles, rp); |
| this->drawPrimitives( |
| flushState, *proc, pipeline, batchID, &PrimitiveTallies::fTriangles, drawBounds); |
| } |
| |
| if (batchTotalCounts.fWeightedTriangles) { |
| SkASSERT(Algorithm::kStencilWindingCount != fAlgorithm); |
| proc->reset(PrimitiveType::kWeightedTriangles, rp); |
| this->drawPrimitives( |
| flushState, *proc, pipeline, batchID, &PrimitiveTallies::fWeightedTriangles, |
| drawBounds); |
| } |
| |
| if (batchTotalCounts.fQuadratics) { |
| proc->reset(PrimitiveType::kQuadratics, rp); |
| this->drawPrimitives( |
| flushState, *proc, pipeline, batchID, &PrimitiveTallies::fQuadratics, drawBounds); |
| } |
| |
| if (batchTotalCounts.fCubics) { |
| proc->reset(PrimitiveType::kCubics, rp); |
| this->drawPrimitives( |
| flushState, *proc, pipeline, batchID, &PrimitiveTallies::fCubics, drawBounds); |
| } |
| |
| if (batchTotalCounts.fConics) { |
| proc->reset(PrimitiveType::kConics, rp); |
| this->drawPrimitives( |
| flushState, *proc, pipeline, batchID, &PrimitiveTallies::fConics, drawBounds); |
| } |
| } |
| |
| void GrCCFiller::drawPrimitives( |
| GrOpFlushState* flushState, const GrCCCoverageProcessor& proc, const GrPipeline& pipeline, |
| BatchID batchID, int PrimitiveTallies::*instanceType, const SkIRect& drawBounds) const { |
| SkASSERT(pipeline.isScissorEnabled()); |
| |
| // Don't call reset(), as that also resets the reserve count. |
| fMeshesScratchBuffer.pop_back_n(fMeshesScratchBuffer.count()); |
| fScissorRectScratchBuffer.pop_back_n(fScissorRectScratchBuffer.count()); |
| |
| SkASSERT(batchID > 0); |
| SkASSERT(batchID < fBatches.count()); |
| const Batch& previousBatch = fBatches[batchID - 1]; |
| const Batch& batch = fBatches[batchID]; |
| SkDEBUGCODE(int totalInstanceCount = 0); |
| |
| if (int instanceCount = batch.fEndNonScissorIndices.*instanceType - |
| previousBatch.fEndNonScissorIndices.*instanceType) { |
| SkASSERT(instanceCount > 0); |
| int baseInstance = fBaseInstances[(int)GrScissorTest::kDisabled].*instanceType + |
| previousBatch.fEndNonScissorIndices.*instanceType; |
| proc.appendMesh(fInstanceBuffer, instanceCount, baseInstance, &fMeshesScratchBuffer); |
| fScissorRectScratchBuffer.push_back().setXYWH(0, 0, drawBounds.width(), |
| drawBounds.height()); |
| SkDEBUGCODE(totalInstanceCount += instanceCount); |
| } |
| |
| SkASSERT(previousBatch.fEndScissorSubBatchIdx > 0); |
| SkASSERT(batch.fEndScissorSubBatchIdx <= fScissorSubBatches.count()); |
| int baseScissorInstance = fBaseInstances[(int)GrScissorTest::kEnabled].*instanceType; |
| for (int i = previousBatch.fEndScissorSubBatchIdx; i < batch.fEndScissorSubBatchIdx; ++i) { |
| const ScissorSubBatch& previousSubBatch = fScissorSubBatches[i - 1]; |
| const ScissorSubBatch& scissorSubBatch = fScissorSubBatches[i]; |
| int startIndex = previousSubBatch.fEndPrimitiveIndices.*instanceType; |
| int instanceCount = scissorSubBatch.fEndPrimitiveIndices.*instanceType - startIndex; |
| if (!instanceCount) { |
| continue; |
| } |
| SkASSERT(instanceCount > 0); |
| proc.appendMesh(fInstanceBuffer, instanceCount, baseScissorInstance + startIndex, |
| &fMeshesScratchBuffer); |
| fScissorRectScratchBuffer.push_back() = scissorSubBatch.fScissor; |
| SkDEBUGCODE(totalInstanceCount += instanceCount); |
| } |
| |
| SkASSERT(fMeshesScratchBuffer.count() == fScissorRectScratchBuffer.count()); |
| SkASSERT(fMeshesScratchBuffer.count() <= fMaxMeshesPerDraw); |
| SkASSERT(totalInstanceCount == batch.fTotalPrimitiveCounts.*instanceType); |
| |
| if (!fMeshesScratchBuffer.empty()) { |
| proc.draw(flushState, pipeline, fScissorRectScratchBuffer.begin(), |
| fMeshesScratchBuffer.begin(), fMeshesScratchBuffer.count(), |
| SkRect::Make(drawBounds)); |
| } |
| } |