|  | // Copyright (c) 1994-2006 Sun Microsystems Inc. | 
|  | // All Rights Reserved. | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions | 
|  | // are met: | 
|  | // | 
|  | // - Redistributions of source code must retain the above copyright notice, | 
|  | // this list of conditions and the following disclaimer. | 
|  | // | 
|  | // - Redistribution in binary form must reproduce the above copyright | 
|  | // notice, this list of conditions and the following disclaimer in the | 
|  | // documentation and/or other materials provided with the | 
|  | // distribution. | 
|  | // | 
|  | // - Neither the name of Sun Microsystems or the names of contributors may | 
|  | // be used to endorse or promote products derived from this software without | 
|  | // specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
|  | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
|  | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS | 
|  | // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE | 
|  | // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, | 
|  | // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | 
|  | // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR | 
|  | // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | 
|  | // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | 
|  | // OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  |  | 
|  | // The original source code covered by the above license above has been | 
|  | // modified significantly by Google Inc. | 
|  | // Copyright 2012 the V8 project authors. All rights reserved. | 
|  |  | 
|  | #include "src/codegen/arm/assembler-arm.h" | 
|  |  | 
|  | #if V8_TARGET_ARCH_ARM | 
|  |  | 
|  | #include "src/base/bits.h" | 
|  | #include "src/base/cpu.h" | 
|  | #include "src/base/overflowing-math.h" | 
|  | #include "src/codegen/arm/assembler-arm-inl.h" | 
|  | #include "src/codegen/assembler-inl.h" | 
|  | #include "src/codegen/macro-assembler.h" | 
|  | #include "src/codegen/string-constants.h" | 
|  | #include "src/deoptimizer/deoptimizer.h" | 
|  | #include "src/objects/objects-inl.h" | 
|  |  | 
|  | namespace v8 { | 
|  | namespace internal { | 
|  |  | 
|  | static const unsigned kArmv6 = 0u; | 
|  | static const unsigned kArmv7 = kArmv6 | (1u << ARMv7); | 
|  | static const unsigned kArmv7WithSudiv = kArmv7 | (1u << ARMv7_SUDIV); | 
|  | static const unsigned kArmv8 = kArmv7WithSudiv | (1u << ARMv8); | 
|  |  | 
|  | static unsigned CpuFeaturesFromCommandLine() { | 
|  | unsigned result; | 
|  | if (strcmp(FLAG_arm_arch, "armv8") == 0) { | 
|  | result = kArmv8; | 
|  | } else if (strcmp(FLAG_arm_arch, "armv7+sudiv") == 0) { | 
|  | result = kArmv7WithSudiv; | 
|  | } else if (strcmp(FLAG_arm_arch, "armv7") == 0) { | 
|  | result = kArmv7; | 
|  | } else if (strcmp(FLAG_arm_arch, "armv6") == 0) { | 
|  | result = kArmv6; | 
|  | } else { | 
|  | fprintf(stderr, "Error: unrecognised value for --arm-arch ('%s').\n", | 
|  | FLAG_arm_arch); | 
|  | fprintf(stderr, | 
|  | "Supported values are:  armv8\n" | 
|  | "                       armv7+sudiv\n" | 
|  | "                       armv7\n" | 
|  | "                       armv6\n"); | 
|  | FATAL("arm-arch"); | 
|  | } | 
|  |  | 
|  | // If any of the old (deprecated) flags are specified, print a warning, but | 
|  | // otherwise try to respect them for now. | 
|  | // TODO(jbramley): When all the old bots have been updated, remove this. | 
|  | if (FLAG_enable_armv7.has_value || FLAG_enable_vfp3.has_value || | 
|  | FLAG_enable_32dregs.has_value || FLAG_enable_neon.has_value || | 
|  | FLAG_enable_sudiv.has_value || FLAG_enable_armv8.has_value) { | 
|  | // As an approximation of the old behaviour, set the default values from the | 
|  | // arm_arch setting, then apply the flags over the top. | 
|  | bool enable_armv7 = (result & (1u << ARMv7)) != 0; | 
|  | bool enable_vfp3 = (result & (1u << ARMv7)) != 0; | 
|  | bool enable_32dregs = (result & (1u << ARMv7)) != 0; | 
|  | bool enable_neon = (result & (1u << ARMv7)) != 0; | 
|  | bool enable_sudiv = (result & (1u << ARMv7_SUDIV)) != 0; | 
|  | bool enable_armv8 = (result & (1u << ARMv8)) != 0; | 
|  | if (FLAG_enable_armv7.has_value) { | 
|  | fprintf(stderr, | 
|  | "Warning: --enable_armv7 is deprecated. " | 
|  | "Use --arm_arch instead.\n"); | 
|  | enable_armv7 = FLAG_enable_armv7.value; | 
|  | } | 
|  | if (FLAG_enable_vfp3.has_value) { | 
|  | fprintf(stderr, | 
|  | "Warning: --enable_vfp3 is deprecated. " | 
|  | "Use --arm_arch instead.\n"); | 
|  | enable_vfp3 = FLAG_enable_vfp3.value; | 
|  | } | 
|  | if (FLAG_enable_32dregs.has_value) { | 
|  | fprintf(stderr, | 
|  | "Warning: --enable_32dregs is deprecated. " | 
|  | "Use --arm_arch instead.\n"); | 
|  | enable_32dregs = FLAG_enable_32dregs.value; | 
|  | } | 
|  | if (FLAG_enable_neon.has_value) { | 
|  | fprintf(stderr, | 
|  | "Warning: --enable_neon is deprecated. " | 
|  | "Use --arm_arch instead.\n"); | 
|  | enable_neon = FLAG_enable_neon.value; | 
|  | } | 
|  | if (FLAG_enable_sudiv.has_value) { | 
|  | fprintf(stderr, | 
|  | "Warning: --enable_sudiv is deprecated. " | 
|  | "Use --arm_arch instead.\n"); | 
|  | enable_sudiv = FLAG_enable_sudiv.value; | 
|  | } | 
|  | if (FLAG_enable_armv8.has_value) { | 
|  | fprintf(stderr, | 
|  | "Warning: --enable_armv8 is deprecated. " | 
|  | "Use --arm_arch instead.\n"); | 
|  | enable_armv8 = FLAG_enable_armv8.value; | 
|  | } | 
|  | // Emulate the old implications. | 
|  | if (enable_armv8) { | 
|  | enable_vfp3 = true; | 
|  | enable_neon = true; | 
|  | enable_32dregs = true; | 
|  | enable_sudiv = true; | 
|  | } | 
|  | // Select the best available configuration. | 
|  | if (enable_armv7 && enable_vfp3 && enable_32dregs && enable_neon) { | 
|  | if (enable_sudiv) { | 
|  | if (enable_armv8) { | 
|  | result = kArmv8; | 
|  | } else { | 
|  | result = kArmv7WithSudiv; | 
|  | } | 
|  | } else { | 
|  | result = kArmv7; | 
|  | } | 
|  | } else { | 
|  | result = kArmv6; | 
|  | } | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | // Get the CPU features enabled by the build. | 
|  | // For cross compilation the preprocessor symbols such as | 
|  | // CAN_USE_ARMV7_INSTRUCTIONS and CAN_USE_VFP3_INSTRUCTIONS can be used to | 
|  | // enable ARMv7 and VFPv3 instructions when building the snapshot. However, | 
|  | // these flags should be consistent with a supported ARM configuration: | 
|  | //  "armv6":       ARMv6 + VFPv2 | 
|  | //  "armv7":       ARMv7 + VFPv3-D32 + NEON | 
|  | //  "armv7+sudiv": ARMv7 + VFPv4-D32 + NEON + SUDIV | 
|  | //  "armv8":       ARMv8 (+ all of the above) | 
|  | static constexpr unsigned CpuFeaturesFromCompiler() { | 
|  | // TODO(jbramley): Once the build flags are simplified, these tests should | 
|  | // also be simplified. | 
|  |  | 
|  | // Check *architectural* implications. | 
|  | #if defined(CAN_USE_ARMV8_INSTRUCTIONS) && !defined(CAN_USE_ARMV7_INSTRUCTIONS) | 
|  | #error "CAN_USE_ARMV8_INSTRUCTIONS should imply CAN_USE_ARMV7_INSTRUCTIONS" | 
|  | #endif | 
|  | #if defined(CAN_USE_ARMV8_INSTRUCTIONS) && !defined(CAN_USE_SUDIV) | 
|  | #error "CAN_USE_ARMV8_INSTRUCTIONS should imply CAN_USE_SUDIV" | 
|  | #endif | 
|  | #if defined(CAN_USE_ARMV7_INSTRUCTIONS) != defined(CAN_USE_VFP3_INSTRUCTIONS) | 
|  | // V8 requires VFP, and all ARMv7 devices with VFP have VFPv3. Similarly, | 
|  | // VFPv3 isn't available before ARMv7. | 
|  | #error "CAN_USE_ARMV7_INSTRUCTIONS should match CAN_USE_VFP3_INSTRUCTIONS" | 
|  | #endif | 
|  | #if defined(CAN_USE_NEON) && !defined(CAN_USE_ARMV7_INSTRUCTIONS) | 
|  | #error "CAN_USE_NEON should imply CAN_USE_ARMV7_INSTRUCTIONS" | 
|  | #endif | 
|  |  | 
|  | // Find compiler-implied features. | 
|  | #if defined(CAN_USE_ARMV8_INSTRUCTIONS) &&                           \ | 
|  | defined(CAN_USE_ARMV7_INSTRUCTIONS) && defined(CAN_USE_SUDIV) && \ | 
|  | defined(CAN_USE_NEON) && defined(CAN_USE_VFP3_INSTRUCTIONS) | 
|  | return kArmv8; | 
|  | #elif defined(CAN_USE_ARMV7_INSTRUCTIONS) && defined(CAN_USE_SUDIV) && \ | 
|  | defined(CAN_USE_NEON) && defined(CAN_USE_VFP3_INSTRUCTIONS) | 
|  | return kArmv7WithSudiv; | 
|  | #elif defined(CAN_USE_ARMV7_INSTRUCTIONS) && defined(CAN_USE_NEON) && \ | 
|  | defined(CAN_USE_VFP3_INSTRUCTIONS) | 
|  | return kArmv7; | 
|  | #else | 
|  | return kArmv6; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void CpuFeatures::ProbeImpl(bool cross_compile) { | 
|  | dcache_line_size_ = 64; | 
|  |  | 
|  | unsigned command_line = CpuFeaturesFromCommandLine(); | 
|  | // Only use statically determined features for cross compile (snapshot). | 
|  | if (cross_compile) { | 
|  | supported_ |= command_line & CpuFeaturesFromCompiler(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | #ifndef __arm__ | 
|  | // For the simulator build, use whatever the flags specify. | 
|  | supported_ |= command_line; | 
|  |  | 
|  | #else  // __arm__ | 
|  | // Probe for additional features at runtime. | 
|  | base::CPU cpu; | 
|  | // Runtime detection is slightly fuzzy, and some inferences are necessary. | 
|  | unsigned runtime = kArmv6; | 
|  | // NEON and VFPv3 imply at least ARMv7-A. | 
|  | if (cpu.has_neon() && cpu.has_vfp3_d32()) { | 
|  | DCHECK(cpu.has_vfp3()); | 
|  | runtime |= kArmv7; | 
|  | if (cpu.has_idiva()) { | 
|  | runtime |= kArmv7WithSudiv; | 
|  | if (cpu.architecture() >= 8) { | 
|  | runtime |= kArmv8; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Use the best of the features found by CPU detection and those inferred from | 
|  | // the build system. In both cases, restrict available features using the | 
|  | // command-line. Note that the command-line flags are very permissive (kArmv8) | 
|  | // by default. | 
|  | supported_ |= command_line & CpuFeaturesFromCompiler(); | 
|  | supported_ |= command_line & runtime; | 
|  |  | 
|  | // Additional tuning options. | 
|  |  | 
|  | // ARM Cortex-A9 and Cortex-A5 have 32 byte cachelines. | 
|  | if (cpu.implementer() == base::CPU::ARM && | 
|  | (cpu.part() == base::CPU::ARM_CORTEX_A5 || | 
|  | cpu.part() == base::CPU::ARM_CORTEX_A9)) { | 
|  | dcache_line_size_ = 32; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | DCHECK_IMPLIES(IsSupported(ARMv7_SUDIV), IsSupported(ARMv7)); | 
|  | DCHECK_IMPLIES(IsSupported(ARMv8), IsSupported(ARMv7_SUDIV)); | 
|  | } | 
|  |  | 
|  | void CpuFeatures::PrintTarget() { | 
|  | const char* arm_arch = nullptr; | 
|  | const char* arm_target_type = ""; | 
|  | const char* arm_no_probe = ""; | 
|  | const char* arm_fpu = ""; | 
|  | const char* arm_thumb = ""; | 
|  | const char* arm_float_abi = nullptr; | 
|  |  | 
|  | #if !defined __arm__ | 
|  | arm_target_type = " simulator"; | 
|  | #endif | 
|  |  | 
|  | #if defined ARM_TEST_NO_FEATURE_PROBE | 
|  | arm_no_probe = " noprobe"; | 
|  | #endif | 
|  |  | 
|  | #if defined CAN_USE_ARMV8_INSTRUCTIONS | 
|  | arm_arch = "arm v8"; | 
|  | #elif defined CAN_USE_ARMV7_INSTRUCTIONS | 
|  | arm_arch = "arm v7"; | 
|  | #else | 
|  | arm_arch = "arm v6"; | 
|  | #endif | 
|  |  | 
|  | #if defined CAN_USE_NEON | 
|  | arm_fpu = " neon"; | 
|  | #elif defined CAN_USE_VFP3_INSTRUCTIONS | 
|  | #if defined CAN_USE_VFP32DREGS | 
|  | arm_fpu = " vfp3"; | 
|  | #else | 
|  | arm_fpu = " vfp3-d16"; | 
|  | #endif | 
|  | #else | 
|  | arm_fpu = " vfp2"; | 
|  | #endif | 
|  |  | 
|  | #ifdef __arm__ | 
|  | arm_float_abi = base::OS::ArmUsingHardFloat() ? "hard" : "softfp"; | 
|  | #elif USE_EABI_HARDFLOAT | 
|  | arm_float_abi = "hard"; | 
|  | #else | 
|  | arm_float_abi = "softfp"; | 
|  | #endif | 
|  |  | 
|  | #if defined __arm__ && (defined __thumb__) || (defined __thumb2__) | 
|  | arm_thumb = " thumb"; | 
|  | #endif | 
|  |  | 
|  | printf("target%s%s %s%s%s %s\n", arm_target_type, arm_no_probe, arm_arch, | 
|  | arm_fpu, arm_thumb, arm_float_abi); | 
|  | } | 
|  |  | 
|  | void CpuFeatures::PrintFeatures() { | 
|  | printf("ARMv8=%d ARMv7=%d VFPv3=%d VFP32DREGS=%d NEON=%d SUDIV=%d", | 
|  | CpuFeatures::IsSupported(ARMv8), CpuFeatures::IsSupported(ARMv7), | 
|  | CpuFeatures::IsSupported(VFPv3), CpuFeatures::IsSupported(VFP32DREGS), | 
|  | CpuFeatures::IsSupported(NEON), CpuFeatures::IsSupported(SUDIV)); | 
|  | #ifdef __arm__ | 
|  | bool eabi_hardfloat = base::OS::ArmUsingHardFloat(); | 
|  | #elif USE_EABI_HARDFLOAT | 
|  | bool eabi_hardfloat = true; | 
|  | #else | 
|  | bool eabi_hardfloat = false; | 
|  | #endif | 
|  | printf(" USE_EABI_HARDFLOAT=%d\n", eabi_hardfloat); | 
|  | } | 
|  |  | 
|  | // ----------------------------------------------------------------------------- | 
|  | // Implementation of RelocInfo | 
|  |  | 
|  | // static | 
|  | const int RelocInfo::kApplyMask = | 
|  | RelocInfo::ModeMask(RelocInfo::RELATIVE_CODE_TARGET); | 
|  |  | 
|  | bool RelocInfo::IsCodedSpecially() { | 
|  | // The deserializer needs to know whether a pointer is specially coded.  Being | 
|  | // specially coded on ARM means that it is a movw/movt instruction. We don't | 
|  | // generate those for relocatable pointers. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool RelocInfo::IsInConstantPool() { | 
|  | return Assembler::is_constant_pool_load(pc_); | 
|  | } | 
|  |  | 
|  | uint32_t RelocInfo::wasm_call_tag() const { | 
|  | DCHECK(rmode_ == WASM_CALL || rmode_ == WASM_STUB_CALL); | 
|  | return static_cast<uint32_t>( | 
|  | Assembler::target_address_at(pc_, constant_pool_)); | 
|  | } | 
|  |  | 
|  | // ----------------------------------------------------------------------------- | 
|  | // Implementation of Operand and MemOperand | 
|  | // See assembler-arm-inl.h for inlined constructors | 
|  |  | 
|  | Operand::Operand(Handle<HeapObject> handle) { | 
|  | rm_ = no_reg; | 
|  | value_.immediate = static_cast<intptr_t>(handle.address()); | 
|  | rmode_ = RelocInfo::FULL_EMBEDDED_OBJECT; | 
|  | } | 
|  |  | 
|  | Operand::Operand(Register rm, ShiftOp shift_op, int shift_imm) { | 
|  | DCHECK(is_uint5(shift_imm)); | 
|  |  | 
|  | rm_ = rm; | 
|  | rs_ = no_reg; | 
|  | shift_op_ = shift_op; | 
|  | shift_imm_ = shift_imm & 31; | 
|  |  | 
|  | if ((shift_op == ROR) && (shift_imm == 0)) { | 
|  | // ROR #0 is functionally equivalent to LSL #0 and this allow us to encode | 
|  | // RRX as ROR #0 (See below). | 
|  | shift_op = LSL; | 
|  | } else if (shift_op == RRX) { | 
|  | // encoded as ROR with shift_imm == 0 | 
|  | DCHECK_EQ(shift_imm, 0); | 
|  | shift_op_ = ROR; | 
|  | shift_imm_ = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | Operand::Operand(Register rm, ShiftOp shift_op, Register rs) { | 
|  | DCHECK(shift_op != RRX); | 
|  | rm_ = rm; | 
|  | rs_ = no_reg; | 
|  | shift_op_ = shift_op; | 
|  | rs_ = rs; | 
|  | } | 
|  |  | 
|  | Operand Operand::EmbeddedNumber(double value) { | 
|  | int32_t smi; | 
|  | if (DoubleToSmiInteger(value, &smi)) return Operand(Smi::FromInt(smi)); | 
|  | Operand result(0, RelocInfo::FULL_EMBEDDED_OBJECT); | 
|  | result.is_heap_object_request_ = true; | 
|  | result.value_.heap_object_request = HeapObjectRequest(value); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | Operand Operand::EmbeddedStringConstant(const StringConstantBase* str) { | 
|  | Operand result(0, RelocInfo::FULL_EMBEDDED_OBJECT); | 
|  | result.is_heap_object_request_ = true; | 
|  | result.value_.heap_object_request = HeapObjectRequest(str); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | MemOperand::MemOperand(Register rn, int32_t offset, AddrMode am) | 
|  | : rn_(rn), rm_(no_reg), offset_(offset), am_(am) { | 
|  | // Accesses below the stack pointer are not safe, and are prohibited by the | 
|  | // ABI. We can check obvious violations here. | 
|  | if (rn == sp) { | 
|  | if (am == Offset) DCHECK_LE(0, offset); | 
|  | if (am == NegOffset) DCHECK_GE(0, offset); | 
|  | } | 
|  | } | 
|  |  | 
|  | MemOperand::MemOperand(Register rn, Register rm, AddrMode am) | 
|  | : rn_(rn), rm_(rm), shift_op_(LSL), shift_imm_(0), am_(am) {} | 
|  |  | 
|  | MemOperand::MemOperand(Register rn, Register rm, ShiftOp shift_op, | 
|  | int shift_imm, AddrMode am) | 
|  | : rn_(rn), | 
|  | rm_(rm), | 
|  | shift_op_(shift_op), | 
|  | shift_imm_(shift_imm & 31), | 
|  | am_(am) { | 
|  | DCHECK(is_uint5(shift_imm)); | 
|  | } | 
|  |  | 
|  | NeonMemOperand::NeonMemOperand(Register rn, AddrMode am, int align) | 
|  | : rn_(rn), rm_(am == Offset ? pc : sp) { | 
|  | DCHECK((am == Offset) || (am == PostIndex)); | 
|  | SetAlignment(align); | 
|  | } | 
|  |  | 
|  | NeonMemOperand::NeonMemOperand(Register rn, Register rm, int align) | 
|  | : rn_(rn), rm_(rm) { | 
|  | SetAlignment(align); | 
|  | } | 
|  |  | 
|  | void NeonMemOperand::SetAlignment(int align) { | 
|  | switch (align) { | 
|  | case 0: | 
|  | align_ = 0; | 
|  | break; | 
|  | case 64: | 
|  | align_ = 1; | 
|  | break; | 
|  | case 128: | 
|  | align_ = 2; | 
|  | break; | 
|  | case 256: | 
|  | align_ = 3; | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Assembler::AllocateAndInstallRequestedHeapObjects(Isolate* isolate) { | 
|  | DCHECK_IMPLIES(isolate == nullptr, heap_object_requests_.empty()); | 
|  | for (auto& request : heap_object_requests_) { | 
|  | Handle<HeapObject> object; | 
|  | switch (request.kind()) { | 
|  | case HeapObjectRequest::kHeapNumber: | 
|  | object = isolate->factory()->NewHeapNumber<AllocationType::kOld>( | 
|  | request.heap_number()); | 
|  | break; | 
|  | case HeapObjectRequest::kStringConstant: { | 
|  | const StringConstantBase* str = request.string(); | 
|  | CHECK_NOT_NULL(str); | 
|  | object = str->AllocateStringConstant(isolate); | 
|  | break; | 
|  | } | 
|  | } | 
|  | Address pc = reinterpret_cast<Address>(buffer_start_) + request.offset(); | 
|  | Memory<Address>(constant_pool_entry_address(pc, 0 /* unused */)) = | 
|  | object.address(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // ----------------------------------------------------------------------------- | 
|  | // Specific instructions, constants, and masks. | 
|  |  | 
|  | // str(r, MemOperand(sp, 4, NegPreIndex), al) instruction (aka push(r)) | 
|  | // register r is not encoded. | 
|  | const Instr kPushRegPattern = al | B26 | 4 | NegPreIndex | sp.code() * B16; | 
|  | // ldr(r, MemOperand(sp, 4, PostIndex), al) instruction (aka pop(r)) | 
|  | // register r is not encoded. | 
|  | const Instr kPopRegPattern = al | B26 | L | 4 | PostIndex | sp.code() * B16; | 
|  | // ldr rd, [pc, #offset] | 
|  | const Instr kLdrPCImmedMask = 15 * B24 | 7 * B20 | 15 * B16; | 
|  | const Instr kLdrPCImmedPattern = 5 * B24 | L | pc.code() * B16; | 
|  | // Pc-relative call or jump to a signed imm24 offset. | 
|  | // bl pc + #offset | 
|  | // b  pc + #offset | 
|  | const Instr kBOrBlPCImmedMask = 0xE * B24; | 
|  | const Instr kBOrBlPCImmedPattern = 0xA * B24; | 
|  | // vldr dd, [pc, #offset] | 
|  | const Instr kVldrDPCMask = 15 * B24 | 3 * B20 | 15 * B16 | 15 * B8; | 
|  | const Instr kVldrDPCPattern = 13 * B24 | L | pc.code() * B16 | 11 * B8; | 
|  | // blxcc rm | 
|  | const Instr kBlxRegMask = | 
|  | 15 * B24 | 15 * B20 | 15 * B16 | 15 * B12 | 15 * B8 | 15 * B4; | 
|  | const Instr kBlxRegPattern = B24 | B21 | 15 * B16 | 15 * B12 | 15 * B8 | BLX; | 
|  | const Instr kBlxIp = al | kBlxRegPattern | ip.code(); | 
|  | const Instr kMovMvnMask = 0x6D * B21 | 0xF * B16; | 
|  | const Instr kMovMvnPattern = 0xD * B21; | 
|  | const Instr kMovMvnFlip = B22; | 
|  | const Instr kMovLeaveCCMask = 0xDFF * B16; | 
|  | const Instr kMovLeaveCCPattern = 0x1A0 * B16; | 
|  | const Instr kMovwPattern = 0x30 * B20; | 
|  | const Instr kMovtPattern = 0x34 * B20; | 
|  | const Instr kMovwLeaveCCFlip = 0x5 * B21; | 
|  | const Instr kMovImmedMask = 0x7F * B21; | 
|  | const Instr kMovImmedPattern = 0x1D * B21; | 
|  | const Instr kOrrImmedMask = 0x7F * B21; | 
|  | const Instr kOrrImmedPattern = 0x1C * B21; | 
|  | const Instr kCmpCmnMask = 0xDD * B20 | 0xF * B12; | 
|  | const Instr kCmpCmnPattern = 0x15 * B20; | 
|  | const Instr kCmpCmnFlip = B21; | 
|  | const Instr kAddSubFlip = 0x6 * B21; | 
|  | const Instr kAndBicFlip = 0xE * B21; | 
|  |  | 
|  | // A mask for the Rd register for push, pop, ldr, str instructions. | 
|  | const Instr kLdrRegFpOffsetPattern = al | B26 | L | Offset | fp.code() * B16; | 
|  | const Instr kStrRegFpOffsetPattern = al | B26 | Offset | fp.code() * B16; | 
|  | const Instr kLdrRegFpNegOffsetPattern = | 
|  | al | B26 | L | NegOffset | fp.code() * B16; | 
|  | const Instr kStrRegFpNegOffsetPattern = al | B26 | NegOffset | fp.code() * B16; | 
|  | const Instr kLdrStrInstrTypeMask = 0xFFFF0000; | 
|  |  | 
|  | Assembler::Assembler(const AssemblerOptions& options, | 
|  | std::unique_ptr<AssemblerBuffer> buffer) | 
|  | : AssemblerBase(options, std::move(buffer)), | 
|  | pending_32_bit_constants_(), | 
|  | scratch_register_list_(ip.bit()) { | 
|  | pending_32_bit_constants_.reserve(kMinNumPendingConstants); | 
|  | reloc_info_writer.Reposition(buffer_start_ + buffer_->size(), pc_); | 
|  | next_buffer_check_ = 0; | 
|  | const_pool_blocked_nesting_ = 0; | 
|  | no_const_pool_before_ = 0; | 
|  | first_const_pool_32_use_ = -1; | 
|  | last_bound_pos_ = 0; | 
|  | if (CpuFeatures::IsSupported(VFP32DREGS)) { | 
|  | // Register objects tend to be abstracted and survive between scopes, so | 
|  | // it's awkward to use CpuFeatures::VFP32DREGS with CpuFeatureScope. To make | 
|  | // its use consistent with other features, we always enable it if we can. | 
|  | EnableCpuFeature(VFP32DREGS); | 
|  | // Make sure we pick two D registers which alias a Q register. This way, we | 
|  | // can use a Q as a scratch if NEON is supported. | 
|  | scratch_vfp_register_list_ = d14.ToVfpRegList() | d15.ToVfpRegList(); | 
|  | } else { | 
|  | // When VFP32DREGS is not supported, d15 become allocatable. Therefore we | 
|  | // cannot use it as a scratch. | 
|  | scratch_vfp_register_list_ = d14.ToVfpRegList(); | 
|  | } | 
|  | } | 
|  |  | 
|  | Assembler::~Assembler() { DCHECK_EQ(const_pool_blocked_nesting_, 0); } | 
|  |  | 
|  | void Assembler::GetCode(Isolate* isolate, CodeDesc* desc, | 
|  | SafepointTableBuilder* safepoint_table_builder, | 
|  | int handler_table_offset) { | 
|  | // As a crutch to avoid having to add manual Align calls wherever we use a | 
|  | // raw workflow to create Code objects (mostly in tests), add another Align | 
|  | // call here. It does no harm - the end of the Code object is aligned to the | 
|  | // (larger) kCodeAlignment anyways. | 
|  | // TODO(jgruber): Consider moving responsibility for proper alignment to | 
|  | // metadata table builders (safepoint, handler, constant pool, code | 
|  | // comments). | 
|  | DataAlign(Code::kMetadataAlignment); | 
|  |  | 
|  | // Emit constant pool if necessary. | 
|  | CheckConstPool(true, false); | 
|  | DCHECK(pending_32_bit_constants_.empty()); | 
|  |  | 
|  | int code_comments_size = WriteCodeComments(); | 
|  |  | 
|  | AllocateAndInstallRequestedHeapObjects(isolate); | 
|  |  | 
|  | // Set up code descriptor. | 
|  | // TODO(jgruber): Reconsider how these offsets and sizes are maintained up to | 
|  | // this point to make CodeDesc initialization less fiddly. | 
|  |  | 
|  | static constexpr int kConstantPoolSize = 0; | 
|  | const int instruction_size = pc_offset(); | 
|  | const int code_comments_offset = instruction_size - code_comments_size; | 
|  | const int constant_pool_offset = code_comments_offset - kConstantPoolSize; | 
|  | const int handler_table_offset2 = (handler_table_offset == kNoHandlerTable) | 
|  | ? constant_pool_offset | 
|  | : handler_table_offset; | 
|  | const int safepoint_table_offset = | 
|  | (safepoint_table_builder == kNoSafepointTable) | 
|  | ? handler_table_offset2 | 
|  | : safepoint_table_builder->GetCodeOffset(); | 
|  | const int reloc_info_offset = | 
|  | static_cast<int>(reloc_info_writer.pos() - buffer_->start()); | 
|  | CodeDesc::Initialize(desc, this, safepoint_table_offset, | 
|  | handler_table_offset2, constant_pool_offset, | 
|  | code_comments_offset, reloc_info_offset); | 
|  | } | 
|  |  | 
|  | void Assembler::Align(int m) { | 
|  | DCHECK(m >= 4 && base::bits::IsPowerOfTwo(m)); | 
|  | DCHECK_EQ(pc_offset() & (kInstrSize - 1), 0); | 
|  | while ((pc_offset() & (m - 1)) != 0) { | 
|  | nop(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Assembler::CodeTargetAlign() { | 
|  | // Preferred alignment of jump targets on some ARM chips. | 
|  | Align(8); | 
|  | } | 
|  |  | 
|  | Condition Assembler::GetCondition(Instr instr) { | 
|  | return Instruction::ConditionField(instr); | 
|  | } | 
|  |  | 
|  | bool Assembler::IsLdrRegisterImmediate(Instr instr) { | 
|  | return (instr & (B27 | B26 | B25 | B22 | B20)) == (B26 | B20); | 
|  | } | 
|  |  | 
|  | bool Assembler::IsVldrDRegisterImmediate(Instr instr) { | 
|  | return (instr & (15 * B24 | 3 * B20 | 15 * B8)) == (13 * B24 | B20 | 11 * B8); | 
|  | } | 
|  |  | 
|  | int Assembler::GetLdrRegisterImmediateOffset(Instr instr) { | 
|  | DCHECK(IsLdrRegisterImmediate(instr)); | 
|  | bool positive = (instr & B23) == B23; | 
|  | int offset = instr & kOff12Mask;  // Zero extended offset. | 
|  | return positive ? offset : -offset; | 
|  | } | 
|  |  | 
|  | int Assembler::GetVldrDRegisterImmediateOffset(Instr instr) { | 
|  | DCHECK(IsVldrDRegisterImmediate(instr)); | 
|  | bool positive = (instr & B23) == B23; | 
|  | int offset = instr & kOff8Mask;  // Zero extended offset. | 
|  | offset <<= 2; | 
|  | return positive ? offset : -offset; | 
|  | } | 
|  |  | 
|  | Instr Assembler::SetLdrRegisterImmediateOffset(Instr instr, int offset) { | 
|  | DCHECK(IsLdrRegisterImmediate(instr)); | 
|  | bool positive = offset >= 0; | 
|  | if (!positive) offset = -offset; | 
|  | DCHECK(is_uint12(offset)); | 
|  | // Set bit indicating whether the offset should be added. | 
|  | instr = (instr & ~B23) | (positive ? B23 : 0); | 
|  | // Set the actual offset. | 
|  | return (instr & ~kOff12Mask) | offset; | 
|  | } | 
|  |  | 
|  | Instr Assembler::SetVldrDRegisterImmediateOffset(Instr instr, int offset) { | 
|  | DCHECK(IsVldrDRegisterImmediate(instr)); | 
|  | DCHECK((offset & ~3) == offset);  // Must be 64-bit aligned. | 
|  | bool positive = offset >= 0; | 
|  | if (!positive) offset = -offset; | 
|  | DCHECK(is_uint10(offset)); | 
|  | // Set bit indicating whether the offset should be added. | 
|  | instr = (instr & ~B23) | (positive ? B23 : 0); | 
|  | // Set the actual offset. Its bottom 2 bits are zero. | 
|  | return (instr & ~kOff8Mask) | (offset >> 2); | 
|  | } | 
|  |  | 
|  | bool Assembler::IsStrRegisterImmediate(Instr instr) { | 
|  | return (instr & (B27 | B26 | B25 | B22 | B20)) == B26; | 
|  | } | 
|  |  | 
|  | Instr Assembler::SetStrRegisterImmediateOffset(Instr instr, int offset) { | 
|  | DCHECK(IsStrRegisterImmediate(instr)); | 
|  | bool positive = offset >= 0; | 
|  | if (!positive) offset = -offset; | 
|  | DCHECK(is_uint12(offset)); | 
|  | // Set bit indicating whether the offset should be added. | 
|  | instr = (instr & ~B23) | (positive ? B23 : 0); | 
|  | // Set the actual offset. | 
|  | return (instr & ~kOff12Mask) | offset; | 
|  | } | 
|  |  | 
|  | bool Assembler::IsAddRegisterImmediate(Instr instr) { | 
|  | return (instr & (B27 | B26 | B25 | B24 | B23 | B22 | B21)) == (B25 | B23); | 
|  | } | 
|  |  | 
|  | Instr Assembler::SetAddRegisterImmediateOffset(Instr instr, int offset) { | 
|  | DCHECK(IsAddRegisterImmediate(instr)); | 
|  | DCHECK_GE(offset, 0); | 
|  | DCHECK(is_uint12(offset)); | 
|  | // Set the offset. | 
|  | return (instr & ~kOff12Mask) | offset; | 
|  | } | 
|  |  | 
|  | Register Assembler::GetRd(Instr instr) { | 
|  | return Register::from_code(Instruction::RdValue(instr)); | 
|  | } | 
|  |  | 
|  | Register Assembler::GetRn(Instr instr) { | 
|  | return Register::from_code(Instruction::RnValue(instr)); | 
|  | } | 
|  |  | 
|  | Register Assembler::GetRm(Instr instr) { | 
|  | return Register::from_code(Instruction::RmValue(instr)); | 
|  | } | 
|  |  | 
|  | bool Assembler::IsPush(Instr instr) { | 
|  | return ((instr & ~kRdMask) == kPushRegPattern); | 
|  | } | 
|  |  | 
|  | bool Assembler::IsPop(Instr instr) { | 
|  | return ((instr & ~kRdMask) == kPopRegPattern); | 
|  | } | 
|  |  | 
|  | bool Assembler::IsStrRegFpOffset(Instr instr) { | 
|  | return ((instr & kLdrStrInstrTypeMask) == kStrRegFpOffsetPattern); | 
|  | } | 
|  |  | 
|  | bool Assembler::IsLdrRegFpOffset(Instr instr) { | 
|  | return ((instr & kLdrStrInstrTypeMask) == kLdrRegFpOffsetPattern); | 
|  | } | 
|  |  | 
|  | bool Assembler::IsStrRegFpNegOffset(Instr instr) { | 
|  | return ((instr & kLdrStrInstrTypeMask) == kStrRegFpNegOffsetPattern); | 
|  | } | 
|  |  | 
|  | bool Assembler::IsLdrRegFpNegOffset(Instr instr) { | 
|  | return ((instr & kLdrStrInstrTypeMask) == kLdrRegFpNegOffsetPattern); | 
|  | } | 
|  |  | 
|  | bool Assembler::IsLdrPcImmediateOffset(Instr instr) { | 
|  | // Check the instruction is indeed a | 
|  | // ldr<cond> <Rd>, [pc +/- offset_12]. | 
|  | return (instr & kLdrPCImmedMask) == kLdrPCImmedPattern; | 
|  | } | 
|  |  | 
|  | bool Assembler::IsBOrBlPcImmediateOffset(Instr instr) { | 
|  | return (instr & kBOrBlPCImmedMask) == kBOrBlPCImmedPattern; | 
|  | } | 
|  |  | 
|  | bool Assembler::IsVldrDPcImmediateOffset(Instr instr) { | 
|  | // Check the instruction is indeed a | 
|  | // vldr<cond> <Dd>, [pc +/- offset_10]. | 
|  | return (instr & kVldrDPCMask) == kVldrDPCPattern; | 
|  | } | 
|  |  | 
|  | bool Assembler::IsBlxReg(Instr instr) { | 
|  | // Check the instruction is indeed a | 
|  | // blxcc <Rm> | 
|  | return (instr & kBlxRegMask) == kBlxRegPattern; | 
|  | } | 
|  |  | 
|  | bool Assembler::IsBlxIp(Instr instr) { | 
|  | // Check the instruction is indeed a | 
|  | // blx ip | 
|  | return instr == kBlxIp; | 
|  | } | 
|  |  | 
|  | bool Assembler::IsTstImmediate(Instr instr) { | 
|  | return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask)) == (I | TST | S); | 
|  | } | 
|  |  | 
|  | bool Assembler::IsCmpRegister(Instr instr) { | 
|  | return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask | B4)) == | 
|  | (CMP | S); | 
|  | } | 
|  |  | 
|  | bool Assembler::IsCmpImmediate(Instr instr) { | 
|  | return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask)) == (I | CMP | S); | 
|  | } | 
|  |  | 
|  | Register Assembler::GetCmpImmediateRegister(Instr instr) { | 
|  | DCHECK(IsCmpImmediate(instr)); | 
|  | return GetRn(instr); | 
|  | } | 
|  |  | 
|  | int Assembler::GetCmpImmediateRawImmediate(Instr instr) { | 
|  | DCHECK(IsCmpImmediate(instr)); | 
|  | return instr & kOff12Mask; | 
|  | } | 
|  |  | 
|  | // Labels refer to positions in the (to be) generated code. | 
|  | // There are bound, linked, and unused labels. | 
|  | // | 
|  | // Bound labels refer to known positions in the already | 
|  | // generated code. pos() is the position the label refers to. | 
|  | // | 
|  | // Linked labels refer to unknown positions in the code | 
|  | // to be generated; pos() is the position of the last | 
|  | // instruction using the label. | 
|  | // | 
|  | // The linked labels form a link chain by making the branch offset | 
|  | // in the instruction steam to point to the previous branch | 
|  | // instruction using the same label. | 
|  | // | 
|  | // The link chain is terminated by a branch offset pointing to the | 
|  | // same position. | 
|  |  | 
|  | int Assembler::target_at(int pos) { | 
|  | Instr instr = instr_at(pos); | 
|  | if (is_uint24(instr)) { | 
|  | // Emitted link to a label, not part of a branch. | 
|  | return instr; | 
|  | } | 
|  | DCHECK_EQ(5 * B25, instr & 7 * B25);  // b, bl, or blx imm24 | 
|  | int imm26 = ((instr & kImm24Mask) << 8) >> 6; | 
|  | if ((Instruction::ConditionField(instr) == kSpecialCondition) && | 
|  | ((instr & B24) != 0)) { | 
|  | // blx uses bit 24 to encode bit 2 of imm26 | 
|  | imm26 += 2; | 
|  | } | 
|  | return pos + Instruction::kPcLoadDelta + imm26; | 
|  | } | 
|  |  | 
|  | void Assembler::target_at_put(int pos, int target_pos) { | 
|  | Instr instr = instr_at(pos); | 
|  | if (is_uint24(instr)) { | 
|  | DCHECK(target_pos == pos || target_pos >= 0); | 
|  | // Emitted link to a label, not part of a branch. | 
|  | // Load the position of the label relative to the generated code object | 
|  | // pointer in a register. | 
|  |  | 
|  | // The existing code must be a single 24-bit label chain link, followed by | 
|  | // nops encoding the destination register. See mov_label_offset. | 
|  |  | 
|  | // Extract the destination register from the first nop instructions. | 
|  | Register dst = | 
|  | Register::from_code(Instruction::RmValue(instr_at(pos + kInstrSize))); | 
|  | // In addition to the 24-bit label chain link, we expect to find one nop for | 
|  | // ARMv7 and above, or two nops for ARMv6. See mov_label_offset. | 
|  | DCHECK(IsNop(instr_at(pos + kInstrSize), dst.code())); | 
|  | if (!CpuFeatures::IsSupported(ARMv7)) { | 
|  | DCHECK(IsNop(instr_at(pos + 2 * kInstrSize), dst.code())); | 
|  | } | 
|  |  | 
|  | // Here are the instructions we need to emit: | 
|  | //   For ARMv7: target24 => target16_1:target16_0 | 
|  | //      movw dst, #target16_0 | 
|  | //      movt dst, #target16_1 | 
|  | //   For ARMv6: target24 => target8_2:target8_1:target8_0 | 
|  | //      mov dst, #target8_0 | 
|  | //      orr dst, dst, #target8_1 << 8 | 
|  | //      orr dst, dst, #target8_2 << 16 | 
|  |  | 
|  | uint32_t target24 = target_pos + (Code::kHeaderSize - kHeapObjectTag); | 
|  | DCHECK(is_uint24(target24)); | 
|  | if (is_uint8(target24)) { | 
|  | // If the target fits in a byte then only patch with a mov | 
|  | // instruction. | 
|  | PatchingAssembler patcher( | 
|  | options(), reinterpret_cast<byte*>(buffer_start_ + pos), 1); | 
|  | patcher.mov(dst, Operand(target24)); | 
|  | } else { | 
|  | uint16_t target16_0 = target24 & kImm16Mask; | 
|  | uint16_t target16_1 = target24 >> 16; | 
|  | if (CpuFeatures::IsSupported(ARMv7)) { | 
|  | // Patch with movw/movt. | 
|  | if (target16_1 == 0) { | 
|  | PatchingAssembler patcher( | 
|  | options(), reinterpret_cast<byte*>(buffer_start_ + pos), 1); | 
|  | CpuFeatureScope scope(&patcher, ARMv7); | 
|  | patcher.movw(dst, target16_0); | 
|  | } else { | 
|  | PatchingAssembler patcher( | 
|  | options(), reinterpret_cast<byte*>(buffer_start_ + pos), 2); | 
|  | CpuFeatureScope scope(&patcher, ARMv7); | 
|  | patcher.movw(dst, target16_0); | 
|  | patcher.movt(dst, target16_1); | 
|  | } | 
|  | } else { | 
|  | // Patch with a sequence of mov/orr/orr instructions. | 
|  | uint8_t target8_0 = target16_0 & kImm8Mask; | 
|  | uint8_t target8_1 = target16_0 >> 8; | 
|  | uint8_t target8_2 = target16_1 & kImm8Mask; | 
|  | if (target8_2 == 0) { | 
|  | PatchingAssembler patcher( | 
|  | options(), reinterpret_cast<byte*>(buffer_start_ + pos), 2); | 
|  | patcher.mov(dst, Operand(target8_0)); | 
|  | patcher.orr(dst, dst, Operand(target8_1 << 8)); | 
|  | } else { | 
|  | PatchingAssembler patcher( | 
|  | options(), reinterpret_cast<byte*>(buffer_start_ + pos), 3); | 
|  | patcher.mov(dst, Operand(target8_0)); | 
|  | patcher.orr(dst, dst, Operand(target8_1 << 8)); | 
|  | patcher.orr(dst, dst, Operand(target8_2 << 16)); | 
|  | } | 
|  | } | 
|  | } | 
|  | return; | 
|  | } | 
|  | int imm26 = target_pos - (pos + Instruction::kPcLoadDelta); | 
|  | DCHECK_EQ(5 * B25, instr & 7 * B25);  // b, bl, or blx imm24 | 
|  | if (Instruction::ConditionField(instr) == kSpecialCondition) { | 
|  | // blx uses bit 24 to encode bit 2 of imm26 | 
|  | DCHECK_EQ(0, imm26 & 1); | 
|  | instr = (instr & ~(B24 | kImm24Mask)) | ((imm26 & 2) >> 1) * B24; | 
|  | } else { | 
|  | DCHECK_EQ(0, imm26 & 3); | 
|  | instr &= ~kImm24Mask; | 
|  | } | 
|  | int imm24 = imm26 >> 2; | 
|  | DCHECK(is_int24(imm24)); | 
|  | instr_at_put(pos, instr | (imm24 & kImm24Mask)); | 
|  | } | 
|  |  | 
|  | void Assembler::print(const Label* L) { | 
|  | if (L->is_unused()) { | 
|  | PrintF("unused label\n"); | 
|  | } else if (L->is_bound()) { | 
|  | PrintF("bound label to %d\n", L->pos()); | 
|  | } else if (L->is_linked()) { | 
|  | Label l; | 
|  | l.link_to(L->pos()); | 
|  | PrintF("unbound label"); | 
|  | while (l.is_linked()) { | 
|  | PrintF("@ %d ", l.pos()); | 
|  | Instr instr = instr_at(l.pos()); | 
|  | if ((instr & ~kImm24Mask) == 0) { | 
|  | PrintF("value\n"); | 
|  | } else { | 
|  | DCHECK_EQ(instr & 7 * B25, 5 * B25);  // b, bl, or blx | 
|  | Condition cond = Instruction::ConditionField(instr); | 
|  | const char* b; | 
|  | const char* c; | 
|  | if (cond == kSpecialCondition) { | 
|  | b = "blx"; | 
|  | c = ""; | 
|  | } else { | 
|  | if ((instr & B24) != 0) | 
|  | b = "bl"; | 
|  | else | 
|  | b = "b"; | 
|  |  | 
|  | switch (cond) { | 
|  | case eq: | 
|  | c = "eq"; | 
|  | break; | 
|  | case ne: | 
|  | c = "ne"; | 
|  | break; | 
|  | case hs: | 
|  | c = "hs"; | 
|  | break; | 
|  | case lo: | 
|  | c = "lo"; | 
|  | break; | 
|  | case mi: | 
|  | c = "mi"; | 
|  | break; | 
|  | case pl: | 
|  | c = "pl"; | 
|  | break; | 
|  | case vs: | 
|  | c = "vs"; | 
|  | break; | 
|  | case vc: | 
|  | c = "vc"; | 
|  | break; | 
|  | case hi: | 
|  | c = "hi"; | 
|  | break; | 
|  | case ls: | 
|  | c = "ls"; | 
|  | break; | 
|  | case ge: | 
|  | c = "ge"; | 
|  | break; | 
|  | case lt: | 
|  | c = "lt"; | 
|  | break; | 
|  | case gt: | 
|  | c = "gt"; | 
|  | break; | 
|  | case le: | 
|  | c = "le"; | 
|  | break; | 
|  | case al: | 
|  | c = ""; | 
|  | break; | 
|  | default: | 
|  | c = ""; | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  | PrintF("%s%s\n", b, c); | 
|  | } | 
|  | next(&l); | 
|  | } | 
|  | } else { | 
|  | PrintF("label in inconsistent state (pos = %d)\n", L->pos_); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Assembler::bind_to(Label* L, int pos) { | 
|  | DCHECK(0 <= pos && pos <= pc_offset());  // must have a valid binding position | 
|  | while (L->is_linked()) { | 
|  | int fixup_pos = L->pos(); | 
|  | next(L);  // call next before overwriting link with target at fixup_pos | 
|  | target_at_put(fixup_pos, pos); | 
|  | } | 
|  | L->bind_to(pos); | 
|  |  | 
|  | // Keep track of the last bound label so we don't eliminate any instructions | 
|  | // before a bound label. | 
|  | if (pos > last_bound_pos_) last_bound_pos_ = pos; | 
|  | } | 
|  |  | 
|  | void Assembler::bind(Label* L) { | 
|  | DCHECK(!L->is_bound());  // label can only be bound once | 
|  | bind_to(L, pc_offset()); | 
|  | } | 
|  |  | 
|  | void Assembler::next(Label* L) { | 
|  | DCHECK(L->is_linked()); | 
|  | int link = target_at(L->pos()); | 
|  | if (link == L->pos()) { | 
|  | // Branch target points to the same instruction. This is the end of the link | 
|  | // chain. | 
|  | L->Unuse(); | 
|  | } else { | 
|  | DCHECK_GE(link, 0); | 
|  | L->link_to(link); | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // Low-level code emission routines depending on the addressing mode. | 
|  | // If this returns true then you have to use the rotate_imm and immed_8 | 
|  | // that it returns, because it may have already changed the instruction | 
|  | // to match them! | 
|  | bool FitsShifter(uint32_t imm32, uint32_t* rotate_imm, uint32_t* immed_8, | 
|  | Instr* instr) { | 
|  | // imm32 must be unsigned. | 
|  | for (int rot = 0; rot < 16; rot++) { | 
|  | uint32_t imm8 = base::bits::RotateLeft32(imm32, 2 * rot); | 
|  | if ((imm8 <= 0xFF)) { | 
|  | *rotate_imm = rot; | 
|  | *immed_8 = imm8; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | // If the opcode is one with a complementary version and the complementary | 
|  | // immediate fits, change the opcode. | 
|  | if (instr != nullptr) { | 
|  | if ((*instr & kMovMvnMask) == kMovMvnPattern) { | 
|  | if (FitsShifter(~imm32, rotate_imm, immed_8, nullptr)) { | 
|  | *instr ^= kMovMvnFlip; | 
|  | return true; | 
|  | } else if ((*instr & kMovLeaveCCMask) == kMovLeaveCCPattern) { | 
|  | if (CpuFeatures::IsSupported(ARMv7)) { | 
|  | if (imm32 < 0x10000) { | 
|  | *instr ^= kMovwLeaveCCFlip; | 
|  | *instr |= Assembler::EncodeMovwImmediate(imm32); | 
|  | *rotate_imm = *immed_8 = 0;  // Not used for movw. | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } else if ((*instr & kCmpCmnMask) == kCmpCmnPattern) { | 
|  | if (FitsShifter(-static_cast<int>(imm32), rotate_imm, immed_8, nullptr)) { | 
|  | *instr ^= kCmpCmnFlip; | 
|  | return true; | 
|  | } | 
|  | } else { | 
|  | Instr alu_insn = (*instr & kALUMask); | 
|  | if (alu_insn == ADD || alu_insn == SUB) { | 
|  | if (FitsShifter(-static_cast<int>(imm32), rotate_imm, immed_8, | 
|  | nullptr)) { | 
|  | *instr ^= kAddSubFlip; | 
|  | return true; | 
|  | } | 
|  | } else if (alu_insn == AND || alu_insn == BIC) { | 
|  | if (FitsShifter(~imm32, rotate_imm, immed_8, nullptr)) { | 
|  | *instr ^= kAndBicFlip; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // We have to use the temporary register for things that can be relocated even | 
|  | // if they can be encoded in the ARM's 12 bits of immediate-offset instruction | 
|  | // space.  There is no guarantee that the relocated location can be similarly | 
|  | // encoded. | 
|  | bool MustOutputRelocInfo(RelocInfo::Mode rmode, const Assembler* assembler) { | 
|  | if (RelocInfo::IsOnlyForSerializer(rmode)) { | 
|  | if (assembler->predictable_code_size()) return true; | 
|  | return assembler->options().record_reloc_info_for_serialization; | 
|  | } else if (RelocInfo::IsNone(rmode)) { | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool UseMovImmediateLoad(const Operand& x, const Assembler* assembler) { | 
|  | DCHECK_NOT_NULL(assembler); | 
|  | if (x.MustOutputRelocInfo(assembler)) { | 
|  | // Prefer constant pool if data is likely to be patched. | 
|  | return false; | 
|  | } else { | 
|  | // Otherwise, use immediate load if movw / movt is available. | 
|  | return CpuFeatures::IsSupported(ARMv7); | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | bool Operand::MustOutputRelocInfo(const Assembler* assembler) const { | 
|  | return v8::internal::MustOutputRelocInfo(rmode_, assembler); | 
|  | } | 
|  |  | 
|  | int Operand::InstructionsRequired(const Assembler* assembler, | 
|  | Instr instr) const { | 
|  | DCHECK_NOT_NULL(assembler); | 
|  | if (rm_.is_valid()) return 1; | 
|  | uint32_t dummy1, dummy2; | 
|  | if (MustOutputRelocInfo(assembler) || | 
|  | !FitsShifter(immediate(), &dummy1, &dummy2, &instr)) { | 
|  | // The immediate operand cannot be encoded as a shifter operand, or use of | 
|  | // constant pool is required.  First account for the instructions required | 
|  | // for the constant pool or immediate load | 
|  | int instructions; | 
|  | if (UseMovImmediateLoad(*this, assembler)) { | 
|  | DCHECK(CpuFeatures::IsSupported(ARMv7)); | 
|  | // A movw / movt immediate load. | 
|  | instructions = 2; | 
|  | } else { | 
|  | // A small constant pool load. | 
|  | instructions = 1; | 
|  | } | 
|  | if ((instr & ~kCondMask) != 13 * B21) {  // mov, S not set | 
|  | // For a mov or mvn instruction which doesn't set the condition | 
|  | // code, the constant pool or immediate load is enough, otherwise we need | 
|  | // to account for the actual instruction being requested. | 
|  | instructions += 1; | 
|  | } | 
|  | return instructions; | 
|  | } else { | 
|  | // No use of constant pool and the immediate operand can be encoded as a | 
|  | // shifter operand. | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Assembler::Move32BitImmediate(Register rd, const Operand& x, | 
|  | Condition cond) { | 
|  | if (UseMovImmediateLoad(x, this)) { | 
|  | CpuFeatureScope scope(this, ARMv7); | 
|  | // UseMovImmediateLoad should return false when we need to output | 
|  | // relocation info, since we prefer the constant pool for values that | 
|  | // can be patched. | 
|  | DCHECK(!x.MustOutputRelocInfo(this)); | 
|  | UseScratchRegisterScope temps(this); | 
|  | // Re-use the destination register as a scratch if possible. | 
|  | Register target = rd != pc && rd != sp ? rd : temps.Acquire(); | 
|  | uint32_t imm32 = static_cast<uint32_t>(x.immediate()); | 
|  | movw(target, imm32 & 0xFFFF, cond); | 
|  | movt(target, imm32 >> 16, cond); | 
|  | if (target.code() != rd.code()) { | 
|  | mov(rd, target, LeaveCC, cond); | 
|  | } | 
|  | } else { | 
|  | int32_t immediate; | 
|  | if (x.IsHeapObjectRequest()) { | 
|  | RequestHeapObject(x.heap_object_request()); | 
|  | immediate = 0; | 
|  | } else { | 
|  | immediate = x.immediate(); | 
|  | } | 
|  | ConstantPoolAddEntry(pc_offset(), x.rmode_, immediate); | 
|  | ldr_pcrel(rd, 0, cond); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Assembler::AddrMode1(Instr instr, Register rd, Register rn, | 
|  | const Operand& x) { | 
|  | CheckBuffer(); | 
|  | uint32_t opcode = instr & kOpCodeMask; | 
|  | bool set_flags = (instr & S) != 0; | 
|  | DCHECK((opcode == ADC) || (opcode == ADD) || (opcode == AND) || | 
|  | (opcode == BIC) || (opcode == EOR) || (opcode == ORR) || | 
|  | (opcode == RSB) || (opcode == RSC) || (opcode == SBC) || | 
|  | (opcode == SUB) || (opcode == CMN) || (opcode == CMP) || | 
|  | (opcode == TEQ) || (opcode == TST) || (opcode == MOV) || | 
|  | (opcode == MVN)); | 
|  | // For comparison instructions, rd is not defined. | 
|  | DCHECK(rd.is_valid() || (opcode == CMN) || (opcode == CMP) || | 
|  | (opcode == TEQ) || (opcode == TST)); | 
|  | // For move instructions, rn is not defined. | 
|  | DCHECK(rn.is_valid() || (opcode == MOV) || (opcode == MVN)); | 
|  | DCHECK(rd.is_valid() || rn.is_valid()); | 
|  | DCHECK_EQ(instr & ~(kCondMask | kOpCodeMask | S), 0); | 
|  | if (!AddrMode1TryEncodeOperand(&instr, x)) { | 
|  | DCHECK(x.IsImmediate()); | 
|  | // Upon failure to encode, the opcode should not have changed. | 
|  | DCHECK(opcode == (instr & kOpCodeMask)); | 
|  | UseScratchRegisterScope temps(this); | 
|  | Condition cond = Instruction::ConditionField(instr); | 
|  | if ((opcode == MOV) && !set_flags) { | 
|  | // Generate a sequence of mov instructions or a load from the constant | 
|  | // pool only for a MOV instruction which does not set the flags. | 
|  | DCHECK(!rn.is_valid()); | 
|  | Move32BitImmediate(rd, x, cond); | 
|  | } else if ((opcode == ADD) && !set_flags && (rd == rn) && | 
|  | !temps.CanAcquire()) { | 
|  | // Split the operation into a sequence of additions if we cannot use a | 
|  | // scratch register. In this case, we cannot re-use rn and the assembler | 
|  | // does not have any scratch registers to spare. | 
|  | uint32_t imm = x.immediate(); | 
|  | do { | 
|  | // The immediate encoding format is composed of 8 bits of data and 4 | 
|  | // bits encoding a rotation. Each of the 16 possible rotations accounts | 
|  | // for a rotation by an even number. | 
|  | //   4 bits -> 16 rotations possible | 
|  | //          -> 16 rotations of 2 bits each fits in a 32-bit value. | 
|  | // This means that finding the even number of trailing zeroes of the | 
|  | // immediate allows us to more efficiently split it: | 
|  | int trailing_zeroes = base::bits::CountTrailingZeros(imm) & ~1u; | 
|  | uint32_t mask = (0xFF << trailing_zeroes); | 
|  | add(rd, rd, Operand(imm & mask), LeaveCC, cond); | 
|  | imm = imm & ~mask; | 
|  | } while (!ImmediateFitsAddrMode1Instruction(imm)); | 
|  | add(rd, rd, Operand(imm), LeaveCC, cond); | 
|  | } else { | 
|  | // The immediate operand cannot be encoded as a shifter operand, so load | 
|  | // it first to a scratch register and change the original instruction to | 
|  | // use it. | 
|  | // Re-use the destination register if possible. | 
|  | Register scratch = (rd.is_valid() && rd != rn && rd != pc && rd != sp) | 
|  | ? rd | 
|  | : temps.Acquire(); | 
|  | mov(scratch, x, LeaveCC, cond); | 
|  | AddrMode1(instr, rd, rn, Operand(scratch)); | 
|  | } | 
|  | return; | 
|  | } | 
|  | if (!rd.is_valid()) { | 
|  | // Emit a comparison instruction. | 
|  | emit(instr | rn.code() * B16); | 
|  | } else if (!rn.is_valid()) { | 
|  | // Emit a move instruction. If the operand is a register-shifted register, | 
|  | // then prevent the destination from being PC as this is unpredictable. | 
|  | DCHECK(!x.IsRegisterShiftedRegister() || rd != pc); | 
|  | emit(instr | rd.code() * B12); | 
|  | } else { | 
|  | emit(instr | rn.code() * B16 | rd.code() * B12); | 
|  | } | 
|  | if (rn == pc || x.rm_ == pc) { | 
|  | // Block constant pool emission for one instruction after reading pc. | 
|  | BlockConstPoolFor(1); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Assembler::AddrMode1TryEncodeOperand(Instr* instr, const Operand& x) { | 
|  | if (x.IsImmediate()) { | 
|  | // Immediate. | 
|  | uint32_t rotate_imm; | 
|  | uint32_t immed_8; | 
|  | if (x.MustOutputRelocInfo(this) || | 
|  | !FitsShifter(x.immediate(), &rotate_imm, &immed_8, instr)) { | 
|  | // Let the caller handle generating multiple instructions. | 
|  | return false; | 
|  | } | 
|  | *instr |= I | rotate_imm * B8 | immed_8; | 
|  | } else if (x.IsImmediateShiftedRegister()) { | 
|  | *instr |= x.shift_imm_ * B7 | x.shift_op_ | x.rm_.code(); | 
|  | } else { | 
|  | DCHECK(x.IsRegisterShiftedRegister()); | 
|  | // It is unpredictable to use the PC in this case. | 
|  | DCHECK(x.rm_ != pc && x.rs_ != pc); | 
|  | *instr |= x.rs_.code() * B8 | x.shift_op_ | B4 | x.rm_.code(); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void Assembler::AddrMode2(Instr instr, Register rd, const MemOperand& x) { | 
|  | DCHECK((instr & ~(kCondMask | B | L)) == B26); | 
|  | // This method does not handle pc-relative addresses. ldr_pcrel() should be | 
|  | // used instead. | 
|  | DCHECK(x.rn_ != pc); | 
|  | int am = x.am_; | 
|  | if (!x.rm_.is_valid()) { | 
|  | // Immediate offset. | 
|  | int offset_12 = x.offset_; | 
|  | if (offset_12 < 0) { | 
|  | offset_12 = -offset_12; | 
|  | am ^= U; | 
|  | } | 
|  | if (!is_uint12(offset_12)) { | 
|  | // Immediate offset cannot be encoded, load it first to a scratch | 
|  | // register. | 
|  | UseScratchRegisterScope temps(this); | 
|  | // Allow re-using rd for load instructions if possible. | 
|  | bool is_load = (instr & L) == L; | 
|  | Register scratch = (is_load && rd != x.rn_ && rd != pc && rd != sp) | 
|  | ? rd | 
|  | : temps.Acquire(); | 
|  | mov(scratch, Operand(x.offset_), LeaveCC, | 
|  | Instruction::ConditionField(instr)); | 
|  | AddrMode2(instr, rd, MemOperand(x.rn_, scratch, x.am_)); | 
|  | return; | 
|  | } | 
|  | DCHECK_GE(offset_12, 0);  // no masking needed | 
|  | instr |= offset_12; | 
|  | } else { | 
|  | // Register offset (shift_imm_ and shift_op_ are 0) or scaled | 
|  | // register offset the constructors make sure than both shift_imm_ | 
|  | // and shift_op_ are initialized. | 
|  | DCHECK(x.rm_ != pc); | 
|  | instr |= B25 | x.shift_imm_ * B7 | x.shift_op_ | x.rm_.code(); | 
|  | } | 
|  | DCHECK((am & (P | W)) == P || x.rn_ != pc);  // no pc base with writeback | 
|  | emit(instr | am | x.rn_.code() * B16 | rd.code() * B12); | 
|  | } | 
|  |  | 
|  | void Assembler::AddrMode3(Instr instr, Register rd, const MemOperand& x) { | 
|  | DCHECK((instr & ~(kCondMask | L | S6 | H)) == (B4 | B7)); | 
|  | DCHECK(x.rn_.is_valid()); | 
|  | // This method does not handle pc-relative addresses. ldr_pcrel() should be | 
|  | // used instead. | 
|  | DCHECK(x.rn_ != pc); | 
|  | int am = x.am_; | 
|  | bool is_load = (instr & L) == L; | 
|  | if (!x.rm_.is_valid()) { | 
|  | // Immediate offset. | 
|  | int offset_8 = x.offset_; | 
|  | if (offset_8 < 0) { | 
|  | offset_8 = -offset_8; | 
|  | am ^= U; | 
|  | } | 
|  | if (!is_uint8(offset_8)) { | 
|  | // Immediate offset cannot be encoded, load it first to a scratch | 
|  | // register. | 
|  | UseScratchRegisterScope temps(this); | 
|  | // Allow re-using rd for load instructions if possible. | 
|  | Register scratch = (is_load && rd != x.rn_ && rd != pc && rd != sp) | 
|  | ? rd | 
|  | : temps.Acquire(); | 
|  | mov(scratch, Operand(x.offset_), LeaveCC, | 
|  | Instruction::ConditionField(instr)); | 
|  | AddrMode3(instr, rd, MemOperand(x.rn_, scratch, x.am_)); | 
|  | return; | 
|  | } | 
|  | DCHECK_GE(offset_8, 0);  // no masking needed | 
|  | instr |= B | (offset_8 >> 4) * B8 | (offset_8 & 0xF); | 
|  | } else if (x.shift_imm_ != 0) { | 
|  | // Scaled register offsets are not supported, compute the offset separately | 
|  | // to a scratch register. | 
|  | UseScratchRegisterScope temps(this); | 
|  | // Allow re-using rd for load instructions if possible. | 
|  | Register scratch = | 
|  | (is_load && rd != x.rn_ && rd != pc && rd != sp) ? rd : temps.Acquire(); | 
|  | mov(scratch, Operand(x.rm_, x.shift_op_, x.shift_imm_), LeaveCC, | 
|  | Instruction::ConditionField(instr)); | 
|  | AddrMode3(instr, rd, MemOperand(x.rn_, scratch, x.am_)); | 
|  | return; | 
|  | } else { | 
|  | // Register offset. | 
|  | DCHECK((am & (P | W)) == P || x.rm_ != pc);  // no pc index with writeback | 
|  | instr |= x.rm_.code(); | 
|  | } | 
|  | DCHECK((am & (P | W)) == P || x.rn_ != pc);  // no pc base with writeback | 
|  | emit(instr | am | x.rn_.code() * B16 | rd.code() * B12); | 
|  | } | 
|  |  | 
|  | void Assembler::AddrMode4(Instr instr, Register rn, RegList rl) { | 
|  | DCHECK((instr & ~(kCondMask | P | U | W | L)) == B27); | 
|  | DCHECK_NE(rl, 0); | 
|  | DCHECK(rn != pc); | 
|  | emit(instr | rn.code() * B16 | rl); | 
|  | } | 
|  |  | 
|  | void Assembler::AddrMode5(Instr instr, CRegister crd, const MemOperand& x) { | 
|  | // Unindexed addressing is not encoded by this function. | 
|  | DCHECK_EQ((B27 | B26), | 
|  | (instr & ~(kCondMask | kCoprocessorMask | P | U | N | W | L))); | 
|  | DCHECK(x.rn_.is_valid() && !x.rm_.is_valid()); | 
|  | int am = x.am_; | 
|  | int offset_8 = x.offset_; | 
|  | DCHECK_EQ(offset_8 & 3, 0);  // offset must be an aligned word offset | 
|  | offset_8 >>= 2; | 
|  | if (offset_8 < 0) { | 
|  | offset_8 = -offset_8; | 
|  | am ^= U; | 
|  | } | 
|  | DCHECK(is_uint8(offset_8));  // unsigned word offset must fit in a byte | 
|  | DCHECK((am & (P | W)) == P || x.rn_ != pc);  // no pc base with writeback | 
|  |  | 
|  | // Post-indexed addressing requires W == 1; different than in AddrMode2/3. | 
|  | if ((am & P) == 0) am |= W; | 
|  |  | 
|  | DCHECK_GE(offset_8, 0);  // no masking needed | 
|  | emit(instr | am | x.rn_.code() * B16 | crd.code() * B12 | offset_8); | 
|  | } | 
|  |  | 
|  | int Assembler::branch_offset(Label* L) { | 
|  | int target_pos; | 
|  | if (L->is_bound()) { | 
|  | target_pos = L->pos(); | 
|  | } else { | 
|  | if (L->is_linked()) { | 
|  | // Point to previous instruction that uses the link. | 
|  | target_pos = L->pos(); | 
|  | } else { | 
|  | // First entry of the link chain points to itself. | 
|  | target_pos = pc_offset(); | 
|  | } | 
|  | L->link_to(pc_offset()); | 
|  | } | 
|  |  | 
|  | // Block the emission of the constant pool, since the branch instruction must | 
|  | // be emitted at the pc offset recorded by the label. | 
|  | if (!is_const_pool_blocked()) BlockConstPoolFor(1); | 
|  |  | 
|  | return target_pos - (pc_offset() + Instruction::kPcLoadDelta); | 
|  | } | 
|  |  | 
|  | // Branch instructions. | 
|  | void Assembler::b(int branch_offset, Condition cond, RelocInfo::Mode rmode) { | 
|  | if (!RelocInfo::IsNone(rmode)) RecordRelocInfo(rmode); | 
|  | DCHECK_EQ(branch_offset & 3, 0); | 
|  | int imm24 = branch_offset >> 2; | 
|  | const bool b_imm_check = is_int24(imm24); | 
|  | CHECK(b_imm_check); | 
|  | emit(cond | B27 | B25 | (imm24 & kImm24Mask)); | 
|  |  | 
|  | if (cond == al) { | 
|  | // Dead code is a good location to emit the constant pool. | 
|  | CheckConstPool(false, false); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Assembler::bl(int branch_offset, Condition cond, RelocInfo::Mode rmode) { | 
|  | if (!RelocInfo::IsNone(rmode)) RecordRelocInfo(rmode); | 
|  | DCHECK_EQ(branch_offset & 3, 0); | 
|  | int imm24 = branch_offset >> 2; | 
|  | const bool bl_imm_check = is_int24(imm24); | 
|  | CHECK(bl_imm_check); | 
|  | emit(cond | B27 | B25 | B24 | (imm24 & kImm24Mask)); | 
|  | } | 
|  |  | 
|  | void Assembler::blx(int branch_offset) { | 
|  | DCHECK_EQ(branch_offset & 1, 0); | 
|  | int h = ((branch_offset & 2) >> 1) * B24; | 
|  | int imm24 = branch_offset >> 2; | 
|  | const bool blx_imm_check = is_int24(imm24); | 
|  | CHECK(blx_imm_check); | 
|  | emit(kSpecialCondition | B27 | B25 | h | (imm24 & kImm24Mask)); | 
|  | } | 
|  |  | 
|  | void Assembler::blx(Register target, Condition cond) { | 
|  | DCHECK(target != pc); | 
|  | emit(cond | B24 | B21 | 15 * B16 | 15 * B12 | 15 * B8 | BLX | target.code()); | 
|  | } | 
|  |  | 
|  | void Assembler::bx(Register target, Condition cond) { | 
|  | DCHECK(target != pc);  // use of pc is actually allowed, but discouraged | 
|  | emit(cond | B24 | B21 | 15 * B16 | 15 * B12 | 15 * B8 | BX | target.code()); | 
|  | } | 
|  |  | 
|  | void Assembler::b(Label* L, Condition cond) { | 
|  | CheckBuffer(); | 
|  | b(branch_offset(L), cond); | 
|  | } | 
|  |  | 
|  | void Assembler::bl(Label* L, Condition cond) { | 
|  | CheckBuffer(); | 
|  | bl(branch_offset(L), cond); | 
|  | } | 
|  |  | 
|  | void Assembler::blx(Label* L) { | 
|  | CheckBuffer(); | 
|  | blx(branch_offset(L)); | 
|  | } | 
|  |  | 
|  | // Data-processing instructions. | 
|  |  | 
|  | void Assembler::and_(Register dst, Register src1, const Operand& src2, SBit s, | 
|  | Condition cond) { | 
|  | AddrMode1(cond | AND | s, dst, src1, src2); | 
|  | } | 
|  |  | 
|  | void Assembler::and_(Register dst, Register src1, Register src2, SBit s, | 
|  | Condition cond) { | 
|  | and_(dst, src1, Operand(src2), s, cond); | 
|  | } | 
|  |  | 
|  | void Assembler::eor(Register dst, Register src1, const Operand& src2, SBit s, | 
|  | Condition cond) { | 
|  | AddrMode1(cond | EOR | s, dst, src1, src2); | 
|  | } | 
|  |  | 
|  | void Assembler::eor(Register dst, Register src1, Register src2, SBit s, | 
|  | Condition cond) { | 
|  | AddrMode1(cond | EOR | s, dst, src1, Operand(src2)); | 
|  | } | 
|  |  | 
|  | void Assembler::sub(Register dst, Register src1, const Operand& src2, SBit s, | 
|  | Condition cond) { | 
|  | AddrMode1(cond | SUB | s, dst, src1, src2); | 
|  | } | 
|  |  | 
|  | void Assembler::sub(Register dst, Register src1, Register src2, SBit s, | 
|  | Condition cond) { | 
|  | sub(dst, src1, Operand(src2), s, cond); | 
|  | } | 
|  |  | 
|  | void Assembler::rsb(Register dst, Register src1, const Operand& src2, SBit s, | 
|  | Condition cond) { | 
|  | AddrMode1(cond | RSB | s, dst, src1, src2); | 
|  | } | 
|  |  | 
|  | void Assembler::add(Register dst, Register src1, const Operand& src2, SBit s, | 
|  | Condition cond) { | 
|  | AddrMode1(cond | ADD | s, dst, src1, src2); | 
|  | } | 
|  |  | 
|  | void Assembler::add(Register dst, Register src1, Register src2, SBit s, | 
|  | Condition cond) { | 
|  | add(dst, src1, Operand(src2), s, cond); | 
|  | } | 
|  |  | 
|  | void Assembler::adc(Register dst, Register src1, const Operand& src2, SBit s, | 
|  | Condition cond) { | 
|  | AddrMode1(cond | ADC | s, dst, src1, src2); | 
|  | } | 
|  |  | 
|  | void Assembler::sbc(Register dst, Register src1, const Operand& src2, SBit s, | 
|  | Condition cond) { | 
|  | AddrMode1(cond | SBC | s, dst, src1, src2); | 
|  | } | 
|  |  | 
|  | void Assembler::rsc(Register dst, Register src1, const Operand& src2, SBit s, | 
|  | Condition cond) { | 
|  | AddrMode1(cond | RSC | s, dst, src1, src2); | 
|  | } | 
|  |  | 
|  | void Assembler::tst(Register src1, const Operand& src2, Condition cond) { | 
|  | AddrMode1(cond | TST | S, no_reg, src1, src2); | 
|  | } | 
|  |  | 
|  | void Assembler::tst(Register src1, Register src2, Condition cond) { | 
|  | tst(src1, Operand(src2), cond); | 
|  | } | 
|  |  | 
|  | void Assembler::teq(Register src1, const Operand& src2, Condition cond) { | 
|  | AddrMode1(cond | TEQ | S, no_reg, src1, src2); | 
|  | } | 
|  |  | 
|  | void Assembler::cmp(Register src1, const Operand& src2, Condition cond) { | 
|  | AddrMode1(cond | CMP | S, no_reg, src1, src2); | 
|  | } | 
|  |  | 
|  | void Assembler::cmp(Register src1, Register src2, Condition cond) { | 
|  | cmp(src1, Operand(src2), cond); | 
|  | } | 
|  |  | 
|  | void Assembler::cmp_raw_immediate(Register src, int raw_immediate, | 
|  | Condition cond) { | 
|  | DCHECK(is_uint12(raw_immediate)); | 
|  | emit(cond | I | CMP | S | src.code() << 16 | raw_immediate); | 
|  | } | 
|  |  | 
|  | void Assembler::cmn(Register src1, const Operand& src2, Condition cond) { | 
|  | AddrMode1(cond | CMN | S, no_reg, src1, src2); | 
|  | } | 
|  |  | 
|  | void Assembler::orr(Register dst, Register src1, const Operand& src2, SBit s, | 
|  | Condition cond) { | 
|  | AddrMode1(cond | ORR | s, dst, src1, src2); | 
|  | } | 
|  |  | 
|  | void Assembler::orr(Register dst, Register src1, Register src2, SBit s, | 
|  | Condition cond) { | 
|  | orr(dst, src1, Operand(src2), s, cond); | 
|  | } | 
|  |  | 
|  | void Assembler::mov(Register dst, const Operand& src, SBit s, Condition cond) { | 
|  | // Don't allow nop instructions in the form mov rn, rn to be generated using | 
|  | // the mov instruction. They must be generated using nop(int/NopMarkerTypes). | 
|  | DCHECK(!(src.IsRegister() && src.rm() == dst && s == LeaveCC && cond == al)); | 
|  | AddrMode1(cond | MOV | s, dst, no_reg, src); | 
|  | } | 
|  |  | 
|  | void Assembler::mov(Register dst, Register src, SBit s, Condition cond) { | 
|  | mov(dst, Operand(src), s, cond); | 
|  | } | 
|  |  | 
|  | void Assembler::mov_label_offset(Register dst, Label* label) { | 
|  | if (label->is_bound()) { | 
|  | mov(dst, Operand(label->pos() + (Code::kHeaderSize - kHeapObjectTag))); | 
|  | } else { | 
|  | // Emit the link to the label in the code stream followed by extra nop | 
|  | // instructions. | 
|  | // If the label is not linked, then start a new link chain by linking it to | 
|  | // itself, emitting pc_offset(). | 
|  | int link = label->is_linked() ? label->pos() : pc_offset(); | 
|  | label->link_to(pc_offset()); | 
|  |  | 
|  | // When the label is bound, these instructions will be patched with a | 
|  | // sequence of movw/movt or mov/orr/orr instructions. They will load the | 
|  | // destination register with the position of the label from the beginning | 
|  | // of the code. | 
|  | // | 
|  | // The link will be extracted from the first instruction and the destination | 
|  | // register from the second. | 
|  | //   For ARMv7: | 
|  | //      link | 
|  | //      mov dst, dst | 
|  | //   For ARMv6: | 
|  | //      link | 
|  | //      mov dst, dst | 
|  | //      mov dst, dst | 
|  | // | 
|  | // When the label gets bound: target_at extracts the link and target_at_put | 
|  | // patches the instructions. | 
|  | CHECK(is_uint24(link)); | 
|  | BlockConstPoolScope block_const_pool(this); | 
|  | emit(link); | 
|  | nop(dst.code()); | 
|  | if (!CpuFeatures::IsSupported(ARMv7)) { | 
|  | nop(dst.code()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void Assembler::movw(Register reg, uint32_t immediate, Condition cond) { | 
|  | DCHECK(IsEnabled(ARMv7)); | 
|  | emit(cond | 0x30 * B20 | reg.code() * B12 | EncodeMovwImmediate(immediate)); | 
|  | } | 
|  |  | 
|  | void Assembler::movt(Register reg, uint32_t immediate, Condition cond) { | 
|  | DCHECK(IsEnabled(ARMv7)); | 
|  | emit(cond | 0x34 * B20 | reg.code() * B12 | EncodeMovwImmediate(immediate)); | 
|  | } | 
|  |  | 
|  | void Assembler::bic(Register dst, Register src1, const Operand& src2, SBit s, | 
|  | Condition cond) { | 
|  | AddrMode1(cond | BIC | s, dst, src1, src2); | 
|  | } | 
|  |  | 
|  | void Assembler::mvn(Register dst, const Operand& src, SBit s, Condition cond) { | 
|  | AddrMode1(cond | MVN | s, dst, no_reg, src); | 
|  | } | 
|  |  | 
|  | void Assembler::asr(Register dst, Register src1, const Operand& src2, SBit s, | 
|  | Condition cond) { | 
|  | if (src2.IsRegister()) { | 
|  | mov(dst, Operand(src1, ASR, src2.rm()), s, cond); | 
|  | } else { | 
|  | mov(dst, Operand(src1, ASR, src2.immediate()), s, cond); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Assembler::lsl(Register dst, Register src1, const Operand& src2, SBit s, | 
|  | Condition cond) { | 
|  | if (src2.IsRegister()) { | 
|  | mov(dst, Operand(src1, LSL, src2.rm()), s, cond); | 
|  | } else { | 
|  | mov(dst, Operand(src1, LSL, src2.immediate()), s, cond); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Assembler::lsr(Register dst, Register src1, const Operand& src2, SBit s, | 
|  | Condition cond) { | 
|  | if (src2.IsRegister()) { | 
|  | mov(dst, Operand(src1, LSR, src2.rm()), s, cond); | 
|  | } else { | 
|  | mov(dst, Operand(src1, LSR, src2.immediate()), s, cond); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Multiply instructions. | 
|  | void Assembler::mla(Register dst, Register src1, Register src2, Register srcA, | 
|  | SBit s, Condition cond) { | 
|  | DCHECK(dst != pc && src1 != pc && src2 != pc && srcA != pc); | 
|  | emit(cond | A | s | dst.code() * B16 | srcA.code() * B12 | src2.code() * B8 | | 
|  | B7 | B4 | src1.code()); | 
|  | } | 
|  |  | 
|  | void Assembler::mls(Register dst, Register src1, Register src2, Register srcA, | 
|  | Condition cond) { | 
|  | DCHECK(dst != pc && src1 != pc && src2 != pc && srcA != pc); | 
|  | DCHECK(IsEnabled(ARMv7)); | 
|  | emit(cond | B22 | B21 | dst.code() * B16 | srcA.code() * B12 | | 
|  | src2.code() * B8 | B7 | B4 | src1.code()); | 
|  | } | 
|  |  | 
|  | void Assembler::sdiv(Register dst, Register src1, Register src2, | 
|  | Condition cond) { | 
|  | DCHECK(dst != pc && src1 != pc && src2 != pc); | 
|  | DCHECK(IsEnabled(SUDIV)); | 
|  | emit(cond | B26 | B25 | B24 | B20 | dst.code() * B16 | 0xF * B12 | | 
|  | src2.code() * B8 | B4 | src1.code()); | 
|  | } | 
|  |  | 
|  | void Assembler::udiv(Register dst, Register src1, Register src2, | 
|  | Condition cond) { | 
|  | DCHECK(dst != pc && src1 != pc && src2 != pc); | 
|  | DCHECK(IsEnabled(SUDIV)); | 
|  | emit(cond | B26 | B25 | B24 | B21 | B20 | dst.code() * B16 | 0xF * B12 | | 
|  | src2.code() * B8 | B4 | src1.code()); | 
|  | } | 
|  |  | 
|  | void Assembler::mul(Register dst, Register src1, Register src2, SBit s, | 
|  | Condition cond) { | 
|  | DCHECK(dst != pc && src1 != pc && src2 != pc); | 
|  | // dst goes in bits 16-19 for this instruction! | 
|  | emit(cond | s | dst.code() * B16 | src2.code() * B8 | B7 | B4 | src1.code()); | 
|  | } | 
|  |  | 
|  | void Assembler::smmla(Register dst, Register src1, Register src2, Register srcA, | 
|  | Condition cond) { | 
|  | DCHECK(dst != pc && src1 != pc && src2 != pc && srcA != pc); | 
|  | emit(cond | B26 | B25 | B24 | B22 | B20 | dst.code() * B16 | | 
|  | srcA.code() * B12 | src2.code() * B8 | B4 | src1.code()); | 
|  | } | 
|  |  | 
|  | void Assembler::smmul(Register dst, Register src1, Register src2, | 
|  | Condition cond) { | 
|  | DCHECK(dst != pc && src1 != pc && src2 != pc); | 
|  | emit(cond | B26 | B25 | B24 | B22 | B20 | dst.code() * B16 | 0xF * B12 | | 
|  | src2.code() * B8 | B4 | src1.code()); | 
|  | } | 
|  |  | 
|  | void Assembler::smlal(Register dstL, Register dstH, Register src1, | 
|  | Register src2, SBit s, Condition cond) { | 
|  | DCHECK(dstL != pc && dstH != pc && src1 != pc && src2 != pc); | 
|  | DCHECK(dstL != dstH); | 
|  | emit(cond | B23 | B22 | A | s | dstH.code() * B16 | dstL.code() * B12 | | 
|  | src2.code() * B8 | B7 | B4 | src1.code()); | 
|  | } | 
|  |  | 
|  | void Assembler::smull(Register dstL, Register dstH, Register src1, | 
|  | Register src2, SBit s, Condition cond) { | 
|  | DCHECK(dstL != pc && dstH != pc && src1 != pc && src2 != pc); | 
|  | DCHECK(dstL != dstH); | 
|  | emit(cond | B23 | B22 | s | dstH.code() * B16 | dstL.code() * B12 | | 
|  | src2.code() * B8 | B7 | B4 | src1.code()); | 
|  | } | 
|  |  | 
|  | void Assembler::umlal(Register dstL, Register dstH, Register src1, | 
|  | Register src2, SBit s, Condition cond) { | 
|  | DCHECK(dstL != pc && dstH != pc && src1 != pc && src2 != pc); | 
|  | DCHECK(dstL != dstH); | 
|  | emit(cond | B23 | A | s | dstH.code() * B16 | dstL.code() * B12 | | 
|  | src2.code() * B8 | B7 | B4 | src1.code()); | 
|  | } | 
|  |  | 
|  | void Assembler::umull(Register dstL, Register dstH, Register src1, | 
|  | Register src2, SBit s, Condition cond) { | 
|  | DCHECK(dstL != pc && dstH != pc && src1 != pc && src2 != pc); | 
|  | DCHECK(dstL != dstH); | 
|  | emit(cond | B23 | s | dstH.code() * B16 | dstL.code() * B12 | | 
|  | src2.code() * B8 | B7 | B4 | src1.code()); | 
|  | } | 
|  |  | 
|  | // Miscellaneous arithmetic instructions. | 
|  | void Assembler::clz(Register dst, Register src, Condition cond) { | 
|  | DCHECK(dst != pc && src != pc); | 
|  | emit(cond | B24 | B22 | B21 | 15 * B16 | dst.code() * B12 | 15 * B8 | CLZ | | 
|  | src.code()); | 
|  | } | 
|  |  | 
|  | // Saturating instructions. | 
|  |  | 
|  | // Unsigned saturate. | 
|  | void Assembler::usat(Register dst, int satpos, const Operand& src, | 
|  | Condition cond) { | 
|  | DCHECK(dst != pc && src.rm_ != pc); | 
|  | DCHECK((satpos >= 0) && (satpos <= 31)); | 
|  | DCHECK(src.IsImmediateShiftedRegister()); | 
|  | DCHECK((src.shift_op_ == ASR) || (src.shift_op_ == LSL)); | 
|  |  | 
|  | int sh = 0; | 
|  | if (src.shift_op_ == ASR) { | 
|  | sh = 1; | 
|  | } | 
|  |  | 
|  | emit(cond | 0x6 * B24 | 0xE * B20 | satpos * B16 | dst.code() * B12 | | 
|  | src.shift_imm_ * B7 | sh * B6 | 0x1 * B4 | src.rm_.code()); | 
|  | } | 
|  |  | 
|  | // Bitfield manipulation instructions. | 
|  |  | 
|  | // Unsigned bit field extract. | 
|  | // Extracts #width adjacent bits from position #lsb in a register, and | 
|  | // writes them to the low bits of a destination register. | 
|  | //   ubfx dst, src, #lsb, #width | 
|  | void Assembler::ubfx(Register dst, Register src, int lsb, int width, | 
|  | Condition cond) { | 
|  | DCHECK(IsEnabled(ARMv7)); | 
|  | DCHECK(dst != pc && src != pc); | 
|  | DCHECK((lsb >= 0) && (lsb <= 31)); | 
|  | DCHECK((width >= 1) && (width <= (32 - lsb))); | 
|  | emit(cond | 0xF * B23 | B22 | B21 | (width - 1) * B16 | dst.code() * B12 | | 
|  | lsb * B7 | B6 | B4 | src.code()); | 
|  | } | 
|  |  | 
|  | // Signed bit field extract. | 
|  | // Extracts #width adjacent bits from position #lsb in a register, and | 
|  | // writes them to the low bits of a destination register. The extracted | 
|  | // value is sign extended to fill the destination register. | 
|  | //   sbfx dst, src, #lsb, #width | 
|  | void Assembler::sbfx(Register dst, Register src, int lsb, int width, | 
|  | Condition cond) { | 
|  | DCHECK(IsEnabled(ARMv7)); | 
|  | DCHECK(dst != pc && src != pc); | 
|  | DCHECK((lsb >= 0) && (lsb <= 31)); | 
|  | DCHECK((width >= 1) && (width <= (32 - lsb))); | 
|  | emit(cond | 0xF * B23 | B21 | (width - 1) * B16 | dst.code() * B12 | | 
|  | lsb * B7 | B6 | B4 | src.code()); | 
|  | } | 
|  |  | 
|  | // Bit field clear. | 
|  | // Sets #width adjacent bits at position #lsb in the destination register | 
|  | // to zero, preserving the value of the other bits. | 
|  | //   bfc dst, #lsb, #width | 
|  | void Assembler::bfc(Register dst, int lsb, int width, Condition cond) { | 
|  | DCHECK(IsEnabled(ARMv7)); | 
|  | DCHECK(dst != pc); | 
|  | DCHECK((lsb >= 0) && (lsb <= 31)); | 
|  | DCHECK((width >= 1) && (width <= (32 - lsb))); | 
|  | int msb = lsb + width - 1; | 
|  | emit(cond | 0x1F * B22 | msb * B16 | dst.code() * B12 | lsb * B7 | B4 | 0xF); | 
|  | } | 
|  |  | 
|  | // Bit field insert. | 
|  | // Inserts #width adjacent bits from the low bits of the source register | 
|  | // into position #lsb of the destination register. | 
|  | //   bfi dst, src, #lsb, #width | 
|  | void Assembler::bfi(Register dst, Register src, int lsb, int width, | 
|  | Condition cond) { | 
|  | DCHECK(IsEnabled(ARMv7)); | 
|  | DCHECK(dst != pc && src != pc); | 
|  | DCHECK((lsb >= 0) && (lsb <= 31)); | 
|  | DCHECK((width >= 1) && (width <= (32 - lsb))); | 
|  | int msb = lsb + width - 1; | 
|  | emit(cond | 0x1F * B22 | msb * B16 | dst.code() * B12 | lsb * B7 | B4 | | 
|  | src.code()); | 
|  | } | 
|  |  | 
|  | void Assembler::pkhbt(Register dst, Register src1, const Operand& src2, | 
|  | Condition cond) { | 
|  | // Instruction details available in ARM DDI 0406C.b, A8.8.125. | 
|  | // cond(31-28) | 01101000(27-20) | Rn(19-16) | | 
|  | // Rd(15-12) | imm5(11-7) | 0(6) | 01(5-4) | Rm(3-0) | 
|  | DCHECK(dst != pc); | 
|  | DCHECK(src1 != pc); | 
|  | DCHECK(src2.IsImmediateShiftedRegister()); | 
|  | DCHECK(src2.rm() != pc); | 
|  | DCHECK((src2.shift_imm_ >= 0) && (src2.shift_imm_ <= 31)); | 
|  | DCHECK(src2.shift_op() == LSL); | 
|  | emit(cond | 0x68 * B20 | src1.code() * B16 | dst.code() * B12 | | 
|  | src2.shift_imm_ * B7 | B4 | src2.rm().code()); | 
|  | } | 
|  |  | 
|  | void Assembler::pkhtb(Register dst, Register src1, const Operand& src2, | 
|  | Condition cond) { | 
|  | // Instruction details available in ARM DDI 0406C.b, A8.8.125. | 
|  | // cond(31-28) | 01101000(27-20) | Rn(19-16) | | 
|  | // Rd(15-12) | imm5(11-7) | 1(6) | 01(5-4) | Rm(3-0) | 
|  | DCHECK(dst != pc); | 
|  | DCHECK(src1 != pc); | 
|  | DCHECK(src2.IsImmediateShiftedRegister()); | 
|  | DCHECK(src2.rm() != pc); | 
|  | DCHECK((src2.shift_imm_ >= 1) && (src2.shift_imm_ <= 32)); | 
|  | DCHECK(src2.shift_op() == ASR); | 
|  | int asr = (src2.shift_imm_ == 32) ? 0 : src2.shift_imm_; | 
|  | emit(cond | 0x68 * B20 | src1.code() * B16 | dst.code() * B12 | asr * B7 | | 
|  | B6 | B4 | src2.rm().code()); | 
|  | } | 
|  |  | 
|  | void Assembler::sxtb(Register dst, Register src, int rotate, Condition cond) { | 
|  | // Instruction details available in ARM DDI 0406C.b, A8.8.233. | 
|  | // cond(31-28) | 01101010(27-20) | 1111(19-16) | | 
|  | // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0) | 
|  | DCHECK(dst != pc); | 
|  | DCHECK(src != pc); | 
|  | DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24); | 
|  | emit(cond | 0x6A * B20 | 0xF * B16 | dst.code() * B12 | | 
|  | ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src.code()); | 
|  | } | 
|  |  | 
|  | void Assembler::sxtab(Register dst, Register src1, Register src2, int rotate, | 
|  | Condition cond) { | 
|  | // Instruction details available in ARM DDI 0406C.b, A8.8.233. | 
|  | // cond(31-28) | 01101010(27-20) | Rn(19-16) | | 
|  | // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0) | 
|  | DCHECK(dst != pc); | 
|  | DCHECK(src1 != pc); | 
|  | DCHECK(src2 != pc); | 
|  | DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24); | 
|  | emit(cond | 0x6A * B20 | src1.code() * B16 | dst.code() * B12 | | 
|  | ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src2.code()); | 
|  | } | 
|  |  | 
|  | void Assembler::sxth(Register dst, Register src, int rotate, Condition cond) { | 
|  | // Instruction details available in ARM DDI 0406C.b, A8.8.235. | 
|  | // cond(31-28) | 01101011(27-20) | 1111(19-16) | | 
|  | // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0) | 
|  | DCHECK(dst != pc); | 
|  | DCHECK(src != pc); | 
|  | DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24); | 
|  | emit(cond | 0x6B * B20 | 0xF * B16 | dst.code() * B12 | | 
|  | ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src.code()); | 
|  | } | 
|  |  | 
|  | void Assembler::sxtah(Register dst, Register src1, Register src2, int rotate, | 
|  | Condition cond) { | 
|  | // Instruction details available in ARM DDI 0406C.b, A8.8.235. | 
|  | // cond(31-28) | 01101011(27-20) | Rn(19-16) | | 
|  | // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0) | 
|  | DCHECK(dst != pc); | 
|  | DCHECK(src1 != pc); | 
|  | DCHECK(src2 != pc); | 
|  | DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24); | 
|  | emit(cond | 0x6B * B20 | src1.code() * B16 | dst.code() * B12 | | 
|  | ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src2.code()); | 
|  | } | 
|  |  | 
|  | void Assembler::uxtb(Register dst, Register src, int rotate, Condition cond) { | 
|  | // Instruction details available in ARM DDI 0406C.b, A8.8.274. | 
|  | // cond(31-28) | 01101110(27-20) | 1111(19-16) | | 
|  | // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0) | 
|  | DCHECK(dst != pc); | 
|  | DCHECK(src != pc); | 
|  | DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24); | 
|  | emit(cond | 0x6E * B20 | 0xF * B16 | dst.code() * B12 | | 
|  | ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src.code()); | 
|  | } | 
|  |  | 
|  | void Assembler::uxtab(Register dst, Register src1, Register src2, int rotate, | 
|  | Condition cond) { | 
|  | // Instruction details available in ARM DDI 0406C.b, A8.8.271. | 
|  | // cond(31-28) | 01101110(27-20) | Rn(19-16) | | 
|  | // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0) | 
|  | DCHECK(dst != pc); | 
|  | DCHECK(src1 != pc); | 
|  | DCHECK(src2 != pc); | 
|  | DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24); | 
|  | emit(cond | 0x6E * B20 | src1.code() * B16 | dst.code() * B12 | | 
|  | ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src2.code()); | 
|  | } | 
|  |  | 
|  | void Assembler::uxtb16(Register dst, Register src, int rotate, Condition cond) { | 
|  | // Instruction details available in ARM DDI 0406C.b, A8.8.275. | 
|  | // cond(31-28) | 01101100(27-20) | 1111(19-16) | | 
|  | // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0) | 
|  | DCHECK(dst != pc); | 
|  | DCHECK(src != pc); | 
|  | DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24); | 
|  | emit(cond | 0x6C * B20 | 0xF * B16 | dst.code() * B12 | | 
|  | ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src.code()); | 
|  | } | 
|  |  | 
|  | void Assembler::uxth(Register dst, Register src, int rotate, Condition cond) { | 
|  | // Instruction details available in ARM DDI 0406C.b, A8.8.276. | 
|  | // cond(31-28) | 01101111(27-20) | 1111(19-16) | | 
|  | // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0) | 
|  | DCHECK(dst != pc); | 
|  | DCHECK(src != pc); | 
|  | DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24); | 
|  | emit(cond | 0x6F * B20 | 0xF * B16 | dst.code() * B12 | | 
|  | ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src.code()); | 
|  | } | 
|  |  | 
|  | void Assembler::uxtah(Register dst, Register src1, Register src2, int rotate, | 
|  | Condition cond) { | 
|  | // Instruction details available in ARM DDI 0406C.b, A8.8.273. | 
|  | // cond(31-28) | 01101111(27-20) | Rn(19-16) | | 
|  | // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0) | 
|  | DCHECK(dst != pc); | 
|  | DCHECK(src1 != pc); | 
|  | DCHECK(src2 != pc); | 
|  | DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24); | 
|  | emit(cond | 0x6F * B20 | src1.code() * B16 | dst.code() * B12 | | 
|  | ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src2.code()); | 
|  | } | 
|  |  | 
|  | void Assembler::rbit(Register dst, Register src, Condition cond) { | 
|  | // Instruction details available in ARM DDI 0406C.b, A8.8.144. | 
|  | // cond(31-28) | 011011111111(27-16) | Rd(15-12) | 11110011(11-4) | Rm(3-0) | 
|  | DCHECK(IsEnabled(ARMv7)); | 
|  | DCHECK(dst != pc); | 
|  | DCHECK(src != pc); | 
|  | emit(cond | 0x6FF * B16 | dst.code() * B12 | 0xF3 * B4 | src.code()); | 
|  | } | 
|  |  | 
|  | void Assembler::rev(Register dst, Register src, Condition cond) { | 
|  | // Instruction details available in ARM DDI 0406C.b, A8.8.144. | 
|  | // cond(31-28) | 011010111111(27-16) | Rd(15-12) | 11110011(11-4) | Rm(3-0) | 
|  | DCHECK(dst != pc); | 
|  | DCHECK(src != pc); | 
|  | emit(cond | 0x6BF * B16 | dst.code() * B12 | 0xF3 * B4 | src.code()); | 
|  | } | 
|  |  | 
|  | // Status register access instructions. | 
|  | void Assembler::mrs(Register dst, SRegister s, Condition cond) { | 
|  | DCHECK(dst != pc); | 
|  | emit(cond | B24 | s | 15 * B16 | dst.code() * B12); | 
|  | } | 
|  |  | 
|  | void Assembler::msr(SRegisterFieldMask fields, const Operand& src, | 
|  | Condition cond) { | 
|  | DCHECK_NE(fields & 0x000F0000, 0);  // At least one field must be set. | 
|  | DCHECK(((fields & 0xFFF0FFFF) == CPSR) || ((fields & 0xFFF0FFFF) == SPSR)); | 
|  | Instr instr; | 
|  | if (src.IsImmediate()) { | 
|  | // Immediate. | 
|  | uint32_t rotate_imm; | 
|  | uint32_t immed_8; | 
|  | if (src.MustOutputRelocInfo(this) || | 
|  | !FitsShifter(src.immediate(), &rotate_imm, &immed_8, nullptr)) { | 
|  | UseScratchRegisterScope temps(this); | 
|  | Register scratch = temps.Acquire(); | 
|  | // Immediate operand cannot be encoded, load it first to a scratch | 
|  | // register. | 
|  | Move32BitImmediate(scratch, src); | 
|  | msr(fields, Operand(scratch), cond); | 
|  | return; | 
|  | } | 
|  | instr = I | rotate_imm * B8 | immed_8; | 
|  | } else { | 
|  | DCHECK(src.IsRegister());  // Only rm is allowed. | 
|  | instr = src.rm_.code(); | 
|  | } | 
|  | emit(cond | instr | B24 | B21 | fields | 15 * B12); | 
|  | } | 
|  |  | 
|  | // Load/Store instructions. | 
|  | void Assembler::ldr(Register dst, const MemOperand& src, Condition cond) { | 
|  | AddrMode2(cond | B26 | L, dst, src); | 
|  | } | 
|  |  | 
|  | void Assembler::str(Register src, const MemOperand& dst, Condition cond) { | 
|  | AddrMode2(cond | B26, src, dst); | 
|  | } | 
|  |  | 
|  | void Assembler::ldrb(Register dst, const MemOperand& src, Condition cond) { | 
|  | AddrMode2(cond | B26 | B | L, dst, src); | 
|  | } | 
|  |  | 
|  | void Assembler::strb(Register src, const MemOperand& dst, Condition cond) { | 
|  | AddrMode2(cond | B26 | B, src, dst); | 
|  | } | 
|  |  | 
|  | void Assembler::ldrh(Register dst, const MemOperand& src, Condition cond) { | 
|  | AddrMode3(cond | L | B7 | H | B4, dst, src); | 
|  | } | 
|  |  | 
|  | void Assembler::strh(Register src, const MemOperand& dst, Condition cond) { | 
|  | AddrMode3(cond | B7 | H | B4, src, dst); | 
|  | } | 
|  |  | 
|  | void Assembler::ldrsb(Register dst, const MemOperand& src, Condition cond) { | 
|  | AddrMode3(cond | L | B7 | S6 | B4, dst, src); | 
|  | } | 
|  |  | 
|  | void Assembler::ldrsh(Register dst, const MemOperand& src, Condition cond) { | 
|  | AddrMode3(cond | L | B7 | S6 | H | B4, dst, src); | 
|  | } | 
|  |  | 
|  | void Assembler::ldrd(Register dst1, Register dst2, const MemOperand& src, | 
|  | Condition cond) { | 
|  | DCHECK(src.rm() == no_reg); | 
|  | DCHECK(dst1 != lr);  // r14. | 
|  | DCHECK_EQ(0, dst1.code() % 2); | 
|  | DCHECK_EQ(dst1.code() + 1, dst2.code()); | 
|  | AddrMode3(cond | B7 | B6 | B4, dst1, src); | 
|  | } | 
|  |  | 
|  | void Assembler::strd(Register src1, Register src2, const MemOperand& dst, | 
|  | Condition cond) { | 
|  | DCHECK(dst.rm() == no_reg); | 
|  | DCHECK(src1 != lr);  // r14. | 
|  | DCHECK_EQ(0, src1.code() % 2); | 
|  | DCHECK_EQ(src1.code() + 1, src2.code()); | 
|  | AddrMode3(cond | B7 | B6 | B5 | B4, src1, dst); | 
|  | } | 
|  |  | 
|  | void Assembler::ldr_pcrel(Register dst, int imm12, Condition cond) { | 
|  | AddrMode am = Offset; | 
|  | if (imm12 < 0) { | 
|  | imm12 = -imm12; | 
|  | am = NegOffset; | 
|  | } | 
|  | DCHECK(is_uint12(imm12)); | 
|  | emit(cond | B26 | am | L | pc.code() * B16 | dst.code() * B12 | imm12); | 
|  | } | 
|  |  | 
|  | // Load/Store exclusive instructions. | 
|  | void Assembler::ldrex(Register dst, Register src, Condition cond) { | 
|  | // Instruction details available in ARM DDI 0406C.b, A8.8.75. | 
|  | // cond(31-28) | 00011001(27-20) | Rn(19-16) | Rt(15-12) | 111110011111(11-0) | 
|  | DCHECK(dst != pc); | 
|  | DCHECK(src != pc); | 
|  | emit(cond | B24 | B23 | B20 | src.code() * B16 | dst.code() * B12 | 0xF9F); | 
|  | } | 
|  |  | 
|  | void Assembler::strex(Register src1, Register src2, Register dst, | 
|  | Condition cond) { | 
|  | // Instruction details available in ARM DDI 0406C.b, A8.8.212. | 
|  | // cond(31-28) | 00011000(27-20) | Rn(19-16) | Rd(15-12) | 11111001(11-4) | | 
|  | // Rt(3-0) | 
|  | DCHECK(dst != pc); | 
|  | DCHECK(src1 != pc); | 
|  | DCHECK(src2 != pc); | 
|  | DCHECK(src1 != dst); | 
|  | DCHECK(src1 != src2); | 
|  | emit(cond | B24 | B23 | dst.code() * B16 | src1.code() * B12 | 0xF9 * B4 | | 
|  | src2.code()); | 
|  | } | 
|  |  | 
|  | void Assembler::ldrexb(Register dst, Register src, Condition cond) { | 
|  | // Instruction details available in ARM DDI 0406C.b, A8.8.76. | 
|  | // cond(31-28) | 00011101(27-20) | Rn(19-16) | Rt(15-12) | 111110011111(11-0) | 
|  | DCHECK(dst != pc); | 
|  | DCHECK(src != pc); | 
|  | emit(cond | B24 | B23 | B22 | B20 | src.code() * B16 | dst.code() * B12 | | 
|  | 0xF9F); | 
|  | } | 
|  |  | 
|  | void Assembler::strexb(Register src1, Register src2, Register dst, | 
|  | Condition cond) { | 
|  | // Instruction details available in ARM DDI 0406C.b, A8.8.213. | 
|  | // cond(31-28) | 00011100(27-20) | Rn(19-16) | Rd(15-12) | 11111001(11-4) | | 
|  | // Rt(3-0) | 
|  | DCHECK(dst != pc); | 
|  | DCHECK(src1 != pc); | 
|  | DCHECK(src2 != pc); | 
|  | DCHECK(src1 != dst); | 
|  | DCHECK(src1 != src2); | 
|  | emit(cond | B24 | B23 | B22 | dst.code() * B16 | src1.code() * B12 | | 
|  | 0xF9 * B4 | src2.code()); | 
|  | } | 
|  |  | 
|  | void Assembler::ldrexh(Register dst, Register src, Condition cond) { | 
|  | // Instruction details available in ARM DDI 0406C.b, A8.8.78. | 
|  | // cond(31-28) | 00011111(27-20) | Rn(19-16) | Rt(15-12) | 111110011111(11-0) | 
|  | DCHECK(dst != pc); | 
|  | DCHECK(src != pc); | 
|  | emit(cond | B24 | B23 | B22 | B21 | B20 | src.code() * B16 | | 
|  | dst.code() * B12 | 0xF9F); | 
|  | } | 
|  |  | 
|  | void Assembler::strexh(Register src1, Register src2, Register dst, | 
|  | Condition cond) { | 
|  | // Instruction details available in ARM DDI 0406C.b, A8.8.215. | 
|  | // cond(31-28) | 00011110(27-20) | Rn(19-16) | Rd(15-12) | 11111001(11-4) | | 
|  | // Rt(3-0) | 
|  | DCHECK(dst != pc); | 
|  | DCHECK(src1 != pc); | 
|  | DCHECK(src2 != pc); | 
|  | DCHECK(src1 != dst); | 
|  | DCHECK(src1 != src2); | 
|  | emit(cond | B24 | B23 | B22 | B21 | dst.code() * B16 | src1.code() * B12 | | 
|  | 0xF9 * B4 | src2.code()); | 
|  | } | 
|  |  | 
|  | void Assembler::ldrexd(Register dst1, Register dst2, Register src, | 
|  | Condition cond) { | 
|  | // cond(31-28) | 00011011(27-20) | Rn(19-16) | Rt(15-12) | 111110011111(11-0) | 
|  | DCHECK(dst1 != lr);  // r14. | 
|  | // The pair of destination registers is restricted to being an even-numbered | 
|  | // register and the odd-numbered register that immediately follows it. | 
|  | DCHECK_EQ(0, dst1.code() % 2); | 
|  | DCHECK_EQ(dst1.code() + 1, dst2.code()); | 
|  | emit(cond | B24 | B23 | B21 | B20 | src.code() * B16 | dst1.code() * B12 | | 
|  | 0xF9F); | 
|  | } | 
|  |  | 
|  | void Assembler::strexd(Register res, Register src1, Register src2, Register dst, | 
|  | Condition cond) { | 
|  | // cond(31-28) | 00011010(27-20) | Rn(19-16) | Rt(15-12) | 111110011111(11-0) | 
|  | DCHECK(src1 != lr);  // r14. | 
|  | // The pair of source registers is restricted to being an even-numbered | 
|  | // register and the odd-numbered register that immediately follows it. | 
|  | DCHECK_EQ(0, src1.code() % 2); | 
|  | DCHECK_EQ(src1.code() + 1, src2.code()); | 
|  | emit(cond | B24 | B23 | B21 | dst.code() * B16 | res.code() * B12 | | 
|  | 0xF9 * B4 | src1.code()); | 
|  | } | 
|  |  | 
|  | // Preload instructions. | 
|  | void Assembler::pld(const MemOperand& address) { | 
|  | // Instruction details available in ARM DDI 0406C.b, A8.8.128. | 
|  | // 1111(31-28) | 0111(27-24) | U(23) | R(22) | 01(21-20) | Rn(19-16) | | 
|  | // 1111(15-12) | imm5(11-07) | type(6-5) | 0(4)| Rm(3-0) | | 
|  | DCHECK(address.rm() == no_reg); | 
|  | DCHECK(address.am() == Offset); | 
|  | int U = B23; | 
|  | int offset = address.offset(); | 
|  | if (offset < 0) { | 
|  | offset = -offset; | 
|  | U = 0; | 
|  | } | 
|  | DCHECK_LT(offset, 4096); | 
|  | emit(kSpecialCondition | B26 | B24 | U | B22 | B20 | | 
|  | address.rn().code() * B16 | 0xF * B12 | offset); | 
|  | } | 
|  |  | 
|  | // Load/Store multiple instructions. | 
|  | void Assembler::ldm(BlockAddrMode am, Register base, RegList dst, | 
|  | Condition cond) { | 
|  | // ABI stack constraint: ldmxx base, {..sp..}  base != sp  is not restartable. | 
|  | DCHECK(base == sp || (dst & sp.bit()) == 0); | 
|  |  | 
|  | AddrMode4(cond | B27 | am | L, base, dst); | 
|  |  | 
|  | // Emit the constant pool after a function return implemented by ldm ..{..pc}. | 
|  | if (cond == al && (dst & pc.bit()) != 0) { | 
|  | // There is a slight chance that the ldm instruction was actually a call, | 
|  | // in which case it would be wrong to return into the constant pool; we | 
|  | // recognize this case by checking if the emission of the pool was blocked | 
|  | // at the pc of the ldm instruction by a mov lr, pc instruction; if this is | 
|  | // the case, we emit a jump over the pool. | 
|  | CheckConstPool(true, no_const_pool_before_ == pc_offset() - kInstrSize); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Assembler::stm(BlockAddrMode am, Register base, RegList src, | 
|  | Condition cond) { | 
|  | AddrMode4(cond | B27 | am, base, src); | 
|  | } | 
|  |  | 
|  | // Exception-generating instructions and debugging support. | 
|  | // Stops with a non-negative code less than kNumOfWatchedStops support | 
|  | // enabling/disabling and a counter feature. See simulator-arm.h . | 
|  | void Assembler::stop(Condition cond, int32_t code) { | 
|  | #ifndef __arm__ | 
|  | DCHECK_GE(code, kDefaultStopCode); | 
|  | { | 
|  | BlockConstPoolScope block_const_pool(this); | 
|  | if (code >= 0) { | 
|  | svc(kStopCode + code, cond); | 
|  | } else { | 
|  | svc(kStopCode + kMaxStopCode, cond); | 
|  | } | 
|  | } | 
|  | #else   // def __arm__ | 
|  | if (cond != al) { | 
|  | Label skip; | 
|  | b(&skip, NegateCondition(cond)); | 
|  | bkpt(0); | 
|  | bind(&skip); | 
|  | } else { | 
|  | bkpt(0); | 
|  | } | 
|  | #endif  // def __arm__ | 
|  | } | 
|  |  | 
|  | void Assembler::bkpt(uint32_t imm16) { | 
|  | DCHECK(is_uint16(imm16)); | 
|  | emit(al | B24 | B21 | (imm16 >> 4) * B8 | BKPT | (imm16 & 0xF)); | 
|  | } | 
|  |  | 
|  | void Assembler::svc(uint32_t imm24, Condition cond) { | 
|  | DCHECK(is_uint24(imm24)); | 
|  | emit(cond | 15 * B24 | imm24); | 
|  | } | 
|  |  | 
|  | void Assembler::dmb(BarrierOption option) { | 
|  | if (CpuFeatures::IsSupported(ARMv7)) { | 
|  | // Details available in ARM DDI 0406C.b, A8-378. | 
|  | emit(kSpecialCondition | 0x57FF * B12 | 5 * B4 | option); | 
|  | } else { | 
|  | // Details available in ARM DDI 0406C.b, B3-1750. | 
|  | // CP15DMB: CRn=c7, opc1=0, CRm=c10, opc2=5, Rt is ignored. | 
|  | mcr(p15, 0, r0, cr7, cr10, 5); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Assembler::dsb(BarrierOption option) { | 
|  | if (CpuFeatures::IsSupported(ARMv7)) { | 
|  | // Details available in ARM DDI 0406C.b, A8-380. | 
|  | emit(kSpecialCondition | 0x57FF * B12 | 4 * B4 | option); | 
|  | } else { | 
|  | // Details available in ARM DDI 0406C.b, B3-1750. | 
|  | // CP15DSB: CRn=c7, opc1=0, CRm=c10, opc2=4, Rt is ignored. | 
|  | mcr(p15, 0, r0, cr7, cr10, 4); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Assembler::isb(BarrierOption option) { | 
|  | if (CpuFeatures::IsSupported(ARMv7)) { | 
|  | // Details available in ARM DDI 0406C.b, A8-389. | 
|  | emit(kSpecialCondition | 0x57FF * B12 | 6 * B4 | option); | 
|  | } else { | 
|  | // Details available in ARM DDI 0406C.b, B3-1750. | 
|  | // CP15ISB: CRn=c7, opc1=0, CRm=c5, opc2=4, Rt is ignored. | 
|  | mcr(p15, 0, r0, cr7, cr5, 4); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Assembler::csdb() { | 
|  | // Details available in Arm Cache Speculation Side-channels white paper, | 
|  | // version 1.1, page 4. | 
|  | emit(0xE320F014); | 
|  | } | 
|  |  | 
|  | // Coprocessor instructions. | 
|  | void Assembler::cdp(Coprocessor coproc, int opcode_1, CRegister crd, | 
|  | CRegister crn, CRegister crm, int opcode_2, | 
|  | Condition cond) { | 
|  | DCHECK(is_uint4(opcode_1) && is_uint3(opcode_2)); | 
|  | emit(cond | B27 | B26 | B25 | (opcode_1 & 15) * B20 | crn.code() * B16 | | 
|  | crd.code() * B12 | coproc * B8 | (opcode_2 & 7) * B5 | crm.code()); | 
|  | } | 
|  |  | 
|  | void Assembler::cdp2(Coprocessor coproc, int opcode_1, CRegister crd, | 
|  | CRegister crn, CRegister crm, int opcode_2) { | 
|  | cdp(coproc, opcode_1, crd, crn, crm, opcode_2, kSpecialCondition); | 
|  | } | 
|  |  | 
|  | void Assembler::mcr(Coprocessor coproc, int opcode_1, Register rd, | 
|  | CRegister crn, CRegister crm, int opcode_2, | 
|  | Condition cond) { | 
|  | DCHECK(is_uint3(opcode_1) && is_uint3(opcode_2)); | 
|  | emit(cond | B27 | B26 | B25 | (opcode_1 & 7) * B21 | crn.code() * B16 | | 
|  | rd.code() * B12 | coproc * B8 | (opcode_2 & 7) * B5 | B4 | crm.code()); | 
|  | } | 
|  |  | 
|  | void Assembler::mcr2(Coprocessor coproc, int opcode_1, Register rd, | 
|  | CRegister crn, CRegister crm, int opcode_2) { | 
|  | mcr(coproc, opcode_1, rd, crn, crm, opcode_2, kSpecialCondition); | 
|  | } | 
|  |  | 
|  | void Assembler::mrc(Coprocessor coproc, int opcode_1, Register rd, | 
|  | CRegister crn, CRegister crm, int opcode_2, | 
|  | Condition cond) { | 
|  | DCHECK(is_uint3(opcode_1) && is_uint3(opcode_2)); | 
|  | emit(cond | B27 | B26 | B25 | (opcode_1 & 7) * B21 | L | crn.code() * B16 | | 
|  | rd.code() * B12 | coproc * B8 | (opcode_2 & 7) * B5 | B4 | crm.code()); | 
|  | } | 
|  |  | 
|  | void Assembler::mrc2(Coprocessor coproc, int opcode_1, Register rd, | 
|  | CRegister crn, CRegister crm, int opcode_2) { | 
|  | mrc(coproc, opcode_1, rd, crn, crm, opcode_2, kSpecialCondition); | 
|  | } | 
|  |  | 
|  | void Assembler::ldc(Coprocessor coproc, CRegister crd, const MemOperand& src, | 
|  | LFlag l, Condition cond) { | 
|  | AddrMode5(cond | B27 | B26 | l | L | coproc * B8, crd, src); | 
|  | } | 
|  |  | 
|  | void Assembler::ldc(Coprocessor coproc, CRegister crd, Register rn, int option, | 
|  | LFlag l, Condition cond) { | 
|  | // Unindexed addressing. | 
|  | DCHECK(is_uint8(option)); | 
|  | emit(cond | B27 | B26 | U | l | L | rn.code() * B16 | crd.code() * B12 | | 
|  | coproc * B8 | (option & 255)); | 
|  | } | 
|  |  | 
|  | void Assembler::ldc2(Coprocessor coproc, CRegister crd, const MemOperand& src, | 
|  | LFlag l) { | 
|  | ldc(coproc, crd, src, l, kSpecialCondition); | 
|  | } | 
|  |  | 
|  | void Assembler::ldc2(Coprocessor coproc, CRegister crd, Register rn, int option, | 
|  | LFlag l) { | 
|  | ldc(coproc, crd, rn, option, l, kSpecialCondition); | 
|  | } | 
|  |  | 
|  | // Support for VFP. | 
|  |  | 
|  | void Assembler::vldr(const DwVfpRegister dst, const Register base, int offset, | 
|  | const Condition cond) { | 
|  | // Ddst = MEM(Rbase + offset). | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-924. | 
|  | // cond(31-28) | 1101(27-24)| U(23) | D(22) | 01(21-20) | Rbase(19-16) | | 
|  | // Vd(15-12) | 1011(11-8) | offset | 
|  | DCHECK(VfpRegisterIsAvailable(dst)); | 
|  | int u = 1; | 
|  | if (offset < 0) { | 
|  | CHECK_NE(offset, kMinInt); | 
|  | offset = -offset; | 
|  | u = 0; | 
|  | } | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  |  | 
|  | DCHECK_GE(offset, 0); | 
|  | if ((offset % 4) == 0 && (offset / 4) < 256) { | 
|  | emit(cond | 0xD * B24 | u * B23 | d * B22 | B20 | base.code() * B16 | | 
|  | vd * B12 | 0xB * B8 | ((offset / 4) & 255)); | 
|  | } else { | 
|  | UseScratchRegisterScope temps(this); | 
|  | Register scratch = temps.Acquire(); | 
|  | // Larger offsets must be handled by computing the correct address in a | 
|  | // scratch register. | 
|  | DCHECK(base != scratch); | 
|  | if (u == 1) { | 
|  | add(scratch, base, Operand(offset)); | 
|  | } else { | 
|  | sub(scratch, base, Operand(offset)); | 
|  | } | 
|  | emit(cond | 0xD * B24 | d * B22 | B20 | scratch.code() * B16 | vd * B12 | | 
|  | 0xB * B8); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Assembler::vldr(const DwVfpRegister dst, const MemOperand& operand, | 
|  | const Condition cond) { | 
|  | DCHECK(VfpRegisterIsAvailable(dst)); | 
|  | DCHECK(operand.am_ == Offset); | 
|  | if (operand.rm().is_valid()) { | 
|  | UseScratchRegisterScope temps(this); | 
|  | Register scratch = temps.Acquire(); | 
|  | add(scratch, operand.rn(), | 
|  | Operand(operand.rm(), operand.shift_op_, operand.shift_imm_)); | 
|  | vldr(dst, scratch, 0, cond); | 
|  | } else { | 
|  | vldr(dst, operand.rn(), operand.offset(), cond); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Assembler::vldr(const SwVfpRegister dst, const Register base, int offset, | 
|  | const Condition cond) { | 
|  | // Sdst = MEM(Rbase + offset). | 
|  | // Instruction details available in ARM DDI 0406A, A8-628. | 
|  | // cond(31-28) | 1101(27-24)| U001(23-20) | Rbase(19-16) | | 
|  | // Vdst(15-12) | 1010(11-8) | offset | 
|  | int u = 1; | 
|  | if (offset < 0) { | 
|  | offset = -offset; | 
|  | u = 0; | 
|  | } | 
|  | int sd, d; | 
|  | dst.split_code(&sd, &d); | 
|  | DCHECK_GE(offset, 0); | 
|  |  | 
|  | if ((offset % 4) == 0 && (offset / 4) < 256) { | 
|  | emit(cond | u * B23 | d * B22 | 0xD1 * B20 | base.code() * B16 | sd * B12 | | 
|  | 0xA * B8 | ((offset / 4) & 255)); | 
|  | } else { | 
|  | // Larger offsets must be handled by computing the correct address in a | 
|  | // scratch register. | 
|  | UseScratchRegisterScope temps(this); | 
|  | Register scratch = temps.Acquire(); | 
|  | DCHECK(base != scratch); | 
|  | if (u == 1) { | 
|  | add(scratch, base, Operand(offset)); | 
|  | } else { | 
|  | sub(scratch, base, Operand(offset)); | 
|  | } | 
|  | emit(cond | d * B22 | 0xD1 * B20 | scratch.code() * B16 | sd * B12 | | 
|  | 0xA * B8); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Assembler::vldr(const SwVfpRegister dst, const MemOperand& operand, | 
|  | const Condition cond) { | 
|  | DCHECK(operand.am_ == Offset); | 
|  | if (operand.rm().is_valid()) { | 
|  | UseScratchRegisterScope temps(this); | 
|  | Register scratch = temps.Acquire(); | 
|  | add(scratch, operand.rn(), | 
|  | Operand(operand.rm(), operand.shift_op_, operand.shift_imm_)); | 
|  | vldr(dst, scratch, 0, cond); | 
|  | } else { | 
|  | vldr(dst, operand.rn(), operand.offset(), cond); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Assembler::vstr(const DwVfpRegister src, const Register base, int offset, | 
|  | const Condition cond) { | 
|  | // MEM(Rbase + offset) = Dsrc. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-1082. | 
|  | // cond(31-28) | 1101(27-24)| U(23) | D(22) | 00(21-20) | Rbase(19-16) | | 
|  | // Vd(15-12) | 1011(11-8) | (offset/4) | 
|  | DCHECK(VfpRegisterIsAvailable(src)); | 
|  | int u = 1; | 
|  | if (offset < 0) { | 
|  | CHECK_NE(offset, kMinInt); | 
|  | offset = -offset; | 
|  | u = 0; | 
|  | } | 
|  | DCHECK_GE(offset, 0); | 
|  | int vd, d; | 
|  | src.split_code(&vd, &d); | 
|  |  | 
|  | if ((offset % 4) == 0 && (offset / 4) < 256) { | 
|  | emit(cond | 0xD * B24 | u * B23 | d * B22 | base.code() * B16 | vd * B12 | | 
|  | 0xB * B8 | ((offset / 4) & 255)); | 
|  | } else { | 
|  | // Larger offsets must be handled by computing the correct address in the a | 
|  | // scratch register. | 
|  | UseScratchRegisterScope temps(this); | 
|  | Register scratch = temps.Acquire(); | 
|  | DCHECK(base != scratch); | 
|  | if (u == 1) { | 
|  | add(scratch, base, Operand(offset)); | 
|  | } else { | 
|  | sub(scratch, base, Operand(offset)); | 
|  | } | 
|  | emit(cond | 0xD * B24 | d * B22 | scratch.code() * B16 | vd * B12 | | 
|  | 0xB * B8); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Assembler::vstr(const DwVfpRegister src, const MemOperand& operand, | 
|  | const Condition cond) { | 
|  | DCHECK(VfpRegisterIsAvailable(src)); | 
|  | DCHECK(operand.am_ == Offset); | 
|  | if (operand.rm().is_valid()) { | 
|  | UseScratchRegisterScope temps(this); | 
|  | Register scratch = temps.Acquire(); | 
|  | add(scratch, operand.rn(), | 
|  | Operand(operand.rm(), operand.shift_op_, operand.shift_imm_)); | 
|  | vstr(src, scratch, 0, cond); | 
|  | } else { | 
|  | vstr(src, operand.rn(), operand.offset(), cond); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Assembler::vstr(const SwVfpRegister src, const Register base, int offset, | 
|  | const Condition cond) { | 
|  | // MEM(Rbase + offset) = SSrc. | 
|  | // Instruction details available in ARM DDI 0406A, A8-786. | 
|  | // cond(31-28) | 1101(27-24)| U000(23-20) | Rbase(19-16) | | 
|  | // Vdst(15-12) | 1010(11-8) | (offset/4) | 
|  | int u = 1; | 
|  | if (offset < 0) { | 
|  | CHECK_NE(offset, kMinInt); | 
|  | offset = -offset; | 
|  | u = 0; | 
|  | } | 
|  | int sd, d; | 
|  | src.split_code(&sd, &d); | 
|  | DCHECK_GE(offset, 0); | 
|  | if ((offset % 4) == 0 && (offset / 4) < 256) { | 
|  | emit(cond | u * B23 | d * B22 | 0xD0 * B20 | base.code() * B16 | sd * B12 | | 
|  | 0xA * B8 | ((offset / 4) & 255)); | 
|  | } else { | 
|  | // Larger offsets must be handled by computing the correct address in a | 
|  | // scratch register. | 
|  | UseScratchRegisterScope temps(this); | 
|  | Register scratch = temps.Acquire(); | 
|  | DCHECK(base != scratch); | 
|  | if (u == 1) { | 
|  | add(scratch, base, Operand(offset)); | 
|  | } else { | 
|  | sub(scratch, base, Operand(offset)); | 
|  | } | 
|  | emit(cond | d * B22 | 0xD0 * B20 | scratch.code() * B16 | sd * B12 | | 
|  | 0xA * B8); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Assembler::vstr(const SwVfpRegister src, const MemOperand& operand, | 
|  | const Condition cond) { | 
|  | DCHECK(operand.am_ == Offset); | 
|  | if (operand.rm().is_valid()) { | 
|  | UseScratchRegisterScope temps(this); | 
|  | Register scratch = temps.Acquire(); | 
|  | add(scratch, operand.rn(), | 
|  | Operand(operand.rm(), operand.shift_op_, operand.shift_imm_)); | 
|  | vstr(src, scratch, 0, cond); | 
|  | } else { | 
|  | vstr(src, operand.rn(), operand.offset(), cond); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Assembler::vldm(BlockAddrMode am, Register base, DwVfpRegister first, | 
|  | DwVfpRegister last, Condition cond) { | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-922. | 
|  | // cond(31-28) | 110(27-25)| PUDW1(24-20) | Rbase(19-16) | | 
|  | // first(15-12) | 1011(11-8) | (count * 2) | 
|  | DCHECK_LE(first.code(), last.code()); | 
|  | DCHECK(VfpRegisterIsAvailable(last)); | 
|  | DCHECK(am == ia || am == ia_w || am == db_w); | 
|  | DCHECK(base != pc); | 
|  |  | 
|  | int sd, d; | 
|  | first.split_code(&sd, &d); | 
|  | int count = last.code() - first.code() + 1; | 
|  | DCHECK_LE(count, 16); | 
|  | emit(cond | B27 | B26 | am | d * B22 | B20 | base.code() * B16 | sd * B12 | | 
|  | 0xB * B8 | count * 2); | 
|  | } | 
|  |  | 
|  | void Assembler::vstm(BlockAddrMode am, Register base, DwVfpRegister first, | 
|  | DwVfpRegister last, Condition cond) { | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-1080. | 
|  | // cond(31-28) | 110(27-25)| PUDW0(24-20) | Rbase(19-16) | | 
|  | // first(15-12) | 1011(11-8) | (count * 2) | 
|  | DCHECK_LE(first.code(), last.code()); | 
|  | DCHECK(VfpRegisterIsAvailable(last)); | 
|  | DCHECK(am == ia || am == ia_w || am == db_w); | 
|  | DCHECK(base != pc); | 
|  |  | 
|  | int sd, d; | 
|  | first.split_code(&sd, &d); | 
|  | int count = last.code() - first.code() + 1; | 
|  | DCHECK_LE(count, 16); | 
|  | emit(cond | B27 | B26 | am | d * B22 | base.code() * B16 | sd * B12 | | 
|  | 0xB * B8 | count * 2); | 
|  | } | 
|  |  | 
|  | void Assembler::vldm(BlockAddrMode am, Register base, SwVfpRegister first, | 
|  | SwVfpRegister last, Condition cond) { | 
|  | // Instruction details available in ARM DDI 0406A, A8-626. | 
|  | // cond(31-28) | 110(27-25)| PUDW1(24-20) | Rbase(19-16) | | 
|  | // first(15-12) | 1010(11-8) | (count/2) | 
|  | DCHECK_LE(first.code(), last.code()); | 
|  | DCHECK(am == ia || am == ia_w || am == db_w); | 
|  | DCHECK(base != pc); | 
|  |  | 
|  | int sd, d; | 
|  | first.split_code(&sd, &d); | 
|  | int count = last.code() - first.code() + 1; | 
|  | emit(cond | B27 | B26 | am | d * B22 | B20 | base.code() * B16 | sd * B12 | | 
|  | 0xA * B8 | count); | 
|  | } | 
|  |  | 
|  | void Assembler::vstm(BlockAddrMode am, Register base, SwVfpRegister first, | 
|  | SwVfpRegister last, Condition cond) { | 
|  | // Instruction details available in ARM DDI 0406A, A8-784. | 
|  | // cond(31-28) | 110(27-25)| PUDW0(24-20) | Rbase(19-16) | | 
|  | // first(15-12) | 1011(11-8) | (count/2) | 
|  | DCHECK_LE(first.code(), last.code()); | 
|  | DCHECK(am == ia || am == ia_w || am == db_w); | 
|  | DCHECK(base != pc); | 
|  |  | 
|  | int sd, d; | 
|  | first.split_code(&sd, &d); | 
|  | int count = last.code() - first.code() + 1; | 
|  | emit(cond | B27 | B26 | am | d * B22 | base.code() * B16 | sd * B12 | | 
|  | 0xA * B8 | count); | 
|  | } | 
|  |  | 
|  | static void DoubleAsTwoUInt32(Double d, uint32_t* lo, uint32_t* hi) { | 
|  | uint64_t i = d.AsUint64(); | 
|  |  | 
|  | *lo = i & 0xFFFFFFFF; | 
|  | *hi = i >> 32; | 
|  | } | 
|  |  | 
|  | static void WriteVmovIntImmEncoding(uint8_t imm, uint32_t* encoding) { | 
|  | // Integer promotion from uint8_t to int makes these all okay. | 
|  | *encoding = ((imm & 0x80) << (24 - 7));   // a | 
|  | *encoding |= ((imm & 0x70) << (16 - 4));  // bcd | 
|  | *encoding |= (imm & 0x0f);                //  efgh | 
|  | } | 
|  |  | 
|  | // This checks if imm can be encoded into an immediate for vmov. | 
|  | // See Table A7-15 in ARM DDI 0406C.d. | 
|  | // Currently only supports the first row and op=0 && cmode=1110. | 
|  | static bool FitsVmovIntImm(uint64_t imm, uint32_t* encoding, uint8_t* cmode) { | 
|  | uint32_t lo = imm & 0xFFFFFFFF; | 
|  | uint32_t hi = imm >> 32; | 
|  | if ((lo == hi && ((lo & 0xffffff00) == 0))) { | 
|  | WriteVmovIntImmEncoding(imm & 0xff, encoding); | 
|  | *cmode = 0; | 
|  | return true; | 
|  | } else if ((lo == hi) && ((lo & 0xffff) == (lo >> 16)) && | 
|  | ((lo & 0xff) == (lo >> 24))) { | 
|  | // Check that all bytes in imm are the same. | 
|  | WriteVmovIntImmEncoding(imm & 0xff, encoding); | 
|  | *cmode = 0xe; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void Assembler::vmov(const DwVfpRegister dst, uint64_t imm) { | 
|  | uint32_t enc; | 
|  | uint8_t cmode; | 
|  | uint8_t op = 0; | 
|  | if (CpuFeatures::IsSupported(NEON) && FitsVmovIntImm(imm, &enc, &cmode)) { | 
|  | CpuFeatureScope scope(this, NEON); | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-937. | 
|  | // 001i1(27-23) | D(22) | 000(21-19) | imm3(18-16) | Vd(15-12) | cmode(11-8) | 
|  | // | 0(7) | 0(6) | op(5) | 4(1) | imm4(3-0) | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | emit(kSpecialCondition | 0x05 * B23 | d * B22 | vd * B12 | cmode * B8 | | 
|  | op * B5 | 0x1 * B4 | enc); | 
|  | } else { | 
|  | UNIMPLEMENTED(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Assembler::vmov(const QwNeonRegister dst, uint64_t imm) { | 
|  | uint32_t enc; | 
|  | uint8_t cmode; | 
|  | uint8_t op = 0; | 
|  | if (CpuFeatures::IsSupported(NEON) && FitsVmovIntImm(imm, &enc, &cmode)) { | 
|  | CpuFeatureScope scope(this, NEON); | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-937. | 
|  | // 001i1(27-23) | D(22) | 000(21-19) | imm3(18-16) | Vd(15-12) | cmode(11-8) | 
|  | // | 0(7) | Q(6) | op(5) | 4(1) | imm4(3-0) | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | emit(kSpecialCondition | 0x05 * B23 | d * B22 | vd * B12 | cmode * B8 | | 
|  | 0x1 * B6 | op * B5 | 0x1 * B4 | enc); | 
|  | } else { | 
|  | UNIMPLEMENTED(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Only works for little endian floating point formats. | 
|  | // We don't support VFP on the mixed endian floating point platform. | 
|  | static bool FitsVmovFPImmediate(Double d, uint32_t* encoding) { | 
|  | // VMOV can accept an immediate of the form: | 
|  | // | 
|  | //  +/- m * 2^(-n) where 16 <= m <= 31 and 0 <= n <= 7 | 
|  | // | 
|  | // The immediate is encoded using an 8-bit quantity, comprised of two | 
|  | // 4-bit fields. For an 8-bit immediate of the form: | 
|  | // | 
|  | //  [abcdefgh] | 
|  | // | 
|  | // where a is the MSB and h is the LSB, an immediate 64-bit double can be | 
|  | // created of the form: | 
|  | // | 
|  | //  [aBbbbbbb,bbcdefgh,00000000,00000000, | 
|  | //      00000000,00000000,00000000,00000000] | 
|  | // | 
|  | // where B = ~b. | 
|  | // | 
|  |  | 
|  | uint32_t lo, hi; | 
|  | DoubleAsTwoUInt32(d, &lo, &hi); | 
|  |  | 
|  | // The most obvious constraint is the long block of zeroes. | 
|  | if ((lo != 0) || ((hi & 0xFFFF) != 0)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Bits 61:54 must be all clear or all set. | 
|  | if (((hi & 0x3FC00000) != 0) && ((hi & 0x3FC00000) != 0x3FC00000)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Bit 62 must be NOT bit 61. | 
|  | if (((hi ^ (hi << 1)) & (0x40000000)) == 0) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Create the encoded immediate in the form: | 
|  | //  [00000000,0000abcd,00000000,0000efgh] | 
|  | *encoding = (hi >> 16) & 0xF;       // Low nybble. | 
|  | *encoding |= (hi >> 4) & 0x70000;   // Low three bits of the high nybble. | 
|  | *encoding |= (hi >> 12) & 0x80000;  // Top bit of the high nybble. | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void Assembler::vmov(const SwVfpRegister dst, Float32 imm) { | 
|  | uint32_t enc; | 
|  | if (CpuFeatures::IsSupported(VFPv3) && | 
|  | FitsVmovFPImmediate(Double(imm.get_scalar()), &enc)) { | 
|  | CpuFeatureScope scope(this, VFPv3); | 
|  | // The float can be encoded in the instruction. | 
|  | // | 
|  | // Sd = immediate | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-936. | 
|  | // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | imm4H(19-16) | | 
|  | // Vd(15-12) | 101(11-9) | sz=0(8) | imm4L(3-0) | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | emit(al | 0x1D * B23 | d * B22 | 0x3 * B20 | vd * B12 | 0x5 * B9 | enc); | 
|  | } else { | 
|  | UseScratchRegisterScope temps(this); | 
|  | Register scratch = temps.Acquire(); | 
|  | mov(scratch, Operand(imm.get_bits())); | 
|  | vmov(dst, scratch); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Assembler::vmov(const DwVfpRegister dst, Double imm, | 
|  | const Register extra_scratch) { | 
|  | DCHECK(VfpRegisterIsAvailable(dst)); | 
|  | uint32_t enc; | 
|  | if (CpuFeatures::IsSupported(VFPv3) && FitsVmovFPImmediate(imm, &enc)) { | 
|  | CpuFeatureScope scope(this, VFPv3); | 
|  | // The double can be encoded in the instruction. | 
|  | // | 
|  | // Dd = immediate | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-936. | 
|  | // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | imm4H(19-16) | | 
|  | // Vd(15-12) | 101(11-9) | sz=1(8) | imm4L(3-0) | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | emit(al | 0x1D * B23 | d * B22 | 0x3 * B20 | vd * B12 | 0x5 * B9 | B8 | | 
|  | enc); | 
|  | } else { | 
|  | // Synthesise the double from ARM immediates. | 
|  | uint32_t lo, hi; | 
|  | DoubleAsTwoUInt32(imm, &lo, &hi); | 
|  | UseScratchRegisterScope temps(this); | 
|  | Register scratch = temps.Acquire(); | 
|  |  | 
|  | if (lo == hi) { | 
|  | // Move the low and high parts of the double to a D register in one | 
|  | // instruction. | 
|  | mov(scratch, Operand(lo)); | 
|  | vmov(dst, scratch, scratch); | 
|  | } else if (extra_scratch == no_reg) { | 
|  | // We only have one spare scratch register. | 
|  | mov(scratch, Operand(lo)); | 
|  | vmov(NeonS32, dst, 0, scratch); | 
|  | if (((lo & 0xFFFF) == (hi & 0xFFFF)) && CpuFeatures::IsSupported(ARMv7)) { | 
|  | CpuFeatureScope scope(this, ARMv7); | 
|  | movt(scratch, hi >> 16); | 
|  | } else { | 
|  | mov(scratch, Operand(hi)); | 
|  | } | 
|  | vmov(NeonS32, dst, 1, scratch); | 
|  | } else { | 
|  | // Move the low and high parts of the double to a D register in one | 
|  | // instruction. | 
|  | mov(scratch, Operand(lo)); | 
|  | mov(extra_scratch, Operand(hi)); | 
|  | vmov(dst, scratch, extra_scratch); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void Assembler::vmov(const SwVfpRegister dst, const SwVfpRegister src, | 
|  | const Condition cond) { | 
|  | // Sd = Sm | 
|  | // Instruction details available in ARM DDI 0406B, A8-642. | 
|  | int sd, d, sm, m; | 
|  | dst.split_code(&sd, &d); | 
|  | src.split_code(&sm, &m); | 
|  | emit(cond | 0xE * B24 | d * B22 | 0xB * B20 | sd * B12 | 0xA * B8 | B6 | | 
|  | m * B5 | sm); | 
|  | } | 
|  |  | 
|  | void Assembler::vmov(const DwVfpRegister dst, const DwVfpRegister src, | 
|  | const Condition cond) { | 
|  | // Dd = Dm | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-938. | 
|  | // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 0000(19-16) | Vd(15-12) | | 
|  | // 101(11-9) | sz=1(8) | 0(7) | 1(6) | M(5) | 0(4) | Vm(3-0) | 
|  | DCHECK(VfpRegisterIsAvailable(dst)); | 
|  | DCHECK(VfpRegisterIsAvailable(src)); | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vm, m; | 
|  | src.split_code(&vm, &m); | 
|  | emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | vd * B12 | 0x5 * B9 | B8 | B6 | | 
|  | m * B5 | vm); | 
|  | } | 
|  |  | 
|  | void Assembler::vmov(const DwVfpRegister dst, const Register src1, | 
|  | const Register src2, const Condition cond) { | 
|  | // Dm = <Rt,Rt2>. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-948. | 
|  | // cond(31-28) | 1100(27-24)| 010(23-21) | op=0(20) | Rt2(19-16) | | 
|  | // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm | 
|  | DCHECK(VfpRegisterIsAvailable(dst)); | 
|  | DCHECK(src1 != pc && src2 != pc); | 
|  | int vm, m; | 
|  | dst.split_code(&vm, &m); | 
|  | emit(cond | 0xC * B24 | B22 | src2.code() * B16 | src1.code() * B12 | | 
|  | 0xB * B8 | m * B5 | B4 | vm); | 
|  | } | 
|  |  | 
|  | void Assembler::vmov(const Register dst1, const Register dst2, | 
|  | const DwVfpRegister src, const Condition cond) { | 
|  | // <Rt,Rt2> = Dm. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-948. | 
|  | // cond(31-28) | 1100(27-24)| 010(23-21) | op=1(20) | Rt2(19-16) | | 
|  | // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm | 
|  | DCHECK(VfpRegisterIsAvailable(src)); | 
|  | DCHECK(dst1 != pc && dst2 != pc); | 
|  | int vm, m; | 
|  | src.split_code(&vm, &m); | 
|  | emit(cond | 0xC * B24 | B22 | B20 | dst2.code() * B16 | dst1.code() * B12 | | 
|  | 0xB * B8 | m * B5 | B4 | vm); | 
|  | } | 
|  |  | 
|  | void Assembler::vmov(const SwVfpRegister dst, const Register src, | 
|  | const Condition cond) { | 
|  | // Sn = Rt. | 
|  | // Instruction details available in ARM DDI 0406A, A8-642. | 
|  | // cond(31-28) | 1110(27-24)| 000(23-21) | op=0(20) | Vn(19-16) | | 
|  | // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0) | 
|  | DCHECK(src != pc); | 
|  | int sn, n; | 
|  | dst.split_code(&sn, &n); | 
|  | emit(cond | 0xE * B24 | sn * B16 | src.code() * B12 | 0xA * B8 | n * B7 | B4); | 
|  | } | 
|  |  | 
|  | void Assembler::vmov(const Register dst, const SwVfpRegister src, | 
|  | const Condition cond) { | 
|  | // Rt = Sn. | 
|  | // Instruction details available in ARM DDI 0406A, A8-642. | 
|  | // cond(31-28) | 1110(27-24)| 000(23-21) | op=1(20) | Vn(19-16) | | 
|  | // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0) | 
|  | DCHECK(dst != pc); | 
|  | int sn, n; | 
|  | src.split_code(&sn, &n); | 
|  | emit(cond | 0xE * B24 | B20 | sn * B16 | dst.code() * B12 | 0xA * B8 | | 
|  | n * B7 | B4); | 
|  | } | 
|  |  | 
|  | // Type of data to read from or write to VFP register. | 
|  | // Used as specifier in generic vcvt instruction. | 
|  | enum VFPType { S32, U32, F32, F64 }; | 
|  |  | 
|  | static bool IsSignedVFPType(VFPType type) { | 
|  | switch (type) { | 
|  | case S32: | 
|  | return true; | 
|  | case U32: | 
|  | return false; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool IsIntegerVFPType(VFPType type) { | 
|  | switch (type) { | 
|  | case S32: | 
|  | case U32: | 
|  | return true; | 
|  | case F32: | 
|  | case F64: | 
|  | return false; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool IsDoubleVFPType(VFPType type) { | 
|  | switch (type) { | 
|  | case F32: | 
|  | return false; | 
|  | case F64: | 
|  | return true; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Split five bit reg_code based on size of reg_type. | 
|  | //  32-bit register codes are Vm:M | 
|  | //  64-bit register codes are M:Vm | 
|  | // where Vm is four bits, and M is a single bit. | 
|  | static void SplitRegCode(VFPType reg_type, int reg_code, int* vm, int* m) { | 
|  | DCHECK((reg_code >= 0) && (reg_code <= 31)); | 
|  | if (IsIntegerVFPType(reg_type) || !IsDoubleVFPType(reg_type)) { | 
|  | SwVfpRegister::split_code(reg_code, vm, m); | 
|  | } else { | 
|  | DwVfpRegister::split_code(reg_code, vm, m); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Encode vcvt.src_type.dst_type instruction. | 
|  | static Instr EncodeVCVT(const VFPType dst_type, const int dst_code, | 
|  | const VFPType src_type, const int src_code, | 
|  | VFPConversionMode mode, const Condition cond) { | 
|  | DCHECK(src_type != dst_type); | 
|  | int D, Vd, M, Vm; | 
|  | SplitRegCode(src_type, src_code, &Vm, &M); | 
|  | SplitRegCode(dst_type, dst_code, &Vd, &D); | 
|  |  | 
|  | if (IsIntegerVFPType(dst_type) || IsIntegerVFPType(src_type)) { | 
|  | // Conversion between IEEE floating point and 32-bit integer. | 
|  | // Instruction details available in ARM DDI 0406B, A8.6.295. | 
|  | // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 1(19) | opc2(18-16) | | 
|  | // Vd(15-12) | 101(11-9) | sz(8) | op(7) | 1(6) | M(5) | 0(4) | Vm(3-0) | 
|  | DCHECK(!IsIntegerVFPType(dst_type) || !IsIntegerVFPType(src_type)); | 
|  |  | 
|  | int sz, opc2, op; | 
|  |  | 
|  | if (IsIntegerVFPType(dst_type)) { | 
|  | opc2 = IsSignedVFPType(dst_type) ? 0x5 : 0x4; | 
|  | sz = IsDoubleVFPType(src_type) ? 0x1 : 0x0; | 
|  | op = mode; | 
|  | } else { | 
|  | DCHECK(IsIntegerVFPType(src_type)); | 
|  | opc2 = 0x0; | 
|  | sz = IsDoubleVFPType(dst_type) ? 0x1 : 0x0; | 
|  | op = IsSignedVFPType(src_type) ? 0x1 : 0x0; | 
|  | } | 
|  |  | 
|  | return (cond | 0xE * B24 | B23 | D * B22 | 0x3 * B20 | B19 | opc2 * B16 | | 
|  | Vd * B12 | 0x5 * B9 | sz * B8 | op * B7 | B6 | M * B5 | Vm); | 
|  | } else { | 
|  | // Conversion between IEEE double and single precision. | 
|  | // Instruction details available in ARM DDI 0406B, A8.6.298. | 
|  | // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0111(19-16) | | 
|  | // Vd(15-12) | 101(11-9) | sz(8) | 1(7) | 1(6) | M(5) | 0(4) | Vm(3-0) | 
|  | int sz = IsDoubleVFPType(src_type) ? 0x1 : 0x0; | 
|  | return (cond | 0xE * B24 | B23 | D * B22 | 0x3 * B20 | 0x7 * B16 | | 
|  | Vd * B12 | 0x5 * B9 | sz * B8 | B7 | B6 | M * B5 | Vm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Assembler::vcvt_f64_s32(const DwVfpRegister dst, const SwVfpRegister src, | 
|  | VFPConversionMode mode, const Condition cond) { | 
|  | DCHECK(VfpRegisterIsAvailable(dst)); | 
|  | emit(EncodeVCVT(F64, dst.code(), S32, src.code(), mode, cond)); | 
|  | } | 
|  |  | 
|  | void Assembler::vcvt_f32_s32(const SwVfpRegister dst, const SwVfpRegister src, | 
|  | VFPConversionMode mode, const Condition cond) { | 
|  | emit(EncodeVCVT(F32, dst.code(), S32, src.code(), mode, cond)); | 
|  | } | 
|  |  | 
|  | void Assembler::vcvt_f64_u32(const DwVfpRegister dst, const SwVfpRegister src, | 
|  | VFPConversionMode mode, const Condition cond) { | 
|  | DCHECK(VfpRegisterIsAvailable(dst)); | 
|  | emit(EncodeVCVT(F64, dst.code(), U32, src.code(), mode, cond)); | 
|  | } | 
|  |  | 
|  | void Assembler::vcvt_f32_u32(const SwVfpRegister dst, const SwVfpRegister src, | 
|  | VFPConversionMode mode, const Condition cond) { | 
|  | emit(EncodeVCVT(F32, dst.code(), U32, src.code(), mode, cond)); | 
|  | } | 
|  |  | 
|  | void Assembler::vcvt_s32_f32(const SwVfpRegister dst, const SwVfpRegister src, | 
|  | VFPConversionMode mode, const Condition cond) { | 
|  | emit(EncodeVCVT(S32, dst.code(), F32, src.code(), mode, cond)); | 
|  | } | 
|  |  | 
|  | void Assembler::vcvt_u32_f32(const SwVfpRegister dst, const SwVfpRegister src, | 
|  | VFPConversionMode mode, const Condition cond) { | 
|  | emit(EncodeVCVT(U32, dst.code(), F32, src.code(), mode, cond)); | 
|  | } | 
|  |  | 
|  | void Assembler::vcvt_s32_f64(const SwVfpRegister dst, const DwVfpRegister src, | 
|  | VFPConversionMode mode, const Condition cond) { | 
|  | DCHECK(VfpRegisterIsAvailable(src)); | 
|  | emit(EncodeVCVT(S32, dst.code(), F64, src.code(), mode, cond)); | 
|  | } | 
|  |  | 
|  | void Assembler::vcvt_u32_f64(const SwVfpRegister dst, const DwVfpRegister src, | 
|  | VFPConversionMode mode, const Condition cond) { | 
|  | DCHECK(VfpRegisterIsAvailable(src)); | 
|  | emit(EncodeVCVT(U32, dst.code(), F64, src.code(), mode, cond)); | 
|  | } | 
|  |  | 
|  | void Assembler::vcvt_f64_f32(const DwVfpRegister dst, const SwVfpRegister src, | 
|  | VFPConversionMode mode, const Condition cond) { | 
|  | DCHECK(VfpRegisterIsAvailable(dst)); | 
|  | emit(EncodeVCVT(F64, dst.code(), F32, src.code(), mode, cond)); | 
|  | } | 
|  |  | 
|  | void Assembler::vcvt_f32_f64(const SwVfpRegister dst, const DwVfpRegister src, | 
|  | VFPConversionMode mode, const Condition cond) { | 
|  | DCHECK(VfpRegisterIsAvailable(src)); | 
|  | emit(EncodeVCVT(F32, dst.code(), F64, src.code(), mode, cond)); | 
|  | } | 
|  |  | 
|  | void Assembler::vcvt_f64_s32(const DwVfpRegister dst, int fraction_bits, | 
|  | const Condition cond) { | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-874. | 
|  | // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 1010(19-16) | Vd(15-12) | | 
|  | // 101(11-9) | sf=1(8) | sx=1(7) | 1(6) | i(5) | 0(4) | imm4(3-0) | 
|  | DCHECK(IsEnabled(VFPv3)); | 
|  | DCHECK(VfpRegisterIsAvailable(dst)); | 
|  | DCHECK(fraction_bits > 0 && fraction_bits <= 32); | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int imm5 = 32 - fraction_bits; | 
|  | int i = imm5 & 1; | 
|  | int imm4 = (imm5 >> 1) & 0xF; | 
|  | emit(cond | 0xE * B24 | B23 | d * B22 | 0x3 * B20 | B19 | 0x2 * B16 | | 
|  | vd * B12 | 0x5 * B9 | B8 | B7 | B6 | i * B5 | imm4); | 
|  | } | 
|  |  | 
|  | void Assembler::vneg(const DwVfpRegister dst, const DwVfpRegister src, | 
|  | const Condition cond) { | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-968. | 
|  | // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 0001(19-16) | Vd(15-12) | | 
|  | // 101(11-9) | sz=1(8) | 0(7) | 1(6) | M(5) | 0(4) | Vm(3-0) | 
|  | DCHECK(VfpRegisterIsAvailable(dst)); | 
|  | DCHECK(VfpRegisterIsAvailable(src)); | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vm, m; | 
|  | src.split_code(&vm, &m); | 
|  |  | 
|  | emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | B16 | vd * B12 | 0x5 * B9 | | 
|  | B8 | B6 | m * B5 | vm); | 
|  | } | 
|  |  | 
|  | void Assembler::vneg(const SwVfpRegister dst, const SwVfpRegister src, | 
|  | const Condition cond) { | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-968. | 
|  | // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 0001(19-16) | Vd(15-12) | | 
|  | // 101(11-9) | sz=0(8) | 0(7) | 1(6) | M(5) | 0(4) | Vm(3-0) | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vm, m; | 
|  | src.split_code(&vm, &m); | 
|  |  | 
|  | emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | B16 | vd * B12 | 0x5 * B9 | | 
|  | B6 | m * B5 | vm); | 
|  | } | 
|  |  | 
|  | void Assembler::vabs(const DwVfpRegister dst, const DwVfpRegister src, | 
|  | const Condition cond) { | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-524. | 
|  | // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 0000(19-16) | Vd(15-12) | | 
|  | // 101(11-9) | sz=1(8) | 1(7) | 1(6) | M(5) | 0(4) | Vm(3-0) | 
|  | DCHECK(VfpRegisterIsAvailable(dst)); | 
|  | DCHECK(VfpRegisterIsAvailable(src)); | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vm, m; | 
|  | src.split_code(&vm, &m); | 
|  | emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | vd * B12 | 0x5 * B9 | B8 | B7 | | 
|  | B6 | m * B5 | vm); | 
|  | } | 
|  |  | 
|  | void Assembler::vabs(const SwVfpRegister dst, const SwVfpRegister src, | 
|  | const Condition cond) { | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-524. | 
|  | // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 0000(19-16) | Vd(15-12) | | 
|  | // 101(11-9) | sz=0(8) | 1(7) | 1(6) | M(5) | 0(4) | Vm(3-0) | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vm, m; | 
|  | src.split_code(&vm, &m); | 
|  | emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | vd * B12 | 0x5 * B9 | B7 | B6 | | 
|  | m * B5 | vm); | 
|  | } | 
|  |  | 
|  | void Assembler::vadd(const DwVfpRegister dst, const DwVfpRegister src1, | 
|  | const DwVfpRegister src2, const Condition cond) { | 
|  | // Dd = vadd(Dn, Dm) double precision floating point addition. | 
|  | // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-830. | 
|  | // cond(31-28) | 11100(27-23)| D(22) | 11(21-20) | Vn(19-16) | | 
|  | // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0) | 
|  | DCHECK(VfpRegisterIsAvailable(dst)); | 
|  | DCHECK(VfpRegisterIsAvailable(src1)); | 
|  | DCHECK(VfpRegisterIsAvailable(src2)); | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vn, n; | 
|  | src1.split_code(&vn, &n); | 
|  | int vm, m; | 
|  | src2.split_code(&vm, &m); | 
|  | emit(cond | 0x1C * B23 | d * B22 | 0x3 * B20 | vn * B16 | vd * B12 | | 
|  | 0x5 * B9 | B8 | n * B7 | m * B5 | vm); | 
|  | } | 
|  |  | 
|  | void Assembler::vadd(const SwVfpRegister dst, const SwVfpRegister src1, | 
|  | const SwVfpRegister src2, const Condition cond) { | 
|  | // Sd = vadd(Sn, Sm) single precision floating point addition. | 
|  | // Sd = D:Vd; Sm=M:Vm; Sn=N:Vm. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-830. | 
|  | // cond(31-28) | 11100(27-23)| D(22) | 11(21-20) | Vn(19-16) | | 
|  | // Vd(15-12) | 101(11-9) | sz=0(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0) | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vn, n; | 
|  | src1.split_code(&vn, &n); | 
|  | int vm, m; | 
|  | src2.split_code(&vm, &m); | 
|  | emit(cond | 0x1C * B23 | d * B22 | 0x3 * B20 | vn * B16 | vd * B12 | | 
|  | 0x5 * B9 | n * B7 | m * B5 | vm); | 
|  | } | 
|  |  | 
|  | void Assembler::vsub(const DwVfpRegister dst, const DwVfpRegister src1, | 
|  | const DwVfpRegister src2, const Condition cond) { | 
|  | // Dd = vsub(Dn, Dm) double precision floating point subtraction. | 
|  | // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-1086. | 
|  | // cond(31-28) | 11100(27-23)| D(22) | 11(21-20) | Vn(19-16) | | 
|  | // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 1(6) | M(5) | 0(4) | Vm(3-0) | 
|  | DCHECK(VfpRegisterIsAvailable(dst)); | 
|  | DCHECK(VfpRegisterIsAvailable(src1)); | 
|  | DCHECK(VfpRegisterIsAvailable(src2)); | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vn, n; | 
|  | src1.split_code(&vn, &n); | 
|  | int vm, m; | 
|  | src2.split_code(&vm, &m); | 
|  | emit(cond | 0x1C * B23 | d * B22 | 0x3 * B20 | vn * B16 | vd * B12 | | 
|  | 0x5 * B9 | B8 | n * B7 | B6 | m * B5 | vm); | 
|  | } | 
|  |  | 
|  | void Assembler::vsub(const SwVfpRegister dst, const SwVfpRegister src1, | 
|  | const SwVfpRegister src2, const Condition cond) { | 
|  | // Sd = vsub(Sn, Sm) single precision floating point subtraction. | 
|  | // Sd = D:Vd; Sm=M:Vm; Sn=N:Vm. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-1086. | 
|  | // cond(31-28) | 11100(27-23)| D(22) | 11(21-20) | Vn(19-16) | | 
|  | // Vd(15-12) | 101(11-9) | sz=0(8) | N(7) | 1(6) | M(5) | 0(4) | Vm(3-0) | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vn, n; | 
|  | src1.split_code(&vn, &n); | 
|  | int vm, m; | 
|  | src2.split_code(&vm, &m); | 
|  | emit(cond | 0x1C * B23 | d * B22 | 0x3 * B20 | vn * B16 | vd * B12 | | 
|  | 0x5 * B9 | n * B7 | B6 | m * B5 | vm); | 
|  | } | 
|  |  | 
|  | void Assembler::vmul(const DwVfpRegister dst, const DwVfpRegister src1, | 
|  | const DwVfpRegister src2, const Condition cond) { | 
|  | // Dd = vmul(Dn, Dm) double precision floating point multiplication. | 
|  | // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-960. | 
|  | // cond(31-28) | 11100(27-23)| D(22) | 10(21-20) | Vn(19-16) | | 
|  | // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0) | 
|  | DCHECK(VfpRegisterIsAvailable(dst)); | 
|  | DCHECK(VfpRegisterIsAvailable(src1)); | 
|  | DCHECK(VfpRegisterIsAvailable(src2)); | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vn, n; | 
|  | src1.split_code(&vn, &n); | 
|  | int vm, m; | 
|  | src2.split_code(&vm, &m); | 
|  | emit(cond | 0x1C * B23 | d * B22 | 0x2 * B20 | vn * B16 | vd * B12 | | 
|  | 0x5 * B9 | B8 | n * B7 | m * B5 | vm); | 
|  | } | 
|  |  | 
|  | void Assembler::vmul(const SwVfpRegister dst, const SwVfpRegister src1, | 
|  | const SwVfpRegister src2, const Condition cond) { | 
|  | // Sd = vmul(Sn, Sm) single precision floating point multiplication. | 
|  | // Sd = D:Vd; Sm=M:Vm; Sn=N:Vm. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-960. | 
|  | // cond(31-28) | 11100(27-23)| D(22) | 10(21-20) | Vn(19-16) | | 
|  | // Vd(15-12) | 101(11-9) | sz=0(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0) | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vn, n; | 
|  | src1.split_code(&vn, &n); | 
|  | int vm, m; | 
|  | src2.split_code(&vm, &m); | 
|  | emit(cond | 0x1C * B23 | d * B22 | 0x2 * B20 | vn * B16 | vd * B12 | | 
|  | 0x5 * B9 | n * B7 | m * B5 | vm); | 
|  | } | 
|  |  | 
|  | void Assembler::vmla(const DwVfpRegister dst, const DwVfpRegister src1, | 
|  | const DwVfpRegister src2, const Condition cond) { | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-932. | 
|  | // cond(31-28) | 11100(27-23) | D(22) | 00(21-20) | Vn(19-16) | | 
|  | // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | op=0(6) | M(5) | 0(4) | Vm(3-0) | 
|  | DCHECK(VfpRegisterIsAvailable(dst)); | 
|  | DCHECK(VfpRegisterIsAvailable(src1)); | 
|  | DCHECK(VfpRegisterIsAvailable(src2)); | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vn, n; | 
|  | src1.split_code(&vn, &n); | 
|  | int vm, m; | 
|  | src2.split_code(&vm, &m); | 
|  | emit(cond | 0x1C * B23 | d * B22 | vn * B16 | vd * B12 | 0x5 * B9 | B8 | | 
|  | n * B7 | m * B5 | vm); | 
|  | } | 
|  |  | 
|  | void Assembler::vmla(const SwVfpRegister dst, const SwVfpRegister src1, | 
|  | const SwVfpRegister src2, const Condition cond) { | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-932. | 
|  | // cond(31-28) | 11100(27-23) | D(22) | 00(21-20) | Vn(19-16) | | 
|  | // Vd(15-12) | 101(11-9) | sz=0(8) | N(7) | op=0(6) | M(5) | 0(4) | Vm(3-0) | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vn, n; | 
|  | src1.split_code(&vn, &n); | 
|  | int vm, m; | 
|  | src2.split_code(&vm, &m); | 
|  | emit(cond | 0x1C * B23 | d * B22 | vn * B16 | vd * B12 | 0x5 * B9 | n * B7 | | 
|  | m * B5 | vm); | 
|  | } | 
|  |  | 
|  | void Assembler::vmls(const DwVfpRegister dst, const DwVfpRegister src1, | 
|  | const DwVfpRegister src2, const Condition cond) { | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-932. | 
|  | // cond(31-28) | 11100(27-23) | D(22) | 00(21-20) | Vn(19-16) | | 
|  | // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | op=1(6) | M(5) | 0(4) | Vm(3-0) | 
|  | DCHECK(VfpRegisterIsAvailable(dst)); | 
|  | DCHECK(VfpRegisterIsAvailable(src1)); | 
|  | DCHECK(VfpRegisterIsAvailable(src2)); | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vn, n; | 
|  | src1.split_code(&vn, &n); | 
|  | int vm, m; | 
|  | src2.split_code(&vm, &m); | 
|  | emit(cond | 0x1C * B23 | d * B22 | vn * B16 | vd * B12 | 0x5 * B9 | B8 | | 
|  | n * B7 | B6 | m * B5 | vm); | 
|  | } | 
|  |  | 
|  | void Assembler::vmls(const SwVfpRegister dst, const SwVfpRegister src1, | 
|  | const SwVfpRegister src2, const Condition cond) { | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-932. | 
|  | // cond(31-28) | 11100(27-23) | D(22) | 00(21-20) | Vn(19-16) | | 
|  | // Vd(15-12) | 101(11-9) | sz=0(8) | N(7) | op=1(6) | M(5) | 0(4) | Vm(3-0) | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vn, n; | 
|  | src1.split_code(&vn, &n); | 
|  | int vm, m; | 
|  | src2.split_code(&vm, &m); | 
|  | emit(cond | 0x1C * B23 | d * B22 | vn * B16 | vd * B12 | 0x5 * B9 | n * B7 | | 
|  | B6 | m * B5 | vm); | 
|  | } | 
|  |  | 
|  | void Assembler::vdiv(const DwVfpRegister dst, const DwVfpRegister src1, | 
|  | const DwVfpRegister src2, const Condition cond) { | 
|  | // Dd = vdiv(Dn, Dm) double precision floating point division. | 
|  | // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-882. | 
|  | // cond(31-28) | 11101(27-23)| D(22) | 00(21-20) | Vn(19-16) | | 
|  | // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0) | 
|  | DCHECK(VfpRegisterIsAvailable(dst)); | 
|  | DCHECK(VfpRegisterIsAvailable(src1)); | 
|  | DCHECK(VfpRegisterIsAvailable(src2)); | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vn, n; | 
|  | src1.split_code(&vn, &n); | 
|  | int vm, m; | 
|  | src2.split_code(&vm, &m); | 
|  | emit(cond | 0x1D * B23 | d * B22 | vn * B16 | vd * B12 | 0x5 * B9 | B8 | | 
|  | n * B7 | m * B5 | vm); | 
|  | } | 
|  |  | 
|  | void Assembler::vdiv(const SwVfpRegister dst, const SwVfpRegister src1, | 
|  | const SwVfpRegister src2, const Condition cond) { | 
|  | // Sd = vdiv(Sn, Sm) single precision floating point division. | 
|  | // Sd = D:Vd; Sm=M:Vm; Sn=N:Vm. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-882. | 
|  | // cond(31-28) | 11101(27-23)| D(22) | 00(21-20) | Vn(19-16) | | 
|  | // Vd(15-12) | 101(11-9) | sz=0(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0) | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vn, n; | 
|  | src1.split_code(&vn, &n); | 
|  | int vm, m; | 
|  | src2.split_code(&vm, &m); | 
|  | emit(cond | 0x1D * B23 | d * B22 | vn * B16 | vd * B12 | 0x5 * B9 | n * B7 | | 
|  | m * B5 | vm); | 
|  | } | 
|  |  | 
|  | void Assembler::vcmp(const DwVfpRegister src1, const DwVfpRegister src2, | 
|  | const Condition cond) { | 
|  | // vcmp(Dd, Dm) double precision floating point comparison. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-864. | 
|  | // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0100(19-16) | | 
|  | // Vd(15-12) | 101(11-9) | sz=1(8) | E=0(7) | 1(6) | M(5) | 0(4) | Vm(3-0) | 
|  | DCHECK(VfpRegisterIsAvailable(src1)); | 
|  | DCHECK(VfpRegisterIsAvailable(src2)); | 
|  | int vd, d; | 
|  | src1.split_code(&vd, &d); | 
|  | int vm, m; | 
|  | src2.split_code(&vm, &m); | 
|  | emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | 0x4 * B16 | vd * B12 | | 
|  | 0x5 * B9 | B8 | B6 | m * B5 | vm); | 
|  | } | 
|  |  | 
|  | void Assembler::vcmp(const SwVfpRegister src1, const SwVfpRegister src2, | 
|  | const Condition cond) { | 
|  | // vcmp(Sd, Sm) single precision floating point comparison. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-864. | 
|  | // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0100(19-16) | | 
|  | // Vd(15-12) | 101(11-9) | sz=0(8) | E=0(7) | 1(6) | M(5) | 0(4) | Vm(3-0) | 
|  | int vd, d; | 
|  | src1.split_code(&vd, &d); | 
|  | int vm, m; | 
|  | src2.split_code(&vm, &m); | 
|  | emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | 0x4 * B16 | vd * B12 | | 
|  | 0x5 * B9 | B6 | m * B5 | vm); | 
|  | } | 
|  |  | 
|  | void Assembler::vcmp(const DwVfpRegister src1, const double src2, | 
|  | const Condition cond) { | 
|  | // vcmp(Dd, #0.0) double precision floating point comparison. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-864. | 
|  | // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0101(19-16) | | 
|  | // Vd(15-12) | 101(11-9) | sz=1(8) | E=0(7) | 1(6) | 0(5) | 0(4) | 0000(3-0) | 
|  | DCHECK(VfpRegisterIsAvailable(src1)); | 
|  | DCHECK_EQ(src2, 0.0); | 
|  | int vd, d; | 
|  | src1.split_code(&vd, &d); | 
|  | emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | 0x5 * B16 | vd * B12 | | 
|  | 0x5 * B9 | B8 | B6); | 
|  | } | 
|  |  | 
|  | void Assembler::vcmp(const SwVfpRegister src1, const float src2, | 
|  | const Condition cond) { | 
|  | // vcmp(Sd, #0.0) single precision floating point comparison. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-864. | 
|  | // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0101(19-16) | | 
|  | // Vd(15-12) | 101(11-9) | sz=0(8) | E=0(7) | 1(6) | 0(5) | 0(4) | 0000(3-0) | 
|  | DCHECK_EQ(src2, 0.0); | 
|  | int vd, d; | 
|  | src1.split_code(&vd, &d); | 
|  | emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | 0x5 * B16 | vd * B12 | | 
|  | 0x5 * B9 | B6); | 
|  | } | 
|  |  | 
|  | void Assembler::vmaxnm(const DwVfpRegister dst, const DwVfpRegister src1, | 
|  | const DwVfpRegister src2) { | 
|  | // kSpecialCondition(31-28) | 11101(27-23) | D(22) | 00(21-20) | Vn(19-16) | | 
|  | // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0) | 
|  | DCHECK(IsEnabled(ARMv8)); | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vn, n; | 
|  | src1.split_code(&vn, &n); | 
|  | int vm, m; | 
|  | src2.split_code(&vm, &m); | 
|  |  | 
|  | emit(kSpecialCondition | 0x1D * B23 | d * B22 | vn * B16 | vd * B12 | | 
|  | 0x5 * B9 | B8 | n * B7 | m * B5 | vm); | 
|  | } | 
|  |  | 
|  | void Assembler::vmaxnm(const SwVfpRegister dst, const SwVfpRegister src1, | 
|  | const SwVfpRegister src2) { | 
|  | // kSpecialCondition(31-28) | 11101(27-23) | D(22) | 00(21-20) | Vn(19-16) | | 
|  | // Vd(15-12) | 101(11-9) | sz=0(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0) | 
|  | DCHECK(IsEnabled(ARMv8)); | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vn, n; | 
|  | src1.split_code(&vn, &n); | 
|  | int vm, m; | 
|  | src2.split_code(&vm, &m); | 
|  |  | 
|  | emit(kSpecialCondition | 0x1D * B23 | d * B22 | vn * B16 | vd * B12 | | 
|  | 0x5 * B9 | n * B7 | m * B5 | vm); | 
|  | } | 
|  |  | 
|  | void Assembler::vminnm(const DwVfpRegister dst, const DwVfpRegister src1, | 
|  | const DwVfpRegister src2) { | 
|  | // kSpecialCondition(31-28) | 11101(27-23) | D(22) | 00(21-20) | Vn(19-16) | | 
|  | // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 1(6) | M(5) | 0(4) | Vm(3-0) | 
|  | DCHECK(IsEnabled(ARMv8)); | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vn, n; | 
|  | src1.split_code(&vn, &n); | 
|  | int vm, m; | 
|  | src2.split_code(&vm, &m); | 
|  |  | 
|  | emit(kSpecialCondition | 0x1D * B23 | d * B22 | vn * B16 | vd * B12 | | 
|  | 0x5 * B9 | B8 | n * B7 | B6 | m * B5 | vm); | 
|  | } | 
|  |  | 
|  | void Assembler::vminnm(const SwVfpRegister dst, const SwVfpRegister src1, | 
|  | const SwVfpRegister src2) { | 
|  | // kSpecialCondition(31-28) | 11101(27-23) | D(22) | 00(21-20) | Vn(19-16) | | 
|  | // Vd(15-12) | 101(11-9) | sz=0(8) | N(7) | 1(6) | M(5) | 0(4) | Vm(3-0) | 
|  | DCHECK(IsEnabled(ARMv8)); | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vn, n; | 
|  | src1.split_code(&vn, &n); | 
|  | int vm, m; | 
|  | src2.split_code(&vm, &m); | 
|  |  | 
|  | emit(kSpecialCondition | 0x1D * B23 | d * B22 | vn * B16 | vd * B12 | | 
|  | 0x5 * B9 | n * B7 | B6 | m * B5 | vm); | 
|  | } | 
|  |  | 
|  | void Assembler::vsel(Condition cond, const DwVfpRegister dst, | 
|  | const DwVfpRegister src1, const DwVfpRegister src2) { | 
|  | // cond=kSpecialCondition(31-28) | 11100(27-23) | D(22) | | 
|  | // vsel_cond=XX(21-20) | Vn(19-16) | Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | | 
|  | // 0(6) | M(5) | 0(4) | Vm(3-0) | 
|  | DCHECK(IsEnabled(ARMv8)); | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vn, n; | 
|  | src1.split_code(&vn, &n); | 
|  | int vm, m; | 
|  | src2.split_code(&vm, &m); | 
|  | int sz = 1; | 
|  |  | 
|  | // VSEL has a special (restricted) condition encoding. | 
|  | //   eq(0b0000)... -> 0b00 | 
|  | //   ge(0b1010)... -> 0b10 | 
|  | //   gt(0b1100)... -> 0b11 | 
|  | //   vs(0b0110)... -> 0b01 | 
|  | // No other conditions are supported. | 
|  | int vsel_cond = (cond >> 30) & 0x3; | 
|  | if ((cond != eq) && (cond != ge) && (cond != gt) && (cond != vs)) { | 
|  | // We can implement some other conditions by swapping the inputs. | 
|  | DCHECK((cond == ne) | (cond == lt) | (cond == le) | (cond == vc)); | 
|  | std::swap(vn, vm); | 
|  | std::swap(n, m); | 
|  | } | 
|  |  | 
|  | emit(kSpecialCondition | 0x1C * B23 | d * B22 | vsel_cond * B20 | vn * B16 | | 
|  | vd * B12 | 0x5 * B9 | sz * B8 | n * B7 | m * B5 | vm); | 
|  | } | 
|  |  | 
|  | void Assembler::vsel(Condition cond, const SwVfpRegister dst, | 
|  | const SwVfpRegister src1, const SwVfpRegister src2) { | 
|  | // cond=kSpecialCondition(31-28) | 11100(27-23) | D(22) | | 
|  | // vsel_cond=XX(21-20) | Vn(19-16) | Vd(15-12) | 101(11-9) | sz=0(8) | N(7) | | 
|  | // 0(6) | M(5) | 0(4) | Vm(3-0) | 
|  | DCHECK(IsEnabled(ARMv8)); | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vn, n; | 
|  | src1.split_code(&vn, &n); | 
|  | int vm, m; | 
|  | src2.split_code(&vm, &m); | 
|  | int sz = 0; | 
|  |  | 
|  | // VSEL has a special (restricted) condition encoding. | 
|  | //   eq(0b0000)... -> 0b00 | 
|  | //   ge(0b1010)... -> 0b10 | 
|  | //   gt(0b1100)... -> 0b11 | 
|  | //   vs(0b0110)... -> 0b01 | 
|  | // No other conditions are supported. | 
|  | int vsel_cond = (cond >> 30) & 0x3; | 
|  | if ((cond != eq) && (cond != ge) && (cond != gt) && (cond != vs)) { | 
|  | // We can implement some other conditions by swapping the inputs. | 
|  | DCHECK((cond == ne) | (cond == lt) | (cond == le) | (cond == vc)); | 
|  | std::swap(vn, vm); | 
|  | std::swap(n, m); | 
|  | } | 
|  |  | 
|  | emit(kSpecialCondition | 0x1C * B23 | d * B22 | vsel_cond * B20 | vn * B16 | | 
|  | vd * B12 | 0x5 * B9 | sz * B8 | n * B7 | m * B5 | vm); | 
|  | } | 
|  |  | 
|  | void Assembler::vsqrt(const DwVfpRegister dst, const DwVfpRegister src, | 
|  | const Condition cond) { | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-1058. | 
|  | // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0001(19-16) | | 
|  | // Vd(15-12) | 101(11-9) | sz=1(8) | 11(7-6) | M(5) | 0(4) | Vm(3-0) | 
|  | DCHECK(VfpRegisterIsAvailable(dst)); | 
|  | DCHECK(VfpRegisterIsAvailable(src)); | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vm, m; | 
|  | src.split_code(&vm, &m); | 
|  | emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | B16 | vd * B12 | 0x5 * B9 | | 
|  | B8 | 0x3 * B6 | m * B5 | vm); | 
|  | } | 
|  |  | 
|  | void Assembler::vsqrt(const SwVfpRegister dst, const SwVfpRegister src, | 
|  | const Condition cond) { | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-1058. | 
|  | // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0001(19-16) | | 
|  | // Vd(15-12) | 101(11-9) | sz=0(8) | 11(7-6) | M(5) | 0(4) | Vm(3-0) | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vm, m; | 
|  | src.split_code(&vm, &m); | 
|  | emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | B16 | vd * B12 | 0x5 * B9 | | 
|  | 0x3 * B6 | m * B5 | vm); | 
|  | } | 
|  |  | 
|  | void Assembler::vmsr(Register dst, Condition cond) { | 
|  | // Instruction details available in ARM DDI 0406A, A8-652. | 
|  | // cond(31-28) | 1110 (27-24) | 1110(23-20)| 0001 (19-16) | | 
|  | // Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0) | 
|  | emit(cond | 0xE * B24 | 0xE * B20 | B16 | dst.code() * B12 | 0xA * B8 | B4); | 
|  | } | 
|  |  | 
|  | void Assembler::vmrs(Register dst, Condition cond) { | 
|  | // Instruction details available in ARM DDI 0406A, A8-652. | 
|  | // cond(31-28) | 1110 (27-24) | 1111(23-20)| 0001 (19-16) | | 
|  | // Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0) | 
|  | emit(cond | 0xE * B24 | 0xF * B20 | B16 | dst.code() * B12 | 0xA * B8 | B4); | 
|  | } | 
|  |  | 
|  | void Assembler::vrinta(const SwVfpRegister dst, const SwVfpRegister src) { | 
|  | // cond=kSpecialCondition(31-28) | 11101(27-23)| D(22) | 11(21-20) | | 
|  | // 10(19-18) | RM=00(17-16) |  Vd(15-12) | 101(11-9) | sz=0(8) | 01(7-6) | | 
|  | // M(5) | 0(4) | Vm(3-0) | 
|  | DCHECK(IsEnabled(ARMv8)); | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vm, m; | 
|  | src.split_code(&vm, &m); | 
|  | emit(kSpecialCondition | 0x1D * B23 | d * B22 | 0x3 * B20 | B19 | vd * B12 | | 
|  | 0x5 * B9 | B6 | m * B5 | vm); | 
|  | } | 
|  |  | 
|  | void Assembler::vrinta(const DwVfpRegister dst, const DwVfpRegister src) { | 
|  | // cond=kSpecialCondition(31-28) | 11101(27-23)| D(22) | 11(21-20) | | 
|  | // 10(19-18) | RM=00(17-16) |  Vd(15-12) | 101(11-9) | sz=1(8) | 01(7-6) | | 
|  | // M(5) | 0(4) | Vm(3-0) | 
|  | DCHECK(IsEnabled(ARMv8)); | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vm, m; | 
|  | src.split_code(&vm, &m); | 
|  | emit(kSpecialCondition | 0x1D * B23 | d * B22 | 0x3 * B20 | B19 | vd * B12 | | 
|  | 0x5 * B9 | B8 | B6 | m * B5 | vm); | 
|  | } | 
|  |  | 
|  | void Assembler::vrintn(const SwVfpRegister dst, const SwVfpRegister src) { | 
|  | // cond=kSpecialCondition(31-28) | 11101(27-23)| D(22) | 11(21-20) | | 
|  | // 10(19-18) | RM=01(17-16) |  Vd(15-12) | 101(11-9) | sz=0(8) | 01(7-6) | | 
|  | // M(5) | 0(4) | Vm(3-0) | 
|  | DCHECK(IsEnabled(ARMv8)); | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vm, m; | 
|  | src.split_code(&vm, &m); | 
|  | emit(kSpecialCondition | 0x1D * B23 | d * B22 | 0x3 * B20 | B19 | 0x1 * B16 | | 
|  | vd * B12 | 0x5 * B9 | B6 | m * B5 | vm); | 
|  | } | 
|  |  | 
|  | void Assembler::vrintn(const DwVfpRegister dst, const DwVfpRegister src) { | 
|  | // cond=kSpecialCondition(31-28) | 11101(27-23)| D(22) | 11(21-20) | | 
|  | // 10(19-18) | RM=01(17-16) |  Vd(15-12) | 101(11-9) | sz=1(8) | 01(7-6) | | 
|  | // M(5) | 0(4) | Vm(3-0) | 
|  | DCHECK(IsEnabled(ARMv8)); | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vm, m; | 
|  | src.split_code(&vm, &m); | 
|  | emit(kSpecialCondition | 0x1D * B23 | d * B22 | 0x3 * B20 | B19 | 0x1 * B16 | | 
|  | vd * B12 | 0x5 * B9 | B8 | B6 | m * B5 | vm); | 
|  | } | 
|  |  | 
|  | void Assembler::vrintp(const SwVfpRegister dst, const SwVfpRegister src) { | 
|  | // cond=kSpecialCondition(31-28) | 11101(27-23)| D(22) | 11(21-20) | | 
|  | // 10(19-18) | RM=10(17-16) |  Vd(15-12) | 101(11-9) | sz=0(8) | 01(7-6) | | 
|  | // M(5) | 0(4) | Vm(3-0) | 
|  | DCHECK(IsEnabled(ARMv8)); | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vm, m; | 
|  | src.split_code(&vm, &m); | 
|  | emit(kSpecialCondition | 0x1D * B23 | d * B22 | 0x3 * B20 | B19 | 0x2 * B16 | | 
|  | vd * B12 | 0x5 * B9 | B6 | m * B5 | vm); | 
|  | } | 
|  |  | 
|  | void Assembler::vrintp(const DwVfpRegister dst, const DwVfpRegister src) { | 
|  | // cond=kSpecialCondition(31-28) | 11101(27-23)| D(22) | 11(21-20) | | 
|  | // 10(19-18) | RM=10(17-16) |  Vd(15-12) | 101(11-9) | sz=1(8) | 01(7-6) | | 
|  | // M(5) | 0(4) | Vm(3-0) | 
|  | DCHECK(IsEnabled(ARMv8)); | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vm, m; | 
|  | src.split_code(&vm, &m); | 
|  | emit(kSpecialCondition | 0x1D * B23 | d * B22 | 0x3 * B20 | B19 | 0x2 * B16 | | 
|  | vd * B12 | 0x5 * B9 | B8 | B6 | m * B5 | vm); | 
|  | } | 
|  |  | 
|  | void Assembler::vrintm(const SwVfpRegister dst, const SwVfpRegister src) { | 
|  | // cond=kSpecialCondition(31-28) | 11101(27-23)| D(22) | 11(21-20) | | 
|  | // 10(19-18) | RM=11(17-16) |  Vd(15-12) | 101(11-9) | sz=0(8) | 01(7-6) | | 
|  | // M(5) | 0(4) | Vm(3-0) | 
|  | DCHECK(IsEnabled(ARMv8)); | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vm, m; | 
|  | src.split_code(&vm, &m); | 
|  | emit(kSpecialCondition | 0x1D * B23 | d * B22 | 0x3 * B20 | B19 | 0x3 * B16 | | 
|  | vd * B12 | 0x5 * B9 | B6 | m * B5 | vm); | 
|  | } | 
|  |  | 
|  | void Assembler::vrintm(const DwVfpRegister dst, const DwVfpRegister src) { | 
|  | // cond=kSpecialCondition(31-28) | 11101(27-23)| D(22) | 11(21-20) | | 
|  | // 10(19-18) | RM=11(17-16) |  Vd(15-12) | 101(11-9) | sz=1(8) | 01(7-6) | | 
|  | // M(5) | 0(4) | Vm(3-0) | 
|  | DCHECK(IsEnabled(ARMv8)); | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vm, m; | 
|  | src.split_code(&vm, &m); | 
|  | emit(kSpecialCondition | 0x1D * B23 | d * B22 | 0x3 * B20 | B19 | 0x3 * B16 | | 
|  | vd * B12 | 0x5 * B9 | B8 | B6 | m * B5 | vm); | 
|  | } | 
|  |  | 
|  | void Assembler::vrintz(const SwVfpRegister dst, const SwVfpRegister src, | 
|  | const Condition cond) { | 
|  | // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 011(19-17) | 0(16) | | 
|  | // Vd(15-12) | 101(11-9) | sz=0(8) | op=1(7) | 1(6) | M(5) | 0(4) | Vm(3-0) | 
|  | DCHECK(IsEnabled(ARMv8)); | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vm, m; | 
|  | src.split_code(&vm, &m); | 
|  | emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | 0x3 * B17 | vd * B12 | | 
|  | 0x5 * B9 | B7 | B6 | m * B5 | vm); | 
|  | } | 
|  |  | 
|  | void Assembler::vrintz(const DwVfpRegister dst, const DwVfpRegister src, | 
|  | const Condition cond) { | 
|  | // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 011(19-17) | 0(16) | | 
|  | // Vd(15-12) | 101(11-9) | sz=1(8) | op=1(7) | 1(6) | M(5) | 0(4) | Vm(3-0) | 
|  | DCHECK(IsEnabled(ARMv8)); | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vm, m; | 
|  | src.split_code(&vm, &m); | 
|  | emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | 0x3 * B17 | vd * B12 | | 
|  | 0x5 * B9 | B8 | B7 | B6 | m * B5 | vm); | 
|  | } | 
|  |  | 
|  | // Support for NEON. | 
|  |  | 
|  | void Assembler::vld1(NeonSize size, const NeonListOperand& dst, | 
|  | const NeonMemOperand& src) { | 
|  | // Instruction details available in ARM DDI 0406C.b, A8.8.320. | 
|  | // 1111(31-28) | 01000(27-23) | D(22) | 10(21-20) | Rn(19-16) | | 
|  | // Vd(15-12) | type(11-8) | size(7-6) | align(5-4) | Rm(3-0) | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | int vd, d; | 
|  | dst.base().split_code(&vd, &d); | 
|  | emit(0xFU * B28 | 4 * B24 | d * B22 | 2 * B20 | src.rn().code() * B16 | | 
|  | vd * B12 | dst.type() * B8 | size * B6 | src.align() * B4 | | 
|  | src.rm().code()); | 
|  | } | 
|  |  | 
|  | // vld1s(ingle element to one lane). | 
|  | void Assembler::vld1s(NeonSize size, const NeonListOperand& dst, uint8_t index, | 
|  | const NeonMemOperand& src) { | 
|  | // Instruction details available in ARM DDI 0406C.b, A8.8.322. | 
|  | // 1111(31-28) | 01001(27-23) | D(22) | 10(21-20) | Rn(19-16) | | 
|  | // Vd(15-12) | size(11-10) | index_align(7-4) | Rm(3-0) | 
|  | // See vld1 (single element to all lanes) if size == 0x3, implemented as | 
|  | // vld1r(eplicate). | 
|  | DCHECK_NE(size, 0x3); | 
|  | // Check for valid lane indices. | 
|  | DCHECK_GT(1 << (3 - size), index); | 
|  | // Specifying alignment not supported, use standard alignment. | 
|  | uint8_t index_align = index << (size + 1); | 
|  |  | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | int vd, d; | 
|  | dst.base().split_code(&vd, &d); | 
|  | emit(0xFU * B28 | 4 * B24 | 1 * B23 | d * B22 | 2 * B20 | | 
|  | src.rn().code() * B16 | vd * B12 | size * B10 | index_align * B4 | | 
|  | src.rm().code()); | 
|  | } | 
|  |  | 
|  | // vld1r(eplicate) | 
|  | void Assembler::vld1r(NeonSize size, const NeonListOperand& dst, | 
|  | const NeonMemOperand& src) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | int vd, d; | 
|  | dst.base().split_code(&vd, &d); | 
|  | emit(0xFU * B28 | 4 * B24 | 1 * B23 | d * B22 | 2 * B20 | | 
|  | src.rn().code() * B16 | vd * B12 | 0xC * B8 | size * B6 | | 
|  | dst.length() * B5 | src.rm().code()); | 
|  | } | 
|  |  | 
|  | void Assembler::vst1(NeonSize size, const NeonListOperand& src, | 
|  | const NeonMemOperand& dst) { | 
|  | // Instruction details available in ARM DDI 0406C.b, A8.8.404. | 
|  | // 1111(31-28) | 01000(27-23) | D(22) | 00(21-20) | Rn(19-16) | | 
|  | // Vd(15-12) | type(11-8) | size(7-6) | align(5-4) | Rm(3-0) | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | int vd, d; | 
|  | src.base().split_code(&vd, &d); | 
|  | emit(0xFU * B28 | 4 * B24 | d * B22 | dst.rn().code() * B16 | vd * B12 | | 
|  | src.type() * B8 | size * B6 | dst.align() * B4 | dst.rm().code()); | 
|  | } | 
|  |  | 
|  | void Assembler::vmovl(NeonDataType dt, QwNeonRegister dst, DwVfpRegister src) { | 
|  | // Instruction details available in ARM DDI 0406C.b, A8.8.346. | 
|  | // 1111(31-28) | 001(27-25) | U(24) | 1(23) | D(22) | imm3(21-19) | | 
|  | // 000(18-16) | Vd(15-12) | 101000(11-6) | M(5) | 1(4) | Vm(3-0) | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vm, m; | 
|  | src.split_code(&vm, &m); | 
|  | int U = NeonU(dt); | 
|  | int imm3 = 1 << NeonSz(dt); | 
|  | emit(0xFU * B28 | B25 | U * B24 | B23 | d * B22 | imm3 * B19 | vd * B12 | | 
|  | 0xA * B8 | m * B5 | B4 | vm); | 
|  | } | 
|  |  | 
|  | void Assembler::vqmovn(NeonDataType dst_dt, NeonDataType src_dt, | 
|  | DwVfpRegister dst, QwNeonRegister src) { | 
|  | // Instruction details available in ARM DDI 0406C.b, A8.8.1004. | 
|  | // vqmovn.<type><size> Dd, Qm. ARM vector narrowing move with saturation. | 
|  | // vqmovun.<type><size> Dd, Qm. Same as above, but produces unsigned results. | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | DCHECK_IMPLIES(NeonU(src_dt), NeonU(dst_dt)); | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vm, m; | 
|  | src.split_code(&vm, &m); | 
|  | int size = NeonSz(dst_dt); | 
|  | int op = NeonU(src_dt) ? 0b11 : NeonU(dst_dt) ? 0b01 : 0b10; | 
|  | emit(0x1E7U * B23 | d * B22 | 0x3 * B20 | size * B18 | 0x2 * B16 | vd * B12 | | 
|  | 0x2 * B8 | op * B6 | m * B5 | vm); | 
|  | } | 
|  |  | 
|  | static int EncodeScalar(NeonDataType dt, int index) { | 
|  | int opc1_opc2 = 0; | 
|  | DCHECK_LE(0, index); | 
|  | switch (dt) { | 
|  | case NeonS8: | 
|  | case NeonU8: | 
|  | DCHECK_GT(8, index); | 
|  | opc1_opc2 = 0x8 | index; | 
|  | break; | 
|  | case NeonS16: | 
|  | case NeonU16: | 
|  | DCHECK_GT(4, index); | 
|  | opc1_opc2 = 0x1 | (index << 1); | 
|  | break; | 
|  | case NeonS32: | 
|  | case NeonU32: | 
|  | DCHECK_GT(2, index); | 
|  | opc1_opc2 = index << 2; | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | return (opc1_opc2 >> 2) * B21 | (opc1_opc2 & 0x3) * B5; | 
|  | } | 
|  |  | 
|  | void Assembler::vmov(NeonDataType dt, DwVfpRegister dst, int index, | 
|  | Register src) { | 
|  | // Instruction details available in ARM DDI 0406C.b, A8.8.940. | 
|  | // vmov ARM core register to scalar. | 
|  | DCHECK(dt == NeonS32 || dt == NeonU32 || IsEnabled(NEON)); | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int opc1_opc2 = EncodeScalar(dt, index); | 
|  | emit(0xEEu * B24 | vd * B16 | src.code() * B12 | 0xB * B8 | d * B7 | B4 | | 
|  | opc1_opc2); | 
|  | } | 
|  |  | 
|  | void Assembler::vmov(NeonDataType dt, Register dst, DwVfpRegister src, | 
|  | int index) { | 
|  | // Instruction details available in ARM DDI 0406C.b, A8.8.942. | 
|  | // vmov Arm scalar to core register. | 
|  | DCHECK(dt == NeonS32 || dt == NeonU32 || IsEnabled(NEON)); | 
|  | int vn, n; | 
|  | src.split_code(&vn, &n); | 
|  | int opc1_opc2 = EncodeScalar(dt, index); | 
|  | int u = NeonU(dt); | 
|  | emit(0xEEu * B24 | u * B23 | B20 | vn * B16 | dst.code() * B12 | 0xB * B8 | | 
|  | n * B7 | B4 | opc1_opc2); | 
|  | } | 
|  |  | 
|  | void Assembler::vmov(QwNeonRegister dst, QwNeonRegister src) { | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-938. | 
|  | // vmov is encoded as vorr. | 
|  | vorr(dst, src, src); | 
|  | } | 
|  |  | 
|  | void Assembler::vdup(NeonSize size, QwNeonRegister dst, Register src) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-886. | 
|  | int B = 0, E = 0; | 
|  | switch (size) { | 
|  | case Neon8: | 
|  | B = 1; | 
|  | break; | 
|  | case Neon16: | 
|  | E = 1; | 
|  | break; | 
|  | case Neon32: | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  |  | 
|  | emit(al | 0x1D * B23 | B * B22 | B21 | vd * B16 | src.code() * B12 | | 
|  | 0xB * B8 | d * B7 | E * B5 | B4); | 
|  | } | 
|  |  | 
|  | enum NeonRegType { NEON_D, NEON_Q }; | 
|  |  | 
|  | void NeonSplitCode(NeonRegType type, int code, int* vm, int* m, int* encoding) { | 
|  | if (type == NEON_D) { | 
|  | DwVfpRegister::split_code(code, vm, m); | 
|  | } else { | 
|  | DCHECK_EQ(type, NEON_Q); | 
|  | QwNeonRegister::split_code(code, vm, m); | 
|  | *encoding |= B6; | 
|  | } | 
|  | } | 
|  |  | 
|  | static Instr EncodeNeonDupOp(NeonSize size, NeonRegType reg_type, int dst_code, | 
|  | DwVfpRegister src, int index) { | 
|  | DCHECK_NE(Neon64, size); | 
|  | int sz = static_cast<int>(size); | 
|  | DCHECK_LE(0, index); | 
|  | DCHECK_GT(kSimd128Size / (1 << sz), index); | 
|  | int imm4 = (1 << sz) | ((index << (sz + 1)) & 0xF); | 
|  | int qbit = 0; | 
|  | int vd, d; | 
|  | NeonSplitCode(reg_type, dst_code, &vd, &d, &qbit); | 
|  | int vm, m; | 
|  | src.split_code(&vm, &m); | 
|  |  | 
|  | return 0x1E7U * B23 | d * B22 | 0x3 * B20 | imm4 * B16 | vd * B12 | | 
|  | 0x18 * B7 | qbit | m * B5 | vm; | 
|  | } | 
|  |  | 
|  | void Assembler::vdup(NeonSize size, DwVfpRegister dst, DwVfpRegister src, | 
|  | int index) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-884. | 
|  | emit(EncodeNeonDupOp(size, NEON_D, dst.code(), src, index)); | 
|  | } | 
|  |  | 
|  | void Assembler::vdup(NeonSize size, QwNeonRegister dst, DwVfpRegister src, | 
|  | int index) { | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-884. | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | emit(EncodeNeonDupOp(size, NEON_Q, dst.code(), src, index)); | 
|  | } | 
|  |  | 
|  | // Encode NEON vcvt.src_type.dst_type instruction. | 
|  | static Instr EncodeNeonVCVT(VFPType dst_type, QwNeonRegister dst, | 
|  | VFPType src_type, QwNeonRegister src) { | 
|  | DCHECK(src_type != dst_type); | 
|  | DCHECK(src_type == F32 || dst_type == F32); | 
|  | // Instruction details available in ARM DDI 0406C.b, A8.8.868. | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vm, m; | 
|  | src.split_code(&vm, &m); | 
|  |  | 
|  | int op = 0; | 
|  | if (src_type == F32) { | 
|  | DCHECK(dst_type == S32 || dst_type == U32); | 
|  | op = dst_type == U32 ? 3 : 2; | 
|  | } else { | 
|  | DCHECK(src_type == S32 || src_type == U32); | 
|  | op = src_type == U32 ? 1 : 0; | 
|  | } | 
|  |  | 
|  | return 0x1E7U * B23 | d * B22 | 0x3B * B16 | vd * B12 | 0x3 * B9 | op * B7 | | 
|  | B6 | m * B5 | vm; | 
|  | } | 
|  |  | 
|  | void Assembler::vcvt_f32_s32(QwNeonRegister dst, QwNeonRegister src) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | DCHECK(VfpRegisterIsAvailable(dst)); | 
|  | DCHECK(VfpRegisterIsAvailable(src)); | 
|  | emit(EncodeNeonVCVT(F32, dst, S32, src)); | 
|  | } | 
|  |  | 
|  | void Assembler::vcvt_f32_u32(QwNeonRegister dst, QwNeonRegister src) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | DCHECK(VfpRegisterIsAvailable(dst)); | 
|  | DCHECK(VfpRegisterIsAvailable(src)); | 
|  | emit(EncodeNeonVCVT(F32, dst, U32, src)); | 
|  | } | 
|  |  | 
|  | void Assembler::vcvt_s32_f32(QwNeonRegister dst, QwNeonRegister src) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | DCHECK(VfpRegisterIsAvailable(dst)); | 
|  | DCHECK(VfpRegisterIsAvailable(src)); | 
|  | emit(EncodeNeonVCVT(S32, dst, F32, src)); | 
|  | } | 
|  |  | 
|  | void Assembler::vcvt_u32_f32(QwNeonRegister dst, QwNeonRegister src) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | DCHECK(VfpRegisterIsAvailable(dst)); | 
|  | DCHECK(VfpRegisterIsAvailable(src)); | 
|  | emit(EncodeNeonVCVT(U32, dst, F32, src)); | 
|  | } | 
|  |  | 
|  | enum UnaryOp { | 
|  | VMVN, | 
|  | VSWP, | 
|  | VABS, | 
|  | VABSF, | 
|  | VNEG, | 
|  | VNEGF, | 
|  | VRINTM, | 
|  | VRINTN, | 
|  | VRINTP, | 
|  | VRINTZ | 
|  | }; | 
|  |  | 
|  | static Instr EncodeNeonUnaryOp(UnaryOp op, NeonRegType reg_type, NeonSize size, | 
|  | int dst_code, int src_code) { | 
|  | int op_encoding = 0; | 
|  | switch (op) { | 
|  | case VMVN: | 
|  | DCHECK_EQ(Neon8, size);  // size == 0 for vmvn | 
|  | op_encoding = B10 | 0x3 * B7; | 
|  | break; | 
|  | case VSWP: | 
|  | DCHECK_EQ(Neon8, size);  // size == 0 for vswp | 
|  | op_encoding = B17; | 
|  | break; | 
|  | case VABS: | 
|  | op_encoding = B16 | 0x6 * B7; | 
|  | break; | 
|  | case VABSF: | 
|  | DCHECK_EQ(Neon32, size); | 
|  | op_encoding = B16 | B10 | 0x6 * B7; | 
|  | break; | 
|  | case VNEG: | 
|  | op_encoding = B16 | 0x7 * B7; | 
|  | break; | 
|  | case VNEGF: | 
|  | DCHECK_EQ(Neon32, size); | 
|  | op_encoding = B16 | B10 | 0x7 * B7; | 
|  | break; | 
|  | case VRINTM: | 
|  | op_encoding = B17 | 0xD * B7; | 
|  | break; | 
|  | case VRINTN: | 
|  | op_encoding = B17 | 0x8 * B7; | 
|  | break; | 
|  | case VRINTP: | 
|  | op_encoding = B17 | 0xF * B7; | 
|  | break; | 
|  | case VRINTZ: | 
|  | op_encoding = B17 | 0xB * B7; | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | int vd, d; | 
|  | NeonSplitCode(reg_type, dst_code, &vd, &d, &op_encoding); | 
|  | int vm, m; | 
|  | NeonSplitCode(reg_type, src_code, &vm, &m, &op_encoding); | 
|  |  | 
|  | return 0x1E7U * B23 | d * B22 | 0x3 * B20 | size * B18 | vd * B12 | m * B5 | | 
|  | vm | op_encoding; | 
|  | } | 
|  |  | 
|  | void Assembler::vmvn(QwNeonRegister dst, QwNeonRegister src) { | 
|  | // Qd = vmvn(Qn, Qm) SIMD bitwise negate. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-966. | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | emit(EncodeNeonUnaryOp(VMVN, NEON_Q, Neon8, dst.code(), src.code())); | 
|  | } | 
|  |  | 
|  | void Assembler::vswp(DwVfpRegister dst, DwVfpRegister src) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // Dd = vswp(Dn, Dm) SIMD d-register swap. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8.8.418. | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | emit(EncodeNeonUnaryOp(VSWP, NEON_D, Neon8, dst.code(), src.code())); | 
|  | } | 
|  |  | 
|  | void Assembler::vswp(QwNeonRegister dst, QwNeonRegister src) { | 
|  | // Qd = vswp(Qn, Qm) SIMD q-register swap. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8.8.418. | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | emit(EncodeNeonUnaryOp(VSWP, NEON_Q, Neon8, dst.code(), src.code())); | 
|  | } | 
|  |  | 
|  | void Assembler::vabs(QwNeonRegister dst, QwNeonRegister src) { | 
|  | // Qd = vabs.f<size>(Qn, Qm) SIMD floating point absolute value. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8.8.824. | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | emit(EncodeNeonUnaryOp(VABSF, NEON_Q, Neon32, dst.code(), src.code())); | 
|  | } | 
|  |  | 
|  | void Assembler::vabs(NeonSize size, QwNeonRegister dst, QwNeonRegister src) { | 
|  | // Qd = vabs.s<size>(Qn, Qm) SIMD integer absolute value. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8.8.824. | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | emit(EncodeNeonUnaryOp(VABS, NEON_Q, size, dst.code(), src.code())); | 
|  | } | 
|  |  | 
|  | void Assembler::vneg(QwNeonRegister dst, QwNeonRegister src) { | 
|  | // Qd = vabs.f<size>(Qn, Qm) SIMD floating point negate. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8.8.968. | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | emit(EncodeNeonUnaryOp(VNEGF, NEON_Q, Neon32, dst.code(), src.code())); | 
|  | } | 
|  |  | 
|  | void Assembler::vneg(NeonSize size, QwNeonRegister dst, QwNeonRegister src) { | 
|  | // Qd = vabs.s<size>(Qn, Qm) SIMD integer negate. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8.8.968. | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | emit(EncodeNeonUnaryOp(VNEG, NEON_Q, size, dst.code(), src.code())); | 
|  | } | 
|  |  | 
|  | enum BinaryBitwiseOp { VAND, VBIC, VBIF, VBIT, VBSL, VEOR, VORR, VORN }; | 
|  |  | 
|  | static Instr EncodeNeonBinaryBitwiseOp(BinaryBitwiseOp op, NeonRegType reg_type, | 
|  | int dst_code, int src_code1, | 
|  | int src_code2) { | 
|  | int op_encoding = 0; | 
|  | switch (op) { | 
|  | case VBIC: | 
|  | op_encoding = 0x1 * B20; | 
|  | break; | 
|  | case VBIF: | 
|  | op_encoding = B24 | 0x3 * B20; | 
|  | break; | 
|  | case VBIT: | 
|  | op_encoding = B24 | 0x2 * B20; | 
|  | break; | 
|  | case VBSL: | 
|  | op_encoding = B24 | 0x1 * B20; | 
|  | break; | 
|  | case VEOR: | 
|  | op_encoding = B24; | 
|  | break; | 
|  | case VORR: | 
|  | op_encoding = 0x2 * B20; | 
|  | break; | 
|  | case VORN: | 
|  | op_encoding = 0x3 * B20; | 
|  | break; | 
|  | case VAND: | 
|  | // op_encoding is 0. | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | int vd, d; | 
|  | NeonSplitCode(reg_type, dst_code, &vd, &d, &op_encoding); | 
|  | int vn, n; | 
|  | NeonSplitCode(reg_type, src_code1, &vn, &n, &op_encoding); | 
|  | int vm, m; | 
|  | NeonSplitCode(reg_type, src_code2, &vm, &m, &op_encoding); | 
|  |  | 
|  | return 0x1E4U * B23 | op_encoding | d * B22 | vn * B16 | vd * B12 | B8 | | 
|  | n * B7 | m * B5 | B4 | vm; | 
|  | } | 
|  |  | 
|  | void Assembler::vand(QwNeonRegister dst, QwNeonRegister src1, | 
|  | QwNeonRegister src2) { | 
|  | // Qd = vand(Qn, Qm) SIMD AND. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8.8.836. | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | emit(EncodeNeonBinaryBitwiseOp(VAND, NEON_Q, dst.code(), src1.code(), | 
|  | src2.code())); | 
|  | } | 
|  |  | 
|  | void Assembler::vbic(QwNeonRegister dst, QwNeonRegister src1, | 
|  | QwNeonRegister src2) { | 
|  | // Qd = vbic(Qn, Qm) SIMD AND. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-840. | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | emit(EncodeNeonBinaryBitwiseOp(VBIC, NEON_Q, dst.code(), src1.code(), | 
|  | src2.code())); | 
|  | } | 
|  |  | 
|  | void Assembler::vbsl(QwNeonRegister dst, QwNeonRegister src1, | 
|  | QwNeonRegister src2) { | 
|  | // Qd = vbsl(Qn, Qm) SIMD bitwise select. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-844. | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | emit(EncodeNeonBinaryBitwiseOp(VBSL, NEON_Q, dst.code(), src1.code(), | 
|  | src2.code())); | 
|  | } | 
|  |  | 
|  | void Assembler::veor(DwVfpRegister dst, DwVfpRegister src1, | 
|  | DwVfpRegister src2) { | 
|  | // Dd = veor(Dn, Dm) SIMD exclusive OR. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8.8.888. | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | emit(EncodeNeonBinaryBitwiseOp(VEOR, NEON_D, dst.code(), src1.code(), | 
|  | src2.code())); | 
|  | } | 
|  |  | 
|  | void Assembler::veor(QwNeonRegister dst, QwNeonRegister src1, | 
|  | QwNeonRegister src2) { | 
|  | // Qd = veor(Qn, Qm) SIMD exclusive OR. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8.8.888. | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | emit(EncodeNeonBinaryBitwiseOp(VEOR, NEON_Q, dst.code(), src1.code(), | 
|  | src2.code())); | 
|  | } | 
|  |  | 
|  | void Assembler::vorr(QwNeonRegister dst, QwNeonRegister src1, | 
|  | QwNeonRegister src2) { | 
|  | // Qd = vorr(Qn, Qm) SIMD OR. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8.8.976. | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | emit(EncodeNeonBinaryBitwiseOp(VORR, NEON_Q, dst.code(), src1.code(), | 
|  | src2.code())); | 
|  | } | 
|  |  | 
|  | enum FPBinOp { | 
|  | VADDF, | 
|  | VSUBF, | 
|  | VMULF, | 
|  | VMINF, | 
|  | VMAXF, | 
|  | VRECPS, | 
|  | VRSQRTS, | 
|  | VCEQF, | 
|  | VCGEF, | 
|  | VCGTF | 
|  | }; | 
|  |  | 
|  | static Instr EncodeNeonBinOp(FPBinOp op, QwNeonRegister dst, | 
|  | QwNeonRegister src1, QwNeonRegister src2) { | 
|  | int op_encoding = 0; | 
|  | switch (op) { | 
|  | case VADDF: | 
|  | op_encoding = 0xD * B8; | 
|  | break; | 
|  | case VSUBF: | 
|  | op_encoding = B21 | 0xD * B8; | 
|  | break; | 
|  | case VMULF: | 
|  | op_encoding = B24 | 0xD * B8 | B4; | 
|  | break; | 
|  | case VMINF: | 
|  | op_encoding = B21 | 0xF * B8; | 
|  | break; | 
|  | case VMAXF: | 
|  | op_encoding = 0xF * B8; | 
|  | break; | 
|  | case VRECPS: | 
|  | op_encoding = 0xF * B8 | B4; | 
|  | break; | 
|  | case VRSQRTS: | 
|  | op_encoding = B21 | 0xF * B8 | B4; | 
|  | break; | 
|  | case VCEQF: | 
|  | op_encoding = 0xE * B8; | 
|  | break; | 
|  | case VCGEF: | 
|  | op_encoding = B24 | 0xE * B8; | 
|  | break; | 
|  | case VCGTF: | 
|  | op_encoding = B24 | B21 | 0xE * B8; | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vn, n; | 
|  | src1.split_code(&vn, &n); | 
|  | int vm, m; | 
|  | src2.split_code(&vm, &m); | 
|  | return 0x1E4U * B23 | d * B22 | vn * B16 | vd * B12 | n * B7 | B6 | m * B5 | | 
|  | vm | op_encoding; | 
|  | } | 
|  |  | 
|  | enum IntegerBinOp { | 
|  | VADD, | 
|  | VQADD, | 
|  | VSUB, | 
|  | VQSUB, | 
|  | VMUL, | 
|  | VMIN, | 
|  | VMAX, | 
|  | VTST, | 
|  | VCEQ, | 
|  | VCGE, | 
|  | VCGT, | 
|  | VRHADD | 
|  | }; | 
|  |  | 
|  | static Instr EncodeNeonBinOp(IntegerBinOp op, NeonDataType dt, | 
|  | QwNeonRegister dst, QwNeonRegister src1, | 
|  | QwNeonRegister src2) { | 
|  | int op_encoding = 0; | 
|  | switch (op) { | 
|  | case VADD: | 
|  | op_encoding = 0x8 * B8; | 
|  | break; | 
|  | case VQADD: | 
|  | op_encoding = B4; | 
|  | break; | 
|  | case VSUB: | 
|  | op_encoding = B24 | 0x8 * B8; | 
|  | break; | 
|  | case VQSUB: | 
|  | op_encoding = 0x2 * B8 | B4; | 
|  | break; | 
|  | case VMUL: | 
|  | op_encoding = 0x9 * B8 | B4; | 
|  | break; | 
|  | case VMIN: | 
|  | op_encoding = 0x6 * B8 | B4; | 
|  | break; | 
|  | case VMAX: | 
|  | op_encoding = 0x6 * B8; | 
|  | break; | 
|  | case VTST: | 
|  | op_encoding = 0x8 * B8 | B4; | 
|  | break; | 
|  | case VCEQ: | 
|  | op_encoding = B24 | 0x8 * B8 | B4; | 
|  | break; | 
|  | case VCGE: | 
|  | op_encoding = 0x3 * B8 | B4; | 
|  | break; | 
|  | case VCGT: | 
|  | op_encoding = 0x3 * B8; | 
|  | break; | 
|  | case VRHADD: | 
|  | op_encoding = B8; | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vn, n; | 
|  | src1.split_code(&vn, &n); | 
|  | int vm, m; | 
|  | src2.split_code(&vm, &m); | 
|  | int size = NeonSz(dt); | 
|  | int u = NeonU(dt); | 
|  | return 0x1E4U * B23 | u * B24 | d * B22 | size * B20 | vn * B16 | vd * B12 | | 
|  | n * B7 | B6 | m * B5 | vm | op_encoding; | 
|  | } | 
|  |  | 
|  | static Instr EncodeNeonBinOp(IntegerBinOp op, NeonSize size, QwNeonRegister dst, | 
|  | QwNeonRegister src1, QwNeonRegister src2) { | 
|  | // Map NeonSize values to the signed values in NeonDataType, so the U bit | 
|  | // will be 0. | 
|  | return EncodeNeonBinOp(op, static_cast<NeonDataType>(size), dst, src1, src2); | 
|  | } | 
|  |  | 
|  | void Assembler::vadd(QwNeonRegister dst, QwNeonRegister src1, | 
|  | QwNeonRegister src2) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // Qd = vadd(Qn, Qm) SIMD floating point addition. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-830. | 
|  | emit(EncodeNeonBinOp(VADDF, dst, src1, src2)); | 
|  | } | 
|  |  | 
|  | void Assembler::vadd(NeonSize size, QwNeonRegister dst, QwNeonRegister src1, | 
|  | QwNeonRegister src2) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // Qd = vadd(Qn, Qm) SIMD integer addition. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-828. | 
|  | emit(EncodeNeonBinOp(VADD, size, dst, src1, src2)); | 
|  | } | 
|  |  | 
|  | void Assembler::vqadd(NeonDataType dt, QwNeonRegister dst, QwNeonRegister src1, | 
|  | QwNeonRegister src2) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // Qd = vqadd(Qn, Qm) SIMD integer saturating addition. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-996. | 
|  | emit(EncodeNeonBinOp(VQADD, dt, dst, src1, src2)); | 
|  | } | 
|  |  | 
|  | void Assembler::vsub(QwNeonRegister dst, QwNeonRegister src1, | 
|  | QwNeonRegister src2) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // Qd = vsub(Qn, Qm) SIMD floating point subtraction. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-1086. | 
|  | emit(EncodeNeonBinOp(VSUBF, dst, src1, src2)); | 
|  | } | 
|  |  | 
|  | void Assembler::vsub(NeonSize size, QwNeonRegister dst, QwNeonRegister src1, | 
|  | QwNeonRegister src2) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // Qd = vsub(Qn, Qm) SIMD integer subtraction. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-1084. | 
|  | emit(EncodeNeonBinOp(VSUB, size, dst, src1, src2)); | 
|  | } | 
|  |  | 
|  | void Assembler::vqsub(NeonDataType dt, QwNeonRegister dst, QwNeonRegister src1, | 
|  | QwNeonRegister src2) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // Qd = vqsub(Qn, Qm) SIMD integer saturating subtraction. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-1020. | 
|  | emit(EncodeNeonBinOp(VQSUB, dt, dst, src1, src2)); | 
|  | } | 
|  |  | 
|  | void Assembler::vmlal(NeonDataType dt, QwNeonRegister dst, DwVfpRegister src1, | 
|  | DwVfpRegister src2) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // Qd = vmlal(Dn, Dm) Vector Multiply Accumulate Long (integer) | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-931. | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vn, n; | 
|  | src1.split_code(&vn, &n); | 
|  | int vm, m; | 
|  | src2.split_code(&vm, &m); | 
|  | int size = NeonSz(dt); | 
|  | int u = NeonU(dt); | 
|  | if (!u) UNIMPLEMENTED(); | 
|  | DCHECK_NE(size, 3);  // SEE "Related encodings" | 
|  | emit(0xFU * B28 | B25 | u * B24 | B23 | d * B22 | size * B20 | vn * B16 | | 
|  | vd * B12 | 0x8 * B8 | n * B7 | m * B5 | vm); | 
|  | } | 
|  |  | 
|  | void Assembler::vmul(QwNeonRegister dst, QwNeonRegister src1, | 
|  | QwNeonRegister src2) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // Qd = vadd(Qn, Qm) SIMD floating point multiply. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-958. | 
|  | emit(EncodeNeonBinOp(VMULF, dst, src1, src2)); | 
|  | } | 
|  |  | 
|  | void Assembler::vmul(NeonSize size, QwNeonRegister dst, QwNeonRegister src1, | 
|  | QwNeonRegister src2) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // Qd = vadd(Qn, Qm) SIMD integer multiply. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-960. | 
|  | emit(EncodeNeonBinOp(VMUL, size, dst, src1, src2)); | 
|  | } | 
|  |  | 
|  | void Assembler::vmull(NeonDataType dt, QwNeonRegister dst, DwVfpRegister src1, | 
|  | DwVfpRegister src2) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // Qd = vmull(Dn, Dm) Vector Multiply Long (integer). | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-960. | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vn, n; | 
|  | src1.split_code(&vn, &n); | 
|  | int vm, m; | 
|  | src2.split_code(&vm, &m); | 
|  | int size = NeonSz(dt); | 
|  | int u = NeonU(dt); | 
|  | emit(0xFU * B28 | B25 | u * B24 | B23 | d * B22 | size * B20 | vn * B16 | | 
|  | vd * B12 | 0xC * B8 | n * B7 | m * B5 | vm); | 
|  | } | 
|  |  | 
|  | void Assembler::vmin(QwNeonRegister dst, QwNeonRegister src1, | 
|  | QwNeonRegister src2) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // Qd = vmin(Qn, Qm) SIMD floating point MIN. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-928. | 
|  | emit(EncodeNeonBinOp(VMINF, dst, src1, src2)); | 
|  | } | 
|  |  | 
|  | void Assembler::vmin(NeonDataType dt, QwNeonRegister dst, QwNeonRegister src1, | 
|  | QwNeonRegister src2) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // Qd = vmin(Qn, Qm) SIMD integer MIN. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-926. | 
|  | emit(EncodeNeonBinOp(VMIN, dt, dst, src1, src2)); | 
|  | } | 
|  |  | 
|  | void Assembler::vmax(QwNeonRegister dst, QwNeonRegister src1, | 
|  | QwNeonRegister src2) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // Qd = vmax(Qn, Qm) SIMD floating point MAX. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-928. | 
|  | emit(EncodeNeonBinOp(VMAXF, dst, src1, src2)); | 
|  | } | 
|  |  | 
|  | void Assembler::vmax(NeonDataType dt, QwNeonRegister dst, QwNeonRegister src1, | 
|  | QwNeonRegister src2) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // Qd = vmax(Qn, Qm) SIMD integer MAX. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-926. | 
|  | emit(EncodeNeonBinOp(VMAX, dt, dst, src1, src2)); | 
|  | } | 
|  |  | 
|  | enum NeonShiftOp { VSHL, VSHR, VSLI, VSRI }; | 
|  |  | 
|  | static Instr EncodeNeonShiftRegisterOp(NeonShiftOp op, NeonDataType dt, | 
|  | NeonRegType reg_type, int dst_code, | 
|  | int src_code, int shift_code) { | 
|  | DCHECK_EQ(op, VSHL); | 
|  | int op_encoding = 0; | 
|  | int vd, d; | 
|  | NeonSplitCode(reg_type, dst_code, &vd, &d, &op_encoding); | 
|  | int vm, m; | 
|  | NeonSplitCode(reg_type, src_code, &vm, &m, &op_encoding); | 
|  | int vn, n; | 
|  | NeonSplitCode(reg_type, shift_code, &vn, &n, &op_encoding); | 
|  | int size = NeonSz(dt); | 
|  | int u = NeonU(dt); | 
|  |  | 
|  | return 0x1E4U * B23 | u * B24 | d * B22 | size * B20 | vn * B16 | vd * B12 | | 
|  | 0x4 * B8 | n * B7 | m * B5 | vm | op_encoding; | 
|  | } | 
|  |  | 
|  | static Instr EncodeNeonShiftOp(NeonShiftOp op, NeonSize size, bool is_unsigned, | 
|  | NeonRegType reg_type, int dst_code, int src_code, | 
|  | int shift) { | 
|  | int size_in_bits = kBitsPerByte << static_cast<int>(size); | 
|  | int op_encoding = 0, imm6 = 0, L = 0; | 
|  | switch (op) { | 
|  | case VSHL: { | 
|  | DCHECK(shift >= 0 && size_in_bits > shift); | 
|  | imm6 = size_in_bits + shift; | 
|  | op_encoding = 0x5 * B8; | 
|  | break; | 
|  | } | 
|  | case VSHR: { | 
|  | DCHECK(shift > 0 && size_in_bits >= shift); | 
|  | imm6 = 2 * size_in_bits - shift; | 
|  | if (is_unsigned) op_encoding |= B24; | 
|  | break; | 
|  | } | 
|  | case VSLI: { | 
|  | DCHECK(shift >= 0 && size_in_bits > shift); | 
|  | imm6 = size_in_bits + shift; | 
|  | op_encoding = B24 | 0x5 * B8; | 
|  | break; | 
|  | } | 
|  | case VSRI: { | 
|  | DCHECK(shift > 0 && size_in_bits >= shift); | 
|  | imm6 = 2 * size_in_bits - shift; | 
|  | op_encoding = B24 | 0x4 * B8; | 
|  | break; | 
|  | } | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  |  | 
|  | L = imm6 >> 6; | 
|  | imm6 &= 0x3F; | 
|  |  | 
|  | int vd, d; | 
|  | NeonSplitCode(reg_type, dst_code, &vd, &d, &op_encoding); | 
|  | int vm, m; | 
|  | NeonSplitCode(reg_type, src_code, &vm, &m, &op_encoding); | 
|  |  | 
|  | return 0x1E5U * B23 | d * B22 | imm6 * B16 | vd * B12 | L * B7 | m * B5 | B4 | | 
|  | vm | op_encoding; | 
|  | } | 
|  |  | 
|  | void Assembler::vshl(NeonDataType dt, QwNeonRegister dst, QwNeonRegister src, | 
|  | int shift) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // Qd = vshl(Qm, bits) SIMD shift left immediate. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-1046. | 
|  | emit(EncodeNeonShiftOp(VSHL, NeonDataTypeToSize(dt), false, NEON_Q, | 
|  | dst.code(), src.code(), shift)); | 
|  | } | 
|  |  | 
|  | void Assembler::vshl(NeonDataType dt, QwNeonRegister dst, QwNeonRegister src, | 
|  | QwNeonRegister shift) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // Qd = vshl(Qm, Qn) SIMD shift left Register. | 
|  | // Instruction details available in ARM DDI 0487A.a, F8-3340.. | 
|  | emit(EncodeNeonShiftRegisterOp(VSHL, dt, NEON_Q, dst.code(), src.code(), | 
|  | shift.code())); | 
|  | } | 
|  |  | 
|  | void Assembler::vshr(NeonDataType dt, QwNeonRegister dst, QwNeonRegister src, | 
|  | int shift) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // Qd = vshl(Qm, bits) SIMD shift right immediate. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-1052. | 
|  | emit(EncodeNeonShiftOp(VSHR, NeonDataTypeToSize(dt), NeonU(dt), NEON_Q, | 
|  | dst.code(), src.code(), shift)); | 
|  | } | 
|  |  | 
|  | void Assembler::vsli(NeonSize size, DwVfpRegister dst, DwVfpRegister src, | 
|  | int shift) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // Dd = vsli(Dm, bits) SIMD shift left and insert. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-1056. | 
|  | emit(EncodeNeonShiftOp(VSLI, size, false, NEON_D, dst.code(), src.code(), | 
|  | shift)); | 
|  | } | 
|  |  | 
|  | void Assembler::vsri(NeonSize size, DwVfpRegister dst, DwVfpRegister src, | 
|  | int shift) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // Dd = vsri(Dm, bits) SIMD shift right and insert. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-1062. | 
|  | emit(EncodeNeonShiftOp(VSRI, size, false, NEON_D, dst.code(), src.code(), | 
|  | shift)); | 
|  | } | 
|  |  | 
|  | static Instr EncodeNeonEstimateOp(bool is_rsqrt, QwNeonRegister dst, | 
|  | QwNeonRegister src) { | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vm, m; | 
|  | src.split_code(&vm, &m); | 
|  | int rsqrt = is_rsqrt ? 1 : 0; | 
|  | return 0x1E7U * B23 | d * B22 | 0x3B * B16 | vd * B12 | 0x5 * B8 | | 
|  | rsqrt * B7 | B6 | m * B5 | vm; | 
|  | } | 
|  |  | 
|  | void Assembler::vrecpe(QwNeonRegister dst, QwNeonRegister src) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // Qd = vrecpe(Qm) SIMD reciprocal estimate. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-1024. | 
|  | emit(EncodeNeonEstimateOp(false, dst, src)); | 
|  | } | 
|  |  | 
|  | void Assembler::vrsqrte(QwNeonRegister dst, QwNeonRegister src) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // Qd = vrsqrte(Qm) SIMD reciprocal square root estimate. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-1038. | 
|  | emit(EncodeNeonEstimateOp(true, dst, src)); | 
|  | } | 
|  |  | 
|  | void Assembler::vrecps(QwNeonRegister dst, QwNeonRegister src1, | 
|  | QwNeonRegister src2) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // Qd = vrecps(Qn, Qm) SIMD reciprocal refinement step. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-1026. | 
|  | emit(EncodeNeonBinOp(VRECPS, dst, src1, src2)); | 
|  | } | 
|  |  | 
|  | void Assembler::vrsqrts(QwNeonRegister dst, QwNeonRegister src1, | 
|  | QwNeonRegister src2) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // Qd = vrsqrts(Qn, Qm) SIMD reciprocal square root refinement step. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-1040. | 
|  | emit(EncodeNeonBinOp(VRSQRTS, dst, src1, src2)); | 
|  | } | 
|  |  | 
|  | enum NeonPairwiseOp { VPADD, VPMIN, VPMAX }; | 
|  |  | 
|  | static Instr EncodeNeonPairwiseOp(NeonPairwiseOp op, NeonDataType dt, | 
|  | DwVfpRegister dst, DwVfpRegister src1, | 
|  | DwVfpRegister src2) { | 
|  | int op_encoding = 0; | 
|  | switch (op) { | 
|  | case VPADD: | 
|  | op_encoding = 0xB * B8 | B4; | 
|  | break; | 
|  | case VPMIN: | 
|  | op_encoding = 0xA * B8 | B4; | 
|  | break; | 
|  | case VPMAX: | 
|  | op_encoding = 0xA * B8; | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vn, n; | 
|  | src1.split_code(&vn, &n); | 
|  | int vm, m; | 
|  | src2.split_code(&vm, &m); | 
|  | int size = NeonSz(dt); | 
|  | int u = NeonU(dt); | 
|  | return 0x1E4U * B23 | u * B24 | d * B22 | size * B20 | vn * B16 | vd * B12 | | 
|  | n * B7 | m * B5 | vm | op_encoding; | 
|  | } | 
|  |  | 
|  | void Assembler::vpadd(DwVfpRegister dst, DwVfpRegister src1, | 
|  | DwVfpRegister src2) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // Dd = vpadd(Dn, Dm) SIMD integer pairwise ADD. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-982. | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vn, n; | 
|  | src1.split_code(&vn, &n); | 
|  | int vm, m; | 
|  | src2.split_code(&vm, &m); | 
|  |  | 
|  | emit(0x1E6U * B23 | d * B22 | vn * B16 | vd * B12 | 0xD * B8 | n * B7 | | 
|  | m * B5 | vm); | 
|  | } | 
|  |  | 
|  | void Assembler::vpadd(NeonSize size, DwVfpRegister dst, DwVfpRegister src1, | 
|  | DwVfpRegister src2) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // Dd = vpadd(Dn, Dm) SIMD integer pairwise ADD. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-980. | 
|  | emit(EncodeNeonPairwiseOp(VPADD, NeonSizeToDataType(size), dst, src1, src2)); | 
|  | } | 
|  |  | 
|  | void Assembler::vpmin(NeonDataType dt, DwVfpRegister dst, DwVfpRegister src1, | 
|  | DwVfpRegister src2) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // Dd = vpmin(Dn, Dm) SIMD integer pairwise MIN. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-986. | 
|  | emit(EncodeNeonPairwiseOp(VPMIN, dt, dst, src1, src2)); | 
|  | } | 
|  |  | 
|  | void Assembler::vpmax(NeonDataType dt, DwVfpRegister dst, DwVfpRegister src1, | 
|  | DwVfpRegister src2) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // Dd = vpmax(Dn, Dm) SIMD integer pairwise MAX. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-986. | 
|  | emit(EncodeNeonPairwiseOp(VPMAX, dt, dst, src1, src2)); | 
|  | } | 
|  |  | 
|  | void Assembler::vrintm(NeonDataType dt, const QwNeonRegister dst, | 
|  | const QwNeonRegister src) { | 
|  | // SIMD vector round floating-point to integer towards -Infinity. | 
|  | // See ARM DDI 0487F.b, F6-5493. | 
|  | DCHECK(IsEnabled(ARMv8)); | 
|  | emit(EncodeNeonUnaryOp(VRINTM, NEON_Q, NeonSize(dt), dst.code(), src.code())); | 
|  | } | 
|  |  | 
|  | void Assembler::vrintn(NeonDataType dt, const QwNeonRegister dst, | 
|  | const QwNeonRegister src) { | 
|  | // SIMD vector round floating-point to integer to Nearest. | 
|  | // See ARM DDI 0487F.b, F6-5497. | 
|  | DCHECK(IsEnabled(ARMv8)); | 
|  | emit(EncodeNeonUnaryOp(VRINTN, NEON_Q, NeonSize(dt), dst.code(), src.code())); | 
|  | } | 
|  |  | 
|  | void Assembler::vrintp(NeonDataType dt, const QwNeonRegister dst, | 
|  | const QwNeonRegister src) { | 
|  | // SIMD vector round floating-point to integer towards +Infinity. | 
|  | // See ARM DDI 0487F.b, F6-5501. | 
|  | DCHECK(IsEnabled(ARMv8)); | 
|  | emit(EncodeNeonUnaryOp(VRINTP, NEON_Q, NeonSize(dt), dst.code(), src.code())); | 
|  | } | 
|  |  | 
|  | void Assembler::vrintz(NeonDataType dt, const QwNeonRegister dst, | 
|  | const QwNeonRegister src) { | 
|  | // SIMD vector round floating-point to integer towards Zero. | 
|  | // See ARM DDI 0487F.b, F6-5511. | 
|  | DCHECK(IsEnabled(ARMv8)); | 
|  | emit(EncodeNeonUnaryOp(VRINTZ, NEON_Q, NeonSize(dt), dst.code(), src.code())); | 
|  | } | 
|  |  | 
|  | void Assembler::vtst(NeonSize size, QwNeonRegister dst, QwNeonRegister src1, | 
|  | QwNeonRegister src2) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // Qd = vtst(Qn, Qm) SIMD test integer operands. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-1098. | 
|  | emit(EncodeNeonBinOp(VTST, size, dst, src1, src2)); | 
|  | } | 
|  |  | 
|  | void Assembler::vceq(QwNeonRegister dst, QwNeonRegister src1, | 
|  | QwNeonRegister src2) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // Qd = vceq(Qn, Qm) SIMD floating point compare equal. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-844. | 
|  | emit(EncodeNeonBinOp(VCEQF, dst, src1, src2)); | 
|  | } | 
|  |  | 
|  | void Assembler::vceq(NeonSize size, QwNeonRegister dst, QwNeonRegister src1, | 
|  | QwNeonRegister src2) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // Qd = vceq(Qn, Qm) SIMD integer compare equal. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-844. | 
|  | emit(EncodeNeonBinOp(VCEQ, size, dst, src1, src2)); | 
|  | } | 
|  |  | 
|  | void Assembler::vcge(QwNeonRegister dst, QwNeonRegister src1, | 
|  | QwNeonRegister src2) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // Qd = vcge(Qn, Qm) SIMD floating point compare greater or equal. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-848. | 
|  | emit(EncodeNeonBinOp(VCGEF, dst, src1, src2)); | 
|  | } | 
|  |  | 
|  | void Assembler::vcge(NeonDataType dt, QwNeonRegister dst, QwNeonRegister src1, | 
|  | QwNeonRegister src2) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // Qd = vcge(Qn, Qm) SIMD integer compare greater or equal. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-848. | 
|  | emit(EncodeNeonBinOp(VCGE, dt, dst, src1, src2)); | 
|  | } | 
|  |  | 
|  | void Assembler::vcgt(QwNeonRegister dst, QwNeonRegister src1, | 
|  | QwNeonRegister src2) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // Qd = vcgt(Qn, Qm) SIMD floating point compare greater than. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-852. | 
|  | emit(EncodeNeonBinOp(VCGTF, dst, src1, src2)); | 
|  | } | 
|  |  | 
|  | void Assembler::vcgt(NeonDataType dt, QwNeonRegister dst, QwNeonRegister src1, | 
|  | QwNeonRegister src2) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // Qd = vcgt(Qn, Qm) SIMD integer compare greater than. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-852. | 
|  | emit(EncodeNeonBinOp(VCGT, dt, dst, src1, src2)); | 
|  | } | 
|  |  | 
|  | void Assembler::vrhadd(NeonDataType dt, QwNeonRegister dst, QwNeonRegister src1, | 
|  | QwNeonRegister src2) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // Qd = vrhadd(Qn, Qm) SIMD integer rounding halving add. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-1030. | 
|  | emit(EncodeNeonBinOp(VRHADD, dt, dst, src1, src2)); | 
|  | } | 
|  |  | 
|  | void Assembler::vext(QwNeonRegister dst, QwNeonRegister src1, | 
|  | QwNeonRegister src2, int bytes) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // Qd = vext(Qn, Qm) SIMD byte extract. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-890. | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vn, n; | 
|  | src1.split_code(&vn, &n); | 
|  | int vm, m; | 
|  | src2.split_code(&vm, &m); | 
|  | DCHECK_GT(16, bytes); | 
|  | emit(0x1E5U * B23 | d * B22 | 0x3 * B20 | vn * B16 | vd * B12 | bytes * B8 | | 
|  | n * B7 | B6 | m * B5 | vm); | 
|  | } | 
|  |  | 
|  | enum NeonSizedOp { VZIP, VUZP, VREV16, VREV32, VREV64, VTRN }; | 
|  |  | 
|  | static Instr EncodeNeonSizedOp(NeonSizedOp op, NeonRegType reg_type, | 
|  | NeonSize size, int dst_code, int src_code) { | 
|  | int op_encoding = 0; | 
|  | switch (op) { | 
|  | case VZIP: | 
|  | op_encoding = 0x2 * B16 | 0x3 * B7; | 
|  | break; | 
|  | case VUZP: | 
|  | op_encoding = 0x2 * B16 | 0x2 * B7; | 
|  | break; | 
|  | case VREV16: | 
|  | op_encoding = 0x2 * B7; | 
|  | break; | 
|  | case VREV32: | 
|  | op_encoding = 0x1 * B7; | 
|  | break; | 
|  | case VREV64: | 
|  | // op_encoding is 0; | 
|  | break; | 
|  | case VTRN: | 
|  | op_encoding = 0x2 * B16 | B7; | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | int vd, d; | 
|  | NeonSplitCode(reg_type, dst_code, &vd, &d, &op_encoding); | 
|  | int vm, m; | 
|  | NeonSplitCode(reg_type, src_code, &vm, &m, &op_encoding); | 
|  |  | 
|  | int sz = static_cast<int>(size); | 
|  | return 0x1E7U * B23 | d * B22 | 0x3 * B20 | sz * B18 | vd * B12 | m * B5 | | 
|  | vm | op_encoding; | 
|  | } | 
|  |  | 
|  | void Assembler::vzip(NeonSize size, DwVfpRegister src1, DwVfpRegister src2) { | 
|  | if (size == Neon32) {  // vzip.32 Dd, Dm is a pseudo-op for vtrn.32 Dd, Dm. | 
|  | vtrn(size, src1, src2); | 
|  | } else { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // vzip.<size>(Dn, Dm) SIMD zip (interleave). | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-1102. | 
|  | emit(EncodeNeonSizedOp(VZIP, NEON_D, size, src1.code(), src2.code())); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Assembler::vzip(NeonSize size, QwNeonRegister src1, QwNeonRegister src2) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // vzip.<size>(Qn, Qm) SIMD zip (interleave). | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-1102. | 
|  | emit(EncodeNeonSizedOp(VZIP, NEON_Q, size, src1.code(), src2.code())); | 
|  | } | 
|  |  | 
|  | void Assembler::vuzp(NeonSize size, DwVfpRegister src1, DwVfpRegister src2) { | 
|  | if (size == Neon32) {  // vuzp.32 Dd, Dm is a pseudo-op for vtrn.32 Dd, Dm. | 
|  | vtrn(size, src1, src2); | 
|  | } else { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // vuzp.<size>(Dn, Dm) SIMD un-zip (de-interleave). | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-1100. | 
|  | emit(EncodeNeonSizedOp(VUZP, NEON_D, size, src1.code(), src2.code())); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Assembler::vuzp(NeonSize size, QwNeonRegister src1, QwNeonRegister src2) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // vuzp.<size>(Qn, Qm) SIMD un-zip (de-interleave). | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-1100. | 
|  | emit(EncodeNeonSizedOp(VUZP, NEON_Q, size, src1.code(), src2.code())); | 
|  | } | 
|  |  | 
|  | void Assembler::vrev16(NeonSize size, QwNeonRegister dst, QwNeonRegister src) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // Qd = vrev16.<size>(Qm) SIMD element reverse. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-1028. | 
|  | emit(EncodeNeonSizedOp(VREV16, NEON_Q, size, dst.code(), src.code())); | 
|  | } | 
|  |  | 
|  | void Assembler::vrev32(NeonSize size, QwNeonRegister dst, QwNeonRegister src) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // Qd = vrev32.<size>(Qm) SIMD element reverse. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-1028. | 
|  | emit(EncodeNeonSizedOp(VREV32, NEON_Q, size, dst.code(), src.code())); | 
|  | } | 
|  |  | 
|  | void Assembler::vrev64(NeonSize size, QwNeonRegister dst, QwNeonRegister src) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // Qd = vrev64.<size>(Qm) SIMD element reverse. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-1028. | 
|  | emit(EncodeNeonSizedOp(VREV64, NEON_Q, size, dst.code(), src.code())); | 
|  | } | 
|  |  | 
|  | void Assembler::vtrn(NeonSize size, DwVfpRegister src1, DwVfpRegister src2) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // vtrn.<size>(Dn, Dm) SIMD element transpose. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-1096. | 
|  | emit(EncodeNeonSizedOp(VTRN, NEON_D, size, src1.code(), src2.code())); | 
|  | } | 
|  |  | 
|  | void Assembler::vtrn(NeonSize size, QwNeonRegister src1, QwNeonRegister src2) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | // vtrn.<size>(Qn, Qm) SIMD element transpose. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-1096. | 
|  | emit(EncodeNeonSizedOp(VTRN, NEON_Q, size, src1.code(), src2.code())); | 
|  | } | 
|  |  | 
|  | // Encode NEON vtbl / vtbx instruction. | 
|  | static Instr EncodeNeonVTB(DwVfpRegister dst, const NeonListOperand& list, | 
|  | DwVfpRegister index, bool vtbx) { | 
|  | // Dd = vtbl(table, Dm) SIMD vector permute, zero at out of range indices. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-1094. | 
|  | // Dd = vtbx(table, Dm) SIMD vector permute, skip out of range indices. | 
|  | // Instruction details available in ARM DDI 0406C.b, A8-1094. | 
|  | int vd, d; | 
|  | dst.split_code(&vd, &d); | 
|  | int vn, n; | 
|  | list.base().split_code(&vn, &n); | 
|  | int vm, m; | 
|  | index.split_code(&vm, &m); | 
|  | int op = vtbx ? 1 : 0;  // vtbl = 0, vtbx = 1. | 
|  | return 0x1E7U * B23 | d * B22 | 0x3 * B20 | vn * B16 | vd * B12 | 0x2 * B10 | | 
|  | list.length() * B8 | n * B7 | op * B6 | m * B5 | vm; | 
|  | } | 
|  |  | 
|  | void Assembler::vtbl(DwVfpRegister dst, const NeonListOperand& list, | 
|  | DwVfpRegister index) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | emit(EncodeNeonVTB(dst, list, index, false)); | 
|  | } | 
|  |  | 
|  | void Assembler::vtbx(DwVfpRegister dst, const NeonListOperand& list, | 
|  | DwVfpRegister index) { | 
|  | DCHECK(IsEnabled(NEON)); | 
|  | emit(EncodeNeonVTB(dst, list, index, true)); | 
|  | } | 
|  |  | 
|  | // Pseudo instructions. | 
|  | void Assembler::nop(int type) { | 
|  | // ARMv6{K/T2} and v7 have an actual NOP instruction but it serializes | 
|  | // some of the CPU's pipeline and has to issue. Older ARM chips simply used | 
|  | // MOV Rx, Rx as NOP and it performs better even in newer CPUs. | 
|  | // We therefore use MOV Rx, Rx, even on newer CPUs, and use Rx to encode | 
|  | // a type. | 
|  | DCHECK(0 <= type && type <= 14);  // mov pc, pc isn't a nop. | 
|  | emit(al | 13 * B21 | type * B12 | type); | 
|  | } | 
|  |  | 
|  | void Assembler::pop() { add(sp, sp, Operand(kPointerSize)); } | 
|  |  | 
|  | bool Assembler::IsMovT(Instr instr) { | 
|  | instr &= ~(((kNumberOfConditions - 1) << 28) |  // Mask off conditions | 
|  | ((kNumRegisters - 1) * B12) |        // mask out register | 
|  | EncodeMovwImmediate(0xFFFF));        // mask out immediate value | 
|  | return instr == kMovtPattern; | 
|  | } | 
|  |  | 
|  | bool Assembler::IsMovW(Instr instr) { | 
|  | instr &= ~(((kNumberOfConditions - 1) << 28) |  // Mask off conditions | 
|  | ((kNumRegisters - 1) * B12) |        // mask out destination | 
|  | EncodeMovwImmediate(0xFFFF));        // mask out immediate value | 
|  | return instr == kMovwPattern; | 
|  | } | 
|  |  | 
|  | Instr Assembler::GetMovTPattern() { return kMovtPattern; } | 
|  |  | 
|  | Instr Assembler::GetMovWPattern() { return kMovwPattern; } | 
|  |  | 
|  | Instr Assembler::EncodeMovwImmediate(uint32_t immediate) { | 
|  | DCHECK_LT(immediate, 0x10000); | 
|  | return ((immediate & 0xF000) << 4) | (immediate & 0xFFF); | 
|  | } | 
|  |  | 
|  | Instr Assembler::PatchMovwImmediate(Instr instruction, uint32_t immediate) { | 
|  | instruction &= ~EncodeMovwImmediate(0xFFFF); | 
|  | return instruction | EncodeMovwImmediate(immediate); | 
|  | } | 
|  |  | 
|  | int Assembler::DecodeShiftImm(Instr instr) { | 
|  | int rotate = Instruction::RotateValue(instr) * 2; | 
|  | int immed8 = Instruction::Immed8Value(instr); | 
|  | return base::bits::RotateRight32(immed8, rotate); | 
|  | } | 
|  |  | 
|  | Instr Assembler::PatchShiftImm(Instr instr, int immed) { | 
|  | uint32_t rotate_imm = 0; | 
|  | uint32_t immed_8 = 0; | 
|  | bool immed_fits = FitsShifter(immed, &rotate_imm, &immed_8, nullptr); | 
|  | DCHECK(immed_fits); | 
|  | USE(immed_fits); | 
|  | return (instr & ~kOff12Mask) | (rotate_imm << 8) | immed_8; | 
|  | } | 
|  |  | 
|  | bool Assembler::IsNop(Instr instr, int type) { | 
|  | DCHECK(0 <= type && type <= 14);  // mov pc, pc isn't a nop. | 
|  | // Check for mov rx, rx where x = type. | 
|  | return instr == (al | 13 * B21 | type * B12 | type); | 
|  | } | 
|  |  | 
|  | bool Assembler::IsMovImmed(Instr instr) { | 
|  | return (instr & kMovImmedMask) == kMovImmedPattern; | 
|  | } | 
|  |  | 
|  | bool Assembler::IsOrrImmed(Instr instr) { | 
|  | return (instr & kOrrImmedMask) == kOrrImmedPattern; | 
|  | } | 
|  |  | 
|  | // static | 
|  | bool Assembler::ImmediateFitsAddrMode1Instruction(int32_t imm32) { | 
|  | uint32_t dummy1; | 
|  | uint32_t dummy2; | 
|  | return FitsShifter(imm32, &dummy1, &dummy2, nullptr); | 
|  | } | 
|  |  | 
|  | bool Assembler::ImmediateFitsAddrMode2Instruction(int32_t imm32) { | 
|  | return is_uint12(abs(imm32)); | 
|  | } | 
|  |  | 
|  | // Debugging. | 
|  | void Assembler::RecordConstPool(int size) { | 
|  | // We only need this for debugger support, to correctly compute offsets in the | 
|  | // code. | 
|  | RecordRelocInfo(RelocInfo::CONST_POOL, static_cast<intptr_t>(size)); | 
|  | } | 
|  |  | 
|  | void Assembler::GrowBuffer() { | 
|  | DCHECK_EQ(buffer_start_, buffer_->start()); | 
|  |  | 
|  | // Compute new buffer size. | 
|  | int old_size = buffer_->size(); | 
|  | int new_size = std::min(2 * old_size, old_size + 1 * MB); | 
|  |  | 
|  | // Some internal data structures overflow for very large buffers, | 
|  | // they must ensure that kMaximalBufferSize is not too large. | 
|  | if (new_size > kMaximalBufferSize) { | 
|  | V8::FatalProcessOutOfMemory(nullptr, "Assembler::GrowBuffer"); | 
|  | } | 
|  |  | 
|  | // Set up new buffer. | 
|  | std::unique_ptr<AssemblerBuffer> new_buffer = buffer_->Grow(new_size); | 
|  | DCHECK_EQ(new_size, new_buffer->size()); | 
|  | byte* new_start = new_buffer->start(); | 
|  |  | 
|  | // Copy the data. | 
|  | int pc_delta = new_start - buffer_start_; | 
|  | int rc_delta = (new_start + new_size) - (buffer_start_ + old_size); | 
|  | size_t reloc_size = (buffer_start_ + old_size) - reloc_info_writer.pos(); | 
|  | MemMove(new_start, buffer_start_, pc_offset()); | 
|  | byte* new_reloc_start = reinterpret_cast<byte*>( | 
|  | reinterpret_cast<Address>(reloc_info_writer.pos()) + rc_delta); | 
|  | MemMove(new_reloc_start, reloc_info_writer.pos(), reloc_size); | 
|  |  | 
|  | // Switch buffers. | 
|  | buffer_ = std::move(new_buffer); | 
|  | buffer_start_ = new_start; | 
|  | pc_ = reinterpret_cast<byte*>(reinterpret_cast<Address>(pc_) + pc_delta); | 
|  | byte* new_last_pc = reinterpret_cast<byte*>( | 
|  | reinterpret_cast<Address>(reloc_info_writer.last_pc()) + pc_delta); | 
|  | reloc_info_writer.Reposition(new_reloc_start, new_last_pc); | 
|  |  | 
|  | // None of our relocation types are pc relative pointing outside the code | 
|  | // buffer nor pc absolute pointing inside the code buffer, so there is no need | 
|  | // to relocate any emitted relocation entries. | 
|  | } | 
|  |  | 
|  | void Assembler::db(uint8_t data) { | 
|  | // db is used to write raw data. The constant pool should be emitted or | 
|  | // blocked before using db. | 
|  | DCHECK(is_const_pool_blocked() || pending_32_bit_constants_.empty()); | 
|  | CheckBuffer(); | 
|  | *reinterpret_cast<uint8_t*>(pc_) = data; | 
|  | pc_ += sizeof(uint8_t); | 
|  | } | 
|  |  | 
|  | void Assembler::dd(uint32_t data) { | 
|  | // dd is used to write raw data. The constant pool should be emitted or | 
|  | // blocked before using dd. | 
|  | DCHECK(is_const_pool_blocked() || pending_32_bit_constants_.empty()); | 
|  | CheckBuffer(); | 
|  | base::WriteUnalignedValue(reinterpret_cast<Address>(pc_), data); | 
|  | pc_ += sizeof(uint32_t); | 
|  | } | 
|  |  | 
|  | void Assembler::dq(uint64_t value) { | 
|  | // dq is used to write raw data. The constant pool should be emitted or | 
|  | // blocked before using dq. | 
|  | DCHECK(is_const_pool_blocked() || pending_32_bit_constants_.empty()); | 
|  | CheckBuffer(); | 
|  | base::WriteUnalignedValue(reinterpret_cast<Address>(pc_), value); | 
|  | pc_ += sizeof(uint64_t); | 
|  | } | 
|  |  | 
|  | void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) { | 
|  | if (!ShouldRecordRelocInfo(rmode)) return; | 
|  | DCHECK_GE(buffer_space(), kMaxRelocSize);  // too late to grow buffer here | 
|  | RelocInfo rinfo(reinterpret_cast<Address>(pc_), rmode, data, Code()); | 
|  | reloc_info_writer.Write(&rinfo); | 
|  | } | 
|  |  | 
|  | void Assembler::ConstantPoolAddEntry(int position, RelocInfo::Mode rmode, | 
|  | intptr_t value) { | 
|  | DCHECK(rmode != RelocInfo::CONST_POOL); | 
|  | // We can share CODE_TARGETs and embedded objects, but we must make sure we | 
|  | // only emit one reloc info for them (thus delta patching will apply the delta | 
|  | // only once). At the moment, we do not deduplicate heap object request which | 
|  | // are indicated by value == 0. | 
|  | bool sharing_ok = RelocInfo::IsShareableRelocMode(rmode) || | 
|  | (rmode == RelocInfo::CODE_TARGET && value != 0) || | 
|  | (RelocInfo::IsEmbeddedObjectMode(rmode) && value != 0); | 
|  | DCHECK_LT(pending_32_bit_constants_.size(), kMaxNumPending32Constants); | 
|  | if (pending_32_bit_constants_.empty()) { | 
|  | first_const_pool_32_use_ = position; | 
|  | } | 
|  | ConstantPoolEntry entry(position, value, sharing_ok, rmode); | 
|  |  | 
|  | bool shared = false; | 
|  | if (sharing_ok) { | 
|  | // Merge the constant, if possible. | 
|  | for (size_t i = 0; i < pending_32_bit_constants_.size(); i++) { | 
|  | ConstantPoolEntry& current_entry = pending_32_bit_constants_[i]; | 
|  | if (!current_entry.sharing_ok()) continue; | 
|  | if (entry.value() == current_entry.value() && | 
|  | entry.rmode() == current_entry.rmode()) { | 
|  | entry.set_merged_index(i); | 
|  | shared = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | pending_32_bit_constants_.push_back(entry); | 
|  |  | 
|  | // Make sure the constant pool is not emitted in place of the next | 
|  | // instruction for which we just recorded relocation info. | 
|  | BlockConstPoolFor(1); | 
|  |  | 
|  | // Emit relocation info. | 
|  | if (MustOutputRelocInfo(rmode, this) && !shared) { | 
|  | RecordRelocInfo(rmode); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Assembler::BlockConstPoolFor(int instructions) { | 
|  | int pc_limit = pc_offset() + instructions * kInstrSize; | 
|  | if (no_const_pool_before_ < pc_limit) { | 
|  | // Max pool start (if we need a jump and an alignment). | 
|  | #ifdef DEBUG | 
|  | int start = pc_limit + kInstrSize + 2 * kPointerSize; | 
|  | DCHECK(pending_32_bit_constants_.empty() || | 
|  | (start < first_const_pool_32_use_ + kMaxDistToIntPool)); | 
|  | #endif | 
|  | no_const_pool_before_ = pc_limit; | 
|  | } | 
|  |  | 
|  | if (next_buffer_check_ < no_const_pool_before_) { | 
|  | next_buffer_check_ = no_const_pool_before_; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Assembler::CheckConstPool(bool force_emit, bool require_jump) { | 
|  | // Some short sequence of instruction mustn't be broken up by constant pool | 
|  | // emission, such sequences are protected by calls to BlockConstPoolFor and | 
|  | // BlockConstPoolScope. | 
|  | if (is_const_pool_blocked()) { | 
|  | // Something is wrong if emission is forced and blocked at the same time. | 
|  | DCHECK(!force_emit); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // There is nothing to do if there are no pending constant pool entries. | 
|  | if (pending_32_bit_constants_.empty()) { | 
|  | // Calculate the offset of the next check. | 
|  | next_buffer_check_ = pc_offset() + kCheckPoolInterval; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Check that the code buffer is large enough before emitting the constant | 
|  | // pool (include the jump over the pool and the constant pool marker and | 
|  | // the gap to the relocation information). | 
|  | int jump_instr = require_jump ? kInstrSize : 0; | 
|  | int size_up_to_marker = jump_instr + kInstrSize; | 
|  | int estimated_size_after_marker = | 
|  | pending_32_bit_constants_.size() * kPointerSize; | 
|  | int estimated_size = size_up_to_marker + estimated_size_after_marker; | 
|  |  | 
|  | // We emit a constant pool when: | 
|  | //  * requested to do so by parameter force_emit (e.g. after each function). | 
|  | //  * the distance from the first instruction accessing the constant pool to | 
|  | //    any of the constant pool entries will exceed its limit the next | 
|  | //    time the pool is checked. This is overly restrictive, but we don't emit | 
|  | //    constant pool entries in-order so it's conservatively correct. | 
|  | //  * the instruction doesn't require a jump after itself to jump over the | 
|  | //    constant pool, and we're getting close to running out of range. | 
|  | if (!force_emit) { | 
|  | DCHECK(!pending_32_bit_constants_.empty()); | 
|  | bool need_emit = false; | 
|  | int dist32 = pc_offset() + estimated_size - first_const_pool_32_use_; | 
|  | if ((dist32 >= kMaxDistToIntPool - kCheckPoolInterval) || | 
|  | (!require_jump && (dist32 >= kMaxDistToIntPool / 2))) { | 
|  | need_emit = true; | 
|  | } | 
|  | if (!need_emit) return; | 
|  | } | 
|  |  | 
|  | // Deduplicate constants. | 
|  | int size_after_marker = estimated_size_after_marker; | 
|  |  | 
|  | for (size_t i = 0; i < pending_32_bit_constants_.size(); i++) { | 
|  | ConstantPoolEntry& entry = pending_32_bit_constants_[i]; | 
|  | if (entry.is_merged()) size_after_marker -= kPointerSize; | 
|  | } | 
|  |  | 
|  | int size = size_up_to_marker + size_after_marker; | 
|  |  | 
|  | int needed_space = size + kGap; | 
|  | while (buffer_space() <= needed_space) GrowBuffer(); | 
|  |  | 
|  | { | 
|  | // Block recursive calls to CheckConstPool. | 
|  | BlockConstPoolScope block_const_pool(this); | 
|  | RecordComment("[ Constant Pool"); | 
|  | RecordConstPool(size); | 
|  |  | 
|  | Label size_check; | 
|  | bind(&size_check); | 
|  |  | 
|  | // Emit jump over constant pool if necessary. | 
|  | Label after_pool; | 
|  | if (require_jump) { | 
|  | b(&after_pool); | 
|  | } | 
|  |  | 
|  | // Put down constant pool marker "Undefined instruction". | 
|  | // The data size helps disassembly know what to print. | 
|  | emit(kConstantPoolMarker | | 
|  | EncodeConstantPoolLength(size_after_marker / kPointerSize)); | 
|  |  | 
|  | // Emit 32-bit constant pool entries. | 
|  | for (size_t i = 0; i < pending_32_bit_constants_.size(); i++) { | 
|  | ConstantPoolEntry& entry = pending_32_bit_constants_[i]; | 
|  | Instr instr = instr_at(entry.position()); | 
|  |  | 
|  | // 64-bit loads shouldn't get here. | 
|  | DCHECK(!IsVldrDPcImmediateOffset(instr)); | 
|  | DCHECK(!IsMovW(instr)); | 
|  | DCHECK(IsLdrPcImmediateOffset(instr) && | 
|  | GetLdrRegisterImmediateOffset(instr) == 0); | 
|  |  | 
|  | int delta = pc_offset() - entry.position() - Instruction::kPcLoadDelta; | 
|  | DCHECK(is_uint12(delta)); | 
|  | // 0 is the smallest delta: | 
|  | //   ldr rd, [pc, #0] | 
|  | //   constant pool marker | 
|  | //   data | 
|  |  | 
|  | if (entry.is_merged()) { | 
|  | DCHECK(entry.sharing_ok()); | 
|  | ConstantPoolEntry& merged = | 
|  | pending_32_bit_constants_[entry.merged_index()]; | 
|  | DCHECK(entry.value() == merged.value()); | 
|  | Instr merged_instr = instr_at(merged.position()); | 
|  | DCHECK(IsLdrPcImmediateOffset(merged_instr)); | 
|  | delta = GetLdrRegisterImmediateOffset(merged_instr); | 
|  | delta += merged.position() - entry.position(); | 
|  | } | 
|  | instr_at_put(entry.position(), | 
|  | SetLdrRegisterImmediateOffset(instr, delta)); | 
|  | if (!entry.is_merged()) { | 
|  | emit(entry.value()); | 
|  | } | 
|  | } | 
|  |  | 
|  | pending_32_bit_constants_.clear(); | 
|  |  | 
|  | first_const_pool_32_use_ = -1; | 
|  |  | 
|  | RecordComment("]"); | 
|  |  | 
|  | DCHECK_EQ(size, SizeOfCodeGeneratedSince(&size_check)); | 
|  |  | 
|  | if (after_pool.is_linked()) { | 
|  | bind(&after_pool); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Since a constant pool was just emitted, move the check offset forward by | 
|  | // the standard interval. | 
|  | next_buffer_check_ = pc_offset() + kCheckPoolInterval; | 
|  | } | 
|  |  | 
|  | PatchingAssembler::PatchingAssembler(const AssemblerOptions& options, | 
|  | byte* address, int instructions) | 
|  | : Assembler(options, ExternalAssemblerBuffer( | 
|  | address, instructions * kInstrSize + kGap)) { | 
|  | DCHECK_EQ(reloc_info_writer.pos(), buffer_start_ + buffer_->size()); | 
|  | } | 
|  |  | 
|  | PatchingAssembler::~PatchingAssembler() { | 
|  | // Check that we don't have any pending constant pools. | 
|  | DCHECK(pending_32_bit_constants_.empty()); | 
|  |  | 
|  | // Check that the code was patched as expected. | 
|  | DCHECK_EQ(pc_, buffer_start_ + buffer_->size() - kGap); | 
|  | DCHECK_EQ(reloc_info_writer.pos(), buffer_start_ + buffer_->size()); | 
|  | } | 
|  |  | 
|  | void PatchingAssembler::Emit(Address addr) { emit(static_cast<Instr>(addr)); } | 
|  |  | 
|  | void PatchingAssembler::PadWithNops() { | 
|  | DCHECK_LE(pc_, buffer_start_ + buffer_->size() - kGap); | 
|  | while (pc_ < buffer_start_ + buffer_->size() - kGap) { | 
|  | nop(); | 
|  | } | 
|  | } | 
|  |  | 
|  | UseScratchRegisterScope::UseScratchRegisterScope(Assembler* assembler) | 
|  | : assembler_(assembler), | 
|  | old_available_(*assembler->GetScratchRegisterList()), | 
|  | old_available_vfp_(*assembler->GetScratchVfpRegisterList()) {} | 
|  |  | 
|  | UseScratchRegisterScope::~UseScratchRegisterScope() { | 
|  | *assembler_->GetScratchRegisterList() = old_available_; | 
|  | *assembler_->GetScratchVfpRegisterList() = old_available_vfp_; | 
|  | } | 
|  |  | 
|  | Register UseScratchRegisterScope::Acquire() { | 
|  | RegList* available = assembler_->GetScratchRegisterList(); | 
|  | DCHECK_NOT_NULL(available); | 
|  | DCHECK_NE(*available, 0); | 
|  | int index = static_cast<int>(base::bits::CountTrailingZeros32(*available)); | 
|  | Register reg = Register::from_code(index); | 
|  | *available &= ~reg.bit(); | 
|  | return reg; | 
|  | } | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace v8 | 
|  |  | 
|  | #endif  // V8_TARGET_ARCH_ARM |