|  | // Copyright 2012 the V8 project authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style license that can be | 
|  | // found in the LICENSE file. | 
|  |  | 
|  | #include <limits.h>  // For LONG_MIN, LONG_MAX. | 
|  |  | 
|  | #if V8_TARGET_ARCH_ARM | 
|  |  | 
|  | #include "src/base/bits.h" | 
|  | #include "src/base/division-by-constant.h" | 
|  | #include "src/base/utils/random-number-generator.h" | 
|  | #include "src/codegen/assembler-inl.h" | 
|  | #include "src/codegen/callable.h" | 
|  | #include "src/codegen/code-factory.h" | 
|  | #include "src/codegen/external-reference-table.h" | 
|  | #include "src/codegen/macro-assembler.h" | 
|  | #include "src/codegen/register-configuration.h" | 
|  | #include "src/debug/debug.h" | 
|  | #include "src/execution/frames-inl.h" | 
|  | #include "src/heap/memory-chunk.h" | 
|  | #include "src/init/bootstrapper.h" | 
|  | #include "src/logging/counters.h" | 
|  | #include "src/numbers/double.h" | 
|  | #include "src/objects/objects-inl.h" | 
|  | #include "src/runtime/runtime.h" | 
|  | #include "src/snapshot/embedded/embedded-data.h" | 
|  | #include "src/snapshot/snapshot.h" | 
|  | #include "src/wasm/wasm-code-manager.h" | 
|  |  | 
|  | // Satisfy cpplint check, but don't include platform-specific header. It is | 
|  | // included recursively via macro-assembler.h. | 
|  | #if 0 | 
|  | #include "src/codegen/arm/macro-assembler-arm.h" | 
|  | #endif | 
|  |  | 
|  | namespace v8 { | 
|  | namespace internal { | 
|  |  | 
|  | int TurboAssembler::RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode, | 
|  | Register exclusion1, | 
|  | Register exclusion2, | 
|  | Register exclusion3) const { | 
|  | int bytes = 0; | 
|  | RegList exclusions = 0; | 
|  | if (exclusion1 != no_reg) { | 
|  | exclusions |= exclusion1.bit(); | 
|  | if (exclusion2 != no_reg) { | 
|  | exclusions |= exclusion2.bit(); | 
|  | if (exclusion3 != no_reg) { | 
|  | exclusions |= exclusion3.bit(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | RegList list = (kCallerSaved | lr.bit()) & ~exclusions; | 
|  |  | 
|  | bytes += NumRegs(list) * kPointerSize; | 
|  |  | 
|  | if (fp_mode == kSaveFPRegs) { | 
|  | bytes += DwVfpRegister::kNumRegisters * DwVfpRegister::kSizeInBytes; | 
|  | } | 
|  |  | 
|  | return bytes; | 
|  | } | 
|  |  | 
|  | int TurboAssembler::PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1, | 
|  | Register exclusion2, Register exclusion3) { | 
|  | int bytes = 0; | 
|  | RegList exclusions = 0; | 
|  | if (exclusion1 != no_reg) { | 
|  | exclusions |= exclusion1.bit(); | 
|  | if (exclusion2 != no_reg) { | 
|  | exclusions |= exclusion2.bit(); | 
|  | if (exclusion3 != no_reg) { | 
|  | exclusions |= exclusion3.bit(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | RegList list = (kCallerSaved | lr.bit()) & ~exclusions; | 
|  | stm(db_w, sp, list); | 
|  |  | 
|  | bytes += NumRegs(list) * kPointerSize; | 
|  |  | 
|  | if (fp_mode == kSaveFPRegs) { | 
|  | SaveFPRegs(sp, lr); | 
|  | bytes += DwVfpRegister::kNumRegisters * DwVfpRegister::kSizeInBytes; | 
|  | } | 
|  |  | 
|  | return bytes; | 
|  | } | 
|  |  | 
|  | int TurboAssembler::PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1, | 
|  | Register exclusion2, Register exclusion3) { | 
|  | int bytes = 0; | 
|  | if (fp_mode == kSaveFPRegs) { | 
|  | RestoreFPRegs(sp, lr); | 
|  | bytes += DwVfpRegister::kNumRegisters * DwVfpRegister::kSizeInBytes; | 
|  | } | 
|  |  | 
|  | RegList exclusions = 0; | 
|  | if (exclusion1 != no_reg) { | 
|  | exclusions |= exclusion1.bit(); | 
|  | if (exclusion2 != no_reg) { | 
|  | exclusions |= exclusion2.bit(); | 
|  | if (exclusion3 != no_reg) { | 
|  | exclusions |= exclusion3.bit(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | RegList list = (kCallerSaved | lr.bit()) & ~exclusions; | 
|  | ldm(ia_w, sp, list); | 
|  |  | 
|  | bytes += NumRegs(list) * kPointerSize; | 
|  |  | 
|  | return bytes; | 
|  | } | 
|  |  | 
|  | void TurboAssembler::LoadFromConstantsTable(Register destination, | 
|  | int constant_index) { | 
|  | DCHECK(RootsTable::IsImmortalImmovable(RootIndex::kBuiltinsConstantsTable)); | 
|  |  | 
|  | const uint32_t offset = | 
|  | FixedArray::kHeaderSize + constant_index * kPointerSize - kHeapObjectTag; | 
|  |  | 
|  | LoadRoot(destination, RootIndex::kBuiltinsConstantsTable); | 
|  | ldr(destination, MemOperand(destination, offset)); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::LoadRootRelative(Register destination, int32_t offset) { | 
|  | ldr(destination, MemOperand(kRootRegister, offset)); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::LoadRootRegisterOffset(Register destination, | 
|  | intptr_t offset) { | 
|  | if (offset == 0) { | 
|  | Move(destination, kRootRegister); | 
|  | } else { | 
|  | add(destination, kRootRegister, Operand(offset)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void TurboAssembler::Jump(Register target, Condition cond) { bx(target, cond); } | 
|  |  | 
|  | void TurboAssembler::Jump(intptr_t target, RelocInfo::Mode rmode, | 
|  | Condition cond) { | 
|  | mov(pc, Operand(target, rmode), LeaveCC, cond); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::Jump(Address target, RelocInfo::Mode rmode, | 
|  | Condition cond) { | 
|  | DCHECK(!RelocInfo::IsCodeTarget(rmode)); | 
|  | Jump(static_cast<intptr_t>(target), rmode, cond); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode, | 
|  | Condition cond) { | 
|  | DCHECK(RelocInfo::IsCodeTarget(rmode)); | 
|  | DCHECK_IMPLIES(options().isolate_independent_code, | 
|  | Builtins::IsIsolateIndependentBuiltin(*code)); | 
|  | DCHECK_IMPLIES(options().use_pc_relative_calls_and_jumps, | 
|  | Builtins::IsIsolateIndependentBuiltin(*code)); | 
|  |  | 
|  | int builtin_index = Builtins::kNoBuiltinId; | 
|  | bool target_is_builtin = | 
|  | isolate()->builtins()->IsBuiltinHandle(code, &builtin_index); | 
|  |  | 
|  | if (options().use_pc_relative_calls_and_jumps && target_is_builtin) { | 
|  | int32_t code_target_index = AddCodeTarget(code); | 
|  | b(code_target_index * kInstrSize, cond, RelocInfo::RELATIVE_CODE_TARGET); | 
|  | return; | 
|  | } else if (root_array_available_ && options().isolate_independent_code) { | 
|  | // This branch is taken only for specific cctests, where we force isolate | 
|  | // creation at runtime. At this point, Code space isn't restricted to a | 
|  | // size s.t. pc-relative calls may be used. | 
|  | UseScratchRegisterScope temps(this); | 
|  | Register scratch = temps.Acquire(); | 
|  | int offset = IsolateData::builtin_entry_slot_offset( | 
|  | static_cast<Builtins::Name>(code->builtin_index())); | 
|  | ldr(scratch, MemOperand(kRootRegister, offset)); | 
|  | Jump(scratch, cond); | 
|  | return; | 
|  | } else if (options().inline_offheap_trampolines && target_is_builtin) { | 
|  | // Inline the trampoline. | 
|  | RecordCommentForOffHeapTrampoline(builtin_index); | 
|  | EmbeddedData d = EmbeddedData::FromBlob(); | 
|  | Address entry = d.InstructionStartOfBuiltin(builtin_index); | 
|  | // Use ip directly instead of using UseScratchRegisterScope, as we do not | 
|  | // preserve scratch registers across calls. | 
|  | mov(ip, Operand(entry, RelocInfo::OFF_HEAP_TARGET)); | 
|  | Jump(ip, cond); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // 'code' is always generated ARM code, never THUMB code | 
|  | Jump(static_cast<intptr_t>(code.address()), rmode, cond); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::Jump(const ExternalReference& reference) { | 
|  | UseScratchRegisterScope temps(this); | 
|  | Register scratch = temps.Acquire(); | 
|  | Move(scratch, reference); | 
|  | Jump(scratch); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::Call(Register target, Condition cond) { | 
|  | // Block constant pool for the call instruction sequence. | 
|  | BlockConstPoolScope block_const_pool(this); | 
|  | blx(target, cond); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::Call(Address target, RelocInfo::Mode rmode, Condition cond, | 
|  | TargetAddressStorageMode mode, | 
|  | bool check_constant_pool) { | 
|  | // Check if we have to emit the constant pool before we block it. | 
|  | if (check_constant_pool) MaybeCheckConstPool(); | 
|  | // Block constant pool for the call instruction sequence. | 
|  | BlockConstPoolScope block_const_pool(this); | 
|  |  | 
|  | bool old_predictable_code_size = predictable_code_size(); | 
|  | if (mode == NEVER_INLINE_TARGET_ADDRESS) { | 
|  | set_predictable_code_size(true); | 
|  | } | 
|  |  | 
|  | // Use ip directly instead of using UseScratchRegisterScope, as we do not | 
|  | // preserve scratch registers across calls. | 
|  |  | 
|  | // Call sequence on V7 or later may be : | 
|  | //  movw  ip, #... @ call address low 16 | 
|  | //  movt  ip, #... @ call address high 16 | 
|  | //  blx   ip | 
|  | //                      @ return address | 
|  | // Or for pre-V7 or values that may be back-patched | 
|  | // to avoid ICache flushes: | 
|  | //  ldr   ip, [pc, #...] @ call address | 
|  | //  blx   ip | 
|  | //                      @ return address | 
|  |  | 
|  | mov(ip, Operand(target, rmode)); | 
|  | blx(ip, cond); | 
|  |  | 
|  | if (mode == NEVER_INLINE_TARGET_ADDRESS) { | 
|  | set_predictable_code_size(old_predictable_code_size); | 
|  | } | 
|  | } | 
|  |  | 
|  | void TurboAssembler::Call(Handle<Code> code, RelocInfo::Mode rmode, | 
|  | Condition cond, TargetAddressStorageMode mode, | 
|  | bool check_constant_pool) { | 
|  | DCHECK(RelocInfo::IsCodeTarget(rmode)); | 
|  | DCHECK_IMPLIES(options().isolate_independent_code, | 
|  | Builtins::IsIsolateIndependentBuiltin(*code)); | 
|  | DCHECK_IMPLIES(options().use_pc_relative_calls_and_jumps, | 
|  | Builtins::IsIsolateIndependentBuiltin(*code)); | 
|  |  | 
|  | int builtin_index = Builtins::kNoBuiltinId; | 
|  | bool target_is_builtin = | 
|  | isolate()->builtins()->IsBuiltinHandle(code, &builtin_index); | 
|  |  | 
|  | if (target_is_builtin && options().use_pc_relative_calls_and_jumps) { | 
|  | int32_t code_target_index = AddCodeTarget(code); | 
|  | bl(code_target_index * kInstrSize, cond, RelocInfo::RELATIVE_CODE_TARGET); | 
|  | return; | 
|  | } else if (root_array_available_ && options().isolate_independent_code) { | 
|  | // This branch is taken only for specific cctests, where we force isolate | 
|  | // creation at runtime. At this point, Code space isn't restricted to a | 
|  | // size s.t. pc-relative calls may be used. | 
|  | int offset = IsolateData::builtin_entry_slot_offset( | 
|  | static_cast<Builtins::Name>(code->builtin_index())); | 
|  | ldr(ip, MemOperand(kRootRegister, offset)); | 
|  | Call(ip, cond); | 
|  | return; | 
|  | } else if (target_is_builtin && options().inline_offheap_trampolines) { | 
|  | // Inline the trampoline. | 
|  | CallBuiltin(builtin_index); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // 'code' is always generated ARM code, never THUMB code | 
|  | DCHECK(code->IsExecutable()); | 
|  | Call(code.address(), rmode, cond, mode); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::LoadEntryFromBuiltinIndex(Register builtin_index) { | 
|  | STATIC_ASSERT(kSystemPointerSize == 4); | 
|  | STATIC_ASSERT(kSmiShiftSize == 0); | 
|  | STATIC_ASSERT(kSmiTagSize == 1); | 
|  | STATIC_ASSERT(kSmiTag == 0); | 
|  |  | 
|  | // The builtin_index register contains the builtin index as a Smi. | 
|  | // Untagging is folded into the indexing operand below. | 
|  | mov(builtin_index, | 
|  | Operand(builtin_index, LSL, kSystemPointerSizeLog2 - kSmiTagSize)); | 
|  | add(builtin_index, builtin_index, | 
|  | Operand(IsolateData::builtin_entry_table_offset())); | 
|  | ldr(builtin_index, MemOperand(kRootRegister, builtin_index)); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::CallBuiltinByIndex(Register builtin_index) { | 
|  | LoadEntryFromBuiltinIndex(builtin_index); | 
|  | Call(builtin_index); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::CallBuiltin(int builtin_index, Condition cond) { | 
|  | DCHECK(Builtins::IsBuiltinId(builtin_index)); | 
|  | RecordCommentForOffHeapTrampoline(builtin_index); | 
|  | EmbeddedData d = EmbeddedData::FromBlob(); | 
|  | Address entry = d.InstructionStartOfBuiltin(builtin_index); | 
|  | // Use ip directly instead of using UseScratchRegisterScope, as we do not | 
|  | // preserve scratch registers across calls. | 
|  | mov(ip, Operand(entry, RelocInfo::OFF_HEAP_TARGET)); | 
|  | Call(ip, cond); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::LoadCodeObjectEntry(Register destination, | 
|  | Register code_object) { | 
|  | // Code objects are called differently depending on whether we are generating | 
|  | // builtin code (which will later be embedded into the binary) or compiling | 
|  | // user JS code at runtime. | 
|  | // * Builtin code runs in --jitless mode and thus must not call into on-heap | 
|  | //   Code targets. Instead, we dispatch through the builtins entry table. | 
|  | // * Codegen at runtime does not have this restriction and we can use the | 
|  | //   shorter, branchless instruction sequence. The assumption here is that | 
|  | //   targets are usually generated code and not builtin Code objects. | 
|  |  | 
|  | if (options().isolate_independent_code) { | 
|  | DCHECK(root_array_available()); | 
|  | Label if_code_is_off_heap, out; | 
|  |  | 
|  | UseScratchRegisterScope temps(this); | 
|  | Register scratch = temps.Acquire(); | 
|  |  | 
|  | DCHECK(!AreAliased(destination, scratch)); | 
|  | DCHECK(!AreAliased(code_object, scratch)); | 
|  |  | 
|  | // Check whether the Code object is an off-heap trampoline. If so, call its | 
|  | // (off-heap) entry point directly without going through the (on-heap) | 
|  | // trampoline.  Otherwise, just call the Code object as always. | 
|  | ldr(scratch, FieldMemOperand(code_object, Code::kFlagsOffset)); | 
|  | tst(scratch, Operand(Code::IsOffHeapTrampoline::kMask)); | 
|  | b(ne, &if_code_is_off_heap); | 
|  |  | 
|  | // Not an off-heap trampoline, the entry point is at | 
|  | // Code::raw_instruction_start(). | 
|  | add(destination, code_object, Operand(Code::kHeaderSize - kHeapObjectTag)); | 
|  | jmp(&out); | 
|  |  | 
|  | // An off-heap trampoline, the entry point is loaded from the builtin entry | 
|  | // table. | 
|  | bind(&if_code_is_off_heap); | 
|  | ldr(scratch, FieldMemOperand(code_object, Code::kBuiltinIndexOffset)); | 
|  | lsl(destination, scratch, Operand(kSystemPointerSizeLog2)); | 
|  | add(destination, destination, kRootRegister); | 
|  | ldr(destination, | 
|  | MemOperand(destination, IsolateData::builtin_entry_table_offset())); | 
|  |  | 
|  | bind(&out); | 
|  | } else { | 
|  | add(destination, code_object, Operand(Code::kHeaderSize - kHeapObjectTag)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void TurboAssembler::CallCodeObject(Register code_object) { | 
|  | LoadCodeObjectEntry(code_object, code_object); | 
|  | Call(code_object); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::JumpCodeObject(Register code_object) { | 
|  | LoadCodeObjectEntry(code_object, code_object); | 
|  | Jump(code_object); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::StoreReturnAddressAndCall(Register target) { | 
|  | // This generates the final instruction sequence for calls to C functions | 
|  | // once an exit frame has been constructed. | 
|  | // | 
|  | // Note that this assumes the caller code (i.e. the Code object currently | 
|  | // being generated) is immovable or that the callee function cannot trigger | 
|  | // GC, since the callee function will return to it. | 
|  |  | 
|  | // Compute the return address in lr to return to after the jump below. The pc | 
|  | // is already at '+ 8' from the current instruction; but return is after three | 
|  | // instructions, so add another 4 to pc to get the return address. | 
|  | Assembler::BlockConstPoolScope block_const_pool(this); | 
|  | add(lr, pc, Operand(4)); | 
|  | str(lr, MemOperand(sp)); | 
|  | Call(target); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::Ret(Condition cond) { bx(lr, cond); } | 
|  |  | 
|  | void TurboAssembler::Drop(int count, Condition cond) { | 
|  | if (count > 0) { | 
|  | add(sp, sp, Operand(count * kPointerSize), LeaveCC, cond); | 
|  | } | 
|  | } | 
|  |  | 
|  | void TurboAssembler::Drop(Register count, Condition cond) { | 
|  | add(sp, sp, Operand(count, LSL, kPointerSizeLog2), LeaveCC, cond); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::Ret(int drop, Condition cond) { | 
|  | Drop(drop, cond); | 
|  | Ret(cond); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::Call(Label* target) { bl(target); } | 
|  |  | 
|  | void TurboAssembler::Push(Handle<HeapObject> handle) { | 
|  | UseScratchRegisterScope temps(this); | 
|  | Register scratch = temps.Acquire(); | 
|  | mov(scratch, Operand(handle)); | 
|  | push(scratch); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::Push(Smi smi) { | 
|  | UseScratchRegisterScope temps(this); | 
|  | Register scratch = temps.Acquire(); | 
|  | mov(scratch, Operand(smi)); | 
|  | push(scratch); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::PushArray(Register array, Register size, Register scratch, | 
|  | PushArrayOrder order) { | 
|  | UseScratchRegisterScope temps(this); | 
|  | Register counter = scratch; | 
|  | Register tmp = temps.Acquire(); | 
|  | DCHECK(!AreAliased(array, size, counter, tmp)); | 
|  | Label loop, entry; | 
|  | if (order == PushArrayOrder::kReverse) { | 
|  | mov(counter, Operand(0)); | 
|  | b(&entry); | 
|  | bind(&loop); | 
|  | ldr(tmp, MemOperand(array, counter, LSL, kSystemPointerSizeLog2)); | 
|  | push(tmp); | 
|  | add(counter, counter, Operand(1)); | 
|  | bind(&entry); | 
|  | cmp(counter, size); | 
|  | b(lt, &loop); | 
|  | } else { | 
|  | mov(counter, size); | 
|  | b(&entry); | 
|  | bind(&loop); | 
|  | ldr(tmp, MemOperand(array, counter, LSL, kSystemPointerSizeLog2)); | 
|  | push(tmp); | 
|  | bind(&entry); | 
|  | sub(counter, counter, Operand(1), SetCC); | 
|  | b(ge, &loop); | 
|  | } | 
|  | } | 
|  |  | 
|  | void TurboAssembler::Move(Register dst, Smi smi) { mov(dst, Operand(smi)); } | 
|  |  | 
|  | void TurboAssembler::Move(Register dst, Handle<HeapObject> value) { | 
|  | // TODO(jgruber,v8:8887): Also consider a root-relative load when generating | 
|  | // non-isolate-independent code. In many cases it might be cheaper than | 
|  | // embedding the relocatable value. | 
|  | if (root_array_available_ && options().isolate_independent_code) { | 
|  | IndirectLoadConstant(dst, value); | 
|  | return; | 
|  | } | 
|  | mov(dst, Operand(value)); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::Move(Register dst, ExternalReference reference) { | 
|  | // TODO(jgruber,v8:8887): Also consider a root-relative load when generating | 
|  | // non-isolate-independent code. In many cases it might be cheaper than | 
|  | // embedding the relocatable value. | 
|  | if (root_array_available_ && options().isolate_independent_code) { | 
|  | IndirectLoadExternalReference(dst, reference); | 
|  | return; | 
|  | } | 
|  | mov(dst, Operand(reference)); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::Move(Register dst, Register src, Condition cond) { | 
|  | if (dst != src) { | 
|  | mov(dst, src, LeaveCC, cond); | 
|  | } | 
|  | } | 
|  |  | 
|  | void TurboAssembler::Move(SwVfpRegister dst, SwVfpRegister src, | 
|  | Condition cond) { | 
|  | if (dst != src) { | 
|  | vmov(dst, src, cond); | 
|  | } | 
|  | } | 
|  |  | 
|  | void TurboAssembler::Move(DwVfpRegister dst, DwVfpRegister src, | 
|  | Condition cond) { | 
|  | if (dst != src) { | 
|  | vmov(dst, src, cond); | 
|  | } | 
|  | } | 
|  |  | 
|  | void TurboAssembler::Move(QwNeonRegister dst, QwNeonRegister src) { | 
|  | if (dst != src) { | 
|  | vmov(dst, src); | 
|  | } | 
|  | } | 
|  |  | 
|  | void TurboAssembler::MovePair(Register dst0, Register src0, Register dst1, | 
|  | Register src1) { | 
|  | DCHECK_NE(dst0, dst1); | 
|  | if (dst0 != src1) { | 
|  | Move(dst0, src0); | 
|  | Move(dst1, src1); | 
|  | } else if (dst1 != src0) { | 
|  | // Swap the order of the moves to resolve the overlap. | 
|  | Move(dst1, src1); | 
|  | Move(dst0, src0); | 
|  | } else { | 
|  | // Worse case scenario, this is a swap. | 
|  | Swap(dst0, src0); | 
|  | } | 
|  | } | 
|  |  | 
|  | void TurboAssembler::Swap(Register srcdst0, Register srcdst1) { | 
|  | DCHECK(srcdst0 != srcdst1); | 
|  | UseScratchRegisterScope temps(this); | 
|  | Register scratch = temps.Acquire(); | 
|  | mov(scratch, srcdst0); | 
|  | mov(srcdst0, srcdst1); | 
|  | mov(srcdst1, scratch); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::Swap(DwVfpRegister srcdst0, DwVfpRegister srcdst1) { | 
|  | DCHECK(srcdst0 != srcdst1); | 
|  | DCHECK(VfpRegisterIsAvailable(srcdst0)); | 
|  | DCHECK(VfpRegisterIsAvailable(srcdst1)); | 
|  |  | 
|  | if (CpuFeatures::IsSupported(NEON)) { | 
|  | vswp(srcdst0, srcdst1); | 
|  | } else { | 
|  | UseScratchRegisterScope temps(this); | 
|  | DwVfpRegister scratch = temps.AcquireD(); | 
|  | vmov(scratch, srcdst0); | 
|  | vmov(srcdst0, srcdst1); | 
|  | vmov(srcdst1, scratch); | 
|  | } | 
|  | } | 
|  |  | 
|  | void TurboAssembler::Swap(QwNeonRegister srcdst0, QwNeonRegister srcdst1) { | 
|  | DCHECK(srcdst0 != srcdst1); | 
|  | vswp(srcdst0, srcdst1); | 
|  | } | 
|  |  | 
|  | void MacroAssembler::Mls(Register dst, Register src1, Register src2, | 
|  | Register srcA, Condition cond) { | 
|  | if (CpuFeatures::IsSupported(ARMv7)) { | 
|  | CpuFeatureScope scope(this, ARMv7); | 
|  | mls(dst, src1, src2, srcA, cond); | 
|  | } else { | 
|  | UseScratchRegisterScope temps(this); | 
|  | Register scratch = temps.Acquire(); | 
|  | DCHECK(srcA != scratch); | 
|  | mul(scratch, src1, src2, LeaveCC, cond); | 
|  | sub(dst, srcA, scratch, LeaveCC, cond); | 
|  | } | 
|  | } | 
|  |  | 
|  | void MacroAssembler::And(Register dst, Register src1, const Operand& src2, | 
|  | Condition cond) { | 
|  | if (!src2.IsRegister() && !src2.MustOutputRelocInfo(this) && | 
|  | src2.immediate() == 0) { | 
|  | mov(dst, Operand::Zero(), LeaveCC, cond); | 
|  | } else if (!(src2.InstructionsRequired(this) == 1) && | 
|  | !src2.MustOutputRelocInfo(this) && | 
|  | CpuFeatures::IsSupported(ARMv7) && | 
|  | base::bits::IsPowerOfTwo(src2.immediate() + 1)) { | 
|  | CpuFeatureScope scope(this, ARMv7); | 
|  | ubfx(dst, src1, 0, | 
|  | base::bits::WhichPowerOfTwo(static_cast<uint32_t>(src2.immediate()) + | 
|  | 1), | 
|  | cond); | 
|  | } else { | 
|  | and_(dst, src1, src2, LeaveCC, cond); | 
|  | } | 
|  | } | 
|  |  | 
|  | void MacroAssembler::Ubfx(Register dst, Register src1, int lsb, int width, | 
|  | Condition cond) { | 
|  | DCHECK_LT(lsb, 32); | 
|  | if (!CpuFeatures::IsSupported(ARMv7) || predictable_code_size()) { | 
|  | int mask = (1u << (width + lsb)) - 1u - ((1u << lsb) - 1u); | 
|  | and_(dst, src1, Operand(mask), LeaveCC, cond); | 
|  | if (lsb != 0) { | 
|  | mov(dst, Operand(dst, LSR, lsb), LeaveCC, cond); | 
|  | } | 
|  | } else { | 
|  | CpuFeatureScope scope(this, ARMv7); | 
|  | ubfx(dst, src1, lsb, width, cond); | 
|  | } | 
|  | } | 
|  |  | 
|  | void MacroAssembler::Sbfx(Register dst, Register src1, int lsb, int width, | 
|  | Condition cond) { | 
|  | DCHECK_LT(lsb, 32); | 
|  | if (!CpuFeatures::IsSupported(ARMv7) || predictable_code_size()) { | 
|  | int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1); | 
|  | and_(dst, src1, Operand(mask), LeaveCC, cond); | 
|  | int shift_up = 32 - lsb - width; | 
|  | int shift_down = lsb + shift_up; | 
|  | if (shift_up != 0) { | 
|  | mov(dst, Operand(dst, LSL, shift_up), LeaveCC, cond); | 
|  | } | 
|  | if (shift_down != 0) { | 
|  | mov(dst, Operand(dst, ASR, shift_down), LeaveCC, cond); | 
|  | } | 
|  | } else { | 
|  | CpuFeatureScope scope(this, ARMv7); | 
|  | sbfx(dst, src1, lsb, width, cond); | 
|  | } | 
|  | } | 
|  |  | 
|  | void TurboAssembler::Bfc(Register dst, Register src, int lsb, int width, | 
|  | Condition cond) { | 
|  | DCHECK_LT(lsb, 32); | 
|  | if (!CpuFeatures::IsSupported(ARMv7) || predictable_code_size()) { | 
|  | int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1); | 
|  | bic(dst, src, Operand(mask)); | 
|  | } else { | 
|  | CpuFeatureScope scope(this, ARMv7); | 
|  | Move(dst, src, cond); | 
|  | bfc(dst, lsb, width, cond); | 
|  | } | 
|  | } | 
|  |  | 
|  | void TurboAssembler::LoadRoot(Register destination, RootIndex index, | 
|  | Condition cond) { | 
|  | ldr(destination, | 
|  | MemOperand(kRootRegister, RootRegisterOffsetForRootIndex(index)), cond); | 
|  | } | 
|  |  | 
|  | void MacroAssembler::RecordWriteField(Register object, int offset, | 
|  | Register value, | 
|  | LinkRegisterStatus lr_status, | 
|  | SaveFPRegsMode save_fp, | 
|  | RememberedSetAction remembered_set_action, | 
|  | SmiCheck smi_check) { | 
|  | // First, check if a write barrier is even needed. The tests below | 
|  | // catch stores of Smis. | 
|  | Label done; | 
|  |  | 
|  | // Skip barrier if writing a smi. | 
|  | if (smi_check == INLINE_SMI_CHECK) { | 
|  | JumpIfSmi(value, &done); | 
|  | } | 
|  |  | 
|  | // Although the object register is tagged, the offset is relative to the start | 
|  | // of the object, so so offset must be a multiple of kPointerSize. | 
|  | DCHECK(IsAligned(offset, kPointerSize)); | 
|  |  | 
|  | if (emit_debug_code()) { | 
|  | Label ok; | 
|  | UseScratchRegisterScope temps(this); | 
|  | Register scratch = temps.Acquire(); | 
|  | add(scratch, object, Operand(offset - kHeapObjectTag)); | 
|  | tst(scratch, Operand(kPointerSize - 1)); | 
|  | b(eq, &ok); | 
|  | stop(); | 
|  | bind(&ok); | 
|  | } | 
|  |  | 
|  | RecordWrite(object, Operand(offset - kHeapObjectTag), value, lr_status, | 
|  | save_fp, remembered_set_action, OMIT_SMI_CHECK); | 
|  |  | 
|  | bind(&done); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::SaveRegisters(RegList registers) { | 
|  | DCHECK_GT(NumRegs(registers), 0); | 
|  | RegList regs = 0; | 
|  | for (int i = 0; i < Register::kNumRegisters; ++i) { | 
|  | if ((registers >> i) & 1u) { | 
|  | regs |= Register::from_code(i).bit(); | 
|  | } | 
|  | } | 
|  |  | 
|  | stm(db_w, sp, regs); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::RestoreRegisters(RegList registers) { | 
|  | DCHECK_GT(NumRegs(registers), 0); | 
|  | RegList regs = 0; | 
|  | for (int i = 0; i < Register::kNumRegisters; ++i) { | 
|  | if ((registers >> i) & 1u) { | 
|  | regs |= Register::from_code(i).bit(); | 
|  | } | 
|  | } | 
|  | ldm(ia_w, sp, regs); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::CallEphemeronKeyBarrier(Register object, Operand offset, | 
|  | SaveFPRegsMode fp_mode) { | 
|  | EphemeronKeyBarrierDescriptor descriptor; | 
|  | RegList registers = descriptor.allocatable_registers(); | 
|  |  | 
|  | SaveRegisters(registers); | 
|  |  | 
|  | Register object_parameter( | 
|  | descriptor.GetRegisterParameter(EphemeronKeyBarrierDescriptor::kObject)); | 
|  | Register slot_parameter(descriptor.GetRegisterParameter( | 
|  | EphemeronKeyBarrierDescriptor::kSlotAddress)); | 
|  | Register fp_mode_parameter( | 
|  | descriptor.GetRegisterParameter(EphemeronKeyBarrierDescriptor::kFPMode)); | 
|  |  | 
|  | MoveObjectAndSlot(object_parameter, slot_parameter, object, offset); | 
|  | Move(fp_mode_parameter, Smi::FromEnum(fp_mode)); | 
|  | Call(isolate()->builtins()->builtin_handle(Builtins::kEphemeronKeyBarrier), | 
|  | RelocInfo::CODE_TARGET); | 
|  | RestoreRegisters(registers); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::CallRecordWriteStub( | 
|  | Register object, Operand offset, RememberedSetAction remembered_set_action, | 
|  | SaveFPRegsMode fp_mode) { | 
|  | CallRecordWriteStub( | 
|  | object, offset, remembered_set_action, fp_mode, | 
|  | isolate()->builtins()->builtin_handle(Builtins::kRecordWrite), | 
|  | kNullAddress); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::CallRecordWriteStub( | 
|  | Register object, Operand offset, RememberedSetAction remembered_set_action, | 
|  | SaveFPRegsMode fp_mode, Address wasm_target) { | 
|  | CallRecordWriteStub(object, offset, remembered_set_action, fp_mode, | 
|  | Handle<Code>::null(), wasm_target); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::CallRecordWriteStub( | 
|  | Register object, Operand offset, RememberedSetAction remembered_set_action, | 
|  | SaveFPRegsMode fp_mode, Handle<Code> code_target, Address wasm_target) { | 
|  | DCHECK_NE(code_target.is_null(), wasm_target == kNullAddress); | 
|  | // TODO(albertnetymk): For now we ignore remembered_set_action and fp_mode, | 
|  | // i.e. always emit remember set and save FP registers in RecordWriteStub. If | 
|  | // large performance regression is observed, we should use these values to | 
|  | // avoid unnecessary work. | 
|  |  | 
|  | RecordWriteDescriptor descriptor; | 
|  | RegList registers = descriptor.allocatable_registers(); | 
|  |  | 
|  | SaveRegisters(registers); | 
|  |  | 
|  | Register object_parameter( | 
|  | descriptor.GetRegisterParameter(RecordWriteDescriptor::kObject)); | 
|  | Register slot_parameter( | 
|  | descriptor.GetRegisterParameter(RecordWriteDescriptor::kSlot)); | 
|  | Register remembered_set_parameter( | 
|  | descriptor.GetRegisterParameter(RecordWriteDescriptor::kRememberedSet)); | 
|  | Register fp_mode_parameter( | 
|  | descriptor.GetRegisterParameter(RecordWriteDescriptor::kFPMode)); | 
|  |  | 
|  | MoveObjectAndSlot(object_parameter, slot_parameter, object, offset); | 
|  |  | 
|  | Move(remembered_set_parameter, Smi::FromEnum(remembered_set_action)); | 
|  | Move(fp_mode_parameter, Smi::FromEnum(fp_mode)); | 
|  | if (code_target.is_null()) { | 
|  | Call(wasm_target, RelocInfo::WASM_STUB_CALL); | 
|  | } else { | 
|  | Call(code_target, RelocInfo::CODE_TARGET); | 
|  | } | 
|  |  | 
|  | RestoreRegisters(registers); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::MoveObjectAndSlot(Register dst_object, Register dst_slot, | 
|  | Register object, Operand offset) { | 
|  | DCHECK_NE(dst_object, dst_slot); | 
|  | DCHECK(offset.IsRegister() || offset.IsImmediate()); | 
|  | // If `offset` is a register, it cannot overlap with `object`. | 
|  | DCHECK_IMPLIES(offset.IsRegister(), offset.rm() != object); | 
|  |  | 
|  | // If the slot register does not overlap with the object register, we can | 
|  | // overwrite it. | 
|  | if (dst_slot != object) { | 
|  | add(dst_slot, object, offset); | 
|  | Move(dst_object, object); | 
|  | return; | 
|  | } | 
|  |  | 
|  | DCHECK_EQ(dst_slot, object); | 
|  |  | 
|  | // If the destination object register does not overlap with the offset | 
|  | // register, we can overwrite it. | 
|  | if (!offset.IsRegister() || (offset.rm() != dst_object)) { | 
|  | Move(dst_object, dst_slot); | 
|  | add(dst_slot, dst_slot, offset); | 
|  | return; | 
|  | } | 
|  |  | 
|  | DCHECK_EQ(dst_object, offset.rm()); | 
|  |  | 
|  | // We only have `dst_slot` and `dst_object` left as distinct registers so we | 
|  | // have to swap them. We write this as a add+sub sequence to avoid using a | 
|  | // scratch register. | 
|  | add(dst_slot, dst_slot, dst_object); | 
|  | sub(dst_object, dst_slot, dst_object); | 
|  | } | 
|  |  | 
|  | // The register 'object' contains a heap object pointer. The heap object tag is | 
|  | // shifted away. A scratch register also needs to be available. | 
|  | void MacroAssembler::RecordWrite(Register object, Operand offset, | 
|  | Register value, LinkRegisterStatus lr_status, | 
|  | SaveFPRegsMode fp_mode, | 
|  | RememberedSetAction remembered_set_action, | 
|  | SmiCheck smi_check) { | 
|  | DCHECK_NE(object, value); | 
|  | if (emit_debug_code()) { | 
|  | { | 
|  | UseScratchRegisterScope temps(this); | 
|  | Register scratch = temps.Acquire(); | 
|  | add(scratch, object, offset); | 
|  | ldr(scratch, MemOperand(scratch)); | 
|  | cmp(scratch, value); | 
|  | } | 
|  | Check(eq, AbortReason::kWrongAddressOrValuePassedToRecordWrite); | 
|  | } | 
|  |  | 
|  | if ((remembered_set_action == OMIT_REMEMBERED_SET && | 
|  | !FLAG_incremental_marking) || | 
|  | FLAG_disable_write_barriers) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // First, check if a write barrier is even needed. The tests below | 
|  | // catch stores of smis and stores into the young generation. | 
|  | Label done; | 
|  |  | 
|  | if (smi_check == INLINE_SMI_CHECK) { | 
|  | JumpIfSmi(value, &done); | 
|  | } | 
|  |  | 
|  | CheckPageFlag(value, MemoryChunk::kPointersToHereAreInterestingMask, eq, | 
|  | &done); | 
|  | CheckPageFlag(object, MemoryChunk::kPointersFromHereAreInterestingMask, eq, | 
|  | &done); | 
|  |  | 
|  | // Record the actual write. | 
|  | if (lr_status == kLRHasNotBeenSaved) { | 
|  | push(lr); | 
|  | } | 
|  | CallRecordWriteStub(object, offset, remembered_set_action, fp_mode); | 
|  | if (lr_status == kLRHasNotBeenSaved) { | 
|  | pop(lr); | 
|  | } | 
|  |  | 
|  | bind(&done); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::PushCommonFrame(Register marker_reg) { | 
|  | if (marker_reg.is_valid()) { | 
|  | if (marker_reg.code() > fp.code()) { | 
|  | stm(db_w, sp, fp.bit() | lr.bit()); | 
|  | mov(fp, Operand(sp)); | 
|  | Push(marker_reg); | 
|  | } else { | 
|  | stm(db_w, sp, marker_reg.bit() | fp.bit() | lr.bit()); | 
|  | add(fp, sp, Operand(kPointerSize)); | 
|  | } | 
|  | } else { | 
|  | stm(db_w, sp, fp.bit() | lr.bit()); | 
|  | mov(fp, sp); | 
|  | } | 
|  | } | 
|  |  | 
|  | void TurboAssembler::PushStandardFrame(Register function_reg) { | 
|  | DCHECK(!function_reg.is_valid() || function_reg.code() < cp.code()); | 
|  | stm(db_w, sp, | 
|  | (function_reg.is_valid() ? function_reg.bit() : 0) | cp.bit() | fp.bit() | | 
|  | lr.bit()); | 
|  | int offset = -StandardFrameConstants::kContextOffset; | 
|  | offset += function_reg.is_valid() ? kPointerSize : 0; | 
|  | add(fp, sp, Operand(offset)); | 
|  | Push(kJavaScriptCallArgCountRegister); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::VFPCanonicalizeNaN(const DwVfpRegister dst, | 
|  | const DwVfpRegister src, | 
|  | const Condition cond) { | 
|  | // Subtracting 0.0 preserves all inputs except for signalling NaNs, which | 
|  | // become quiet NaNs. We use vsub rather than vadd because vsub preserves -0.0 | 
|  | // inputs: -0.0 + 0.0 = 0.0, but -0.0 - 0.0 = -0.0. | 
|  | vsub(dst, src, kDoubleRegZero, cond); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::VFPCompareAndSetFlags(const SwVfpRegister src1, | 
|  | const SwVfpRegister src2, | 
|  | const Condition cond) { | 
|  | // Compare and move FPSCR flags to the normal condition flags. | 
|  | VFPCompareAndLoadFlags(src1, src2, pc, cond); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::VFPCompareAndSetFlags(const SwVfpRegister src1, | 
|  | const float src2, | 
|  | const Condition cond) { | 
|  | // Compare and move FPSCR flags to the normal condition flags. | 
|  | VFPCompareAndLoadFlags(src1, src2, pc, cond); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::VFPCompareAndSetFlags(const DwVfpRegister src1, | 
|  | const DwVfpRegister src2, | 
|  | const Condition cond) { | 
|  | // Compare and move FPSCR flags to the normal condition flags. | 
|  | VFPCompareAndLoadFlags(src1, src2, pc, cond); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::VFPCompareAndSetFlags(const DwVfpRegister src1, | 
|  | const double src2, | 
|  | const Condition cond) { | 
|  | // Compare and move FPSCR flags to the normal condition flags. | 
|  | VFPCompareAndLoadFlags(src1, src2, pc, cond); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::VFPCompareAndLoadFlags(const SwVfpRegister src1, | 
|  | const SwVfpRegister src2, | 
|  | const Register fpscr_flags, | 
|  | const Condition cond) { | 
|  | // Compare and load FPSCR. | 
|  | vcmp(src1, src2, cond); | 
|  | vmrs(fpscr_flags, cond); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::VFPCompareAndLoadFlags(const SwVfpRegister src1, | 
|  | const float src2, | 
|  | const Register fpscr_flags, | 
|  | const Condition cond) { | 
|  | // Compare and load FPSCR. | 
|  | vcmp(src1, src2, cond); | 
|  | vmrs(fpscr_flags, cond); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::VFPCompareAndLoadFlags(const DwVfpRegister src1, | 
|  | const DwVfpRegister src2, | 
|  | const Register fpscr_flags, | 
|  | const Condition cond) { | 
|  | // Compare and load FPSCR. | 
|  | vcmp(src1, src2, cond); | 
|  | vmrs(fpscr_flags, cond); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::VFPCompareAndLoadFlags(const DwVfpRegister src1, | 
|  | const double src2, | 
|  | const Register fpscr_flags, | 
|  | const Condition cond) { | 
|  | // Compare and load FPSCR. | 
|  | vcmp(src1, src2, cond); | 
|  | vmrs(fpscr_flags, cond); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::VmovHigh(Register dst, DwVfpRegister src) { | 
|  | if (src.code() < 16) { | 
|  | const LowDwVfpRegister loc = LowDwVfpRegister::from_code(src.code()); | 
|  | vmov(dst, loc.high()); | 
|  | } else { | 
|  | vmov(NeonS32, dst, src, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | void TurboAssembler::VmovHigh(DwVfpRegister dst, Register src) { | 
|  | if (dst.code() < 16) { | 
|  | const LowDwVfpRegister loc = LowDwVfpRegister::from_code(dst.code()); | 
|  | vmov(loc.high(), src); | 
|  | } else { | 
|  | vmov(NeonS32, dst, 1, src); | 
|  | } | 
|  | } | 
|  |  | 
|  | void TurboAssembler::VmovLow(Register dst, DwVfpRegister src) { | 
|  | if (src.code() < 16) { | 
|  | const LowDwVfpRegister loc = LowDwVfpRegister::from_code(src.code()); | 
|  | vmov(dst, loc.low()); | 
|  | } else { | 
|  | vmov(NeonS32, dst, src, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | void TurboAssembler::VmovLow(DwVfpRegister dst, Register src) { | 
|  | if (dst.code() < 16) { | 
|  | const LowDwVfpRegister loc = LowDwVfpRegister::from_code(dst.code()); | 
|  | vmov(loc.low(), src); | 
|  | } else { | 
|  | vmov(NeonS32, dst, 0, src); | 
|  | } | 
|  | } | 
|  |  | 
|  | void TurboAssembler::VmovExtended(Register dst, int src_code) { | 
|  | DCHECK_LE(SwVfpRegister::kNumRegisters, src_code); | 
|  | DCHECK_GT(SwVfpRegister::kNumRegisters * 2, src_code); | 
|  | if (src_code & 0x1) { | 
|  | VmovHigh(dst, DwVfpRegister::from_code(src_code / 2)); | 
|  | } else { | 
|  | VmovLow(dst, DwVfpRegister::from_code(src_code / 2)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void TurboAssembler::VmovExtended(int dst_code, Register src) { | 
|  | DCHECK_LE(SwVfpRegister::kNumRegisters, dst_code); | 
|  | DCHECK_GT(SwVfpRegister::kNumRegisters * 2, dst_code); | 
|  | if (dst_code & 0x1) { | 
|  | VmovHigh(DwVfpRegister::from_code(dst_code / 2), src); | 
|  | } else { | 
|  | VmovLow(DwVfpRegister::from_code(dst_code / 2), src); | 
|  | } | 
|  | } | 
|  |  | 
|  | void TurboAssembler::VmovExtended(int dst_code, int src_code) { | 
|  | if (src_code == dst_code) return; | 
|  |  | 
|  | if (src_code < SwVfpRegister::kNumRegisters && | 
|  | dst_code < SwVfpRegister::kNumRegisters) { | 
|  | // src and dst are both s-registers. | 
|  | vmov(SwVfpRegister::from_code(dst_code), | 
|  | SwVfpRegister::from_code(src_code)); | 
|  | return; | 
|  | } | 
|  | DwVfpRegister dst_d_reg = DwVfpRegister::from_code(dst_code / 2); | 
|  | DwVfpRegister src_d_reg = DwVfpRegister::from_code(src_code / 2); | 
|  | int dst_offset = dst_code & 1; | 
|  | int src_offset = src_code & 1; | 
|  | if (CpuFeatures::IsSupported(NEON)) { | 
|  | UseScratchRegisterScope temps(this); | 
|  | DwVfpRegister scratch = temps.AcquireD(); | 
|  | // On Neon we can shift and insert from d-registers. | 
|  | if (src_offset == dst_offset) { | 
|  | // Offsets are the same, use vdup to copy the source to the opposite lane. | 
|  | vdup(Neon32, scratch, src_d_reg, src_offset); | 
|  | // Here we are extending the lifetime of scratch. | 
|  | src_d_reg = scratch; | 
|  | src_offset = dst_offset ^ 1; | 
|  | } | 
|  | if (dst_offset) { | 
|  | if (dst_d_reg == src_d_reg) { | 
|  | vdup(Neon32, dst_d_reg, src_d_reg, 0); | 
|  | } else { | 
|  | vsli(Neon64, dst_d_reg, src_d_reg, 32); | 
|  | } | 
|  | } else { | 
|  | if (dst_d_reg == src_d_reg) { | 
|  | vdup(Neon32, dst_d_reg, src_d_reg, 1); | 
|  | } else { | 
|  | vsri(Neon64, dst_d_reg, src_d_reg, 32); | 
|  | } | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Without Neon, use the scratch registers to move src and/or dst into | 
|  | // s-registers. | 
|  | UseScratchRegisterScope temps(this); | 
|  | LowDwVfpRegister d_scratch = temps.AcquireLowD(); | 
|  | LowDwVfpRegister d_scratch2 = temps.AcquireLowD(); | 
|  | int s_scratch_code = d_scratch.low().code(); | 
|  | int s_scratch_code2 = d_scratch2.low().code(); | 
|  | if (src_code < SwVfpRegister::kNumRegisters) { | 
|  | // src is an s-register, dst is not. | 
|  | vmov(d_scratch, dst_d_reg); | 
|  | vmov(SwVfpRegister::from_code(s_scratch_code + dst_offset), | 
|  | SwVfpRegister::from_code(src_code)); | 
|  | vmov(dst_d_reg, d_scratch); | 
|  | } else if (dst_code < SwVfpRegister::kNumRegisters) { | 
|  | // dst is an s-register, src is not. | 
|  | vmov(d_scratch, src_d_reg); | 
|  | vmov(SwVfpRegister::from_code(dst_code), | 
|  | SwVfpRegister::from_code(s_scratch_code + src_offset)); | 
|  | } else { | 
|  | // Neither src or dst are s-registers. Both scratch double registers are | 
|  | // available when there are 32 VFP registers. | 
|  | vmov(d_scratch, src_d_reg); | 
|  | vmov(d_scratch2, dst_d_reg); | 
|  | vmov(SwVfpRegister::from_code(s_scratch_code + dst_offset), | 
|  | SwVfpRegister::from_code(s_scratch_code2 + src_offset)); | 
|  | vmov(dst_d_reg, d_scratch2); | 
|  | } | 
|  | } | 
|  |  | 
|  | void TurboAssembler::VmovExtended(int dst_code, const MemOperand& src) { | 
|  | if (dst_code < SwVfpRegister::kNumRegisters) { | 
|  | vldr(SwVfpRegister::from_code(dst_code), src); | 
|  | } else { | 
|  | UseScratchRegisterScope temps(this); | 
|  | LowDwVfpRegister scratch = temps.AcquireLowD(); | 
|  | // TODO(bbudge) If Neon supported, use load single lane form of vld1. | 
|  | int dst_s_code = scratch.low().code() + (dst_code & 1); | 
|  | vmov(scratch, DwVfpRegister::from_code(dst_code / 2)); | 
|  | vldr(SwVfpRegister::from_code(dst_s_code), src); | 
|  | vmov(DwVfpRegister::from_code(dst_code / 2), scratch); | 
|  | } | 
|  | } | 
|  |  | 
|  | void TurboAssembler::VmovExtended(const MemOperand& dst, int src_code) { | 
|  | if (src_code < SwVfpRegister::kNumRegisters) { | 
|  | vstr(SwVfpRegister::from_code(src_code), dst); | 
|  | } else { | 
|  | // TODO(bbudge) If Neon supported, use store single lane form of vst1. | 
|  | UseScratchRegisterScope temps(this); | 
|  | LowDwVfpRegister scratch = temps.AcquireLowD(); | 
|  | int src_s_code = scratch.low().code() + (src_code & 1); | 
|  | vmov(scratch, DwVfpRegister::from_code(src_code / 2)); | 
|  | vstr(SwVfpRegister::from_code(src_s_code), dst); | 
|  | } | 
|  | } | 
|  |  | 
|  | void TurboAssembler::ExtractLane(Register dst, QwNeonRegister src, | 
|  | NeonDataType dt, int lane) { | 
|  | int size = NeonSz(dt);  // 0, 1, 2 | 
|  | int byte = lane << size; | 
|  | int double_word = byte >> kDoubleSizeLog2; | 
|  | int double_byte = byte & (kDoubleSize - 1); | 
|  | int double_lane = double_byte >> size; | 
|  | DwVfpRegister double_source = | 
|  | DwVfpRegister::from_code(src.code() * 2 + double_word); | 
|  | vmov(dt, dst, double_source, double_lane); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::ExtractLane(Register dst, DwVfpRegister src, | 
|  | NeonDataType dt, int lane) { | 
|  | int size = NeonSz(dt);  // 0, 1, 2 | 
|  | int byte = lane << size; | 
|  | int double_byte = byte & (kDoubleSize - 1); | 
|  | int double_lane = double_byte >> size; | 
|  | vmov(dt, dst, src, double_lane); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::ExtractLane(SwVfpRegister dst, QwNeonRegister src, | 
|  | int lane) { | 
|  | int s_code = src.code() * 4 + lane; | 
|  | VmovExtended(dst.code(), s_code); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::ExtractLane(DwVfpRegister dst, QwNeonRegister src, | 
|  | int lane) { | 
|  | DwVfpRegister double_dst = DwVfpRegister::from_code(src.code() * 2 + lane); | 
|  | vmov(dst, double_dst); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::ReplaceLane(QwNeonRegister dst, QwNeonRegister src, | 
|  | Register src_lane, NeonDataType dt, int lane) { | 
|  | Move(dst, src); | 
|  | int size = NeonSz(dt);  // 0, 1, 2 | 
|  | int byte = lane << size; | 
|  | int double_word = byte >> kDoubleSizeLog2; | 
|  | int double_byte = byte & (kDoubleSize - 1); | 
|  | int double_lane = double_byte >> size; | 
|  | DwVfpRegister double_dst = | 
|  | DwVfpRegister::from_code(dst.code() * 2 + double_word); | 
|  | vmov(dt, double_dst, double_lane, src_lane); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::ReplaceLane(QwNeonRegister dst, QwNeonRegister src, | 
|  | SwVfpRegister src_lane, int lane) { | 
|  | Move(dst, src); | 
|  | int s_code = dst.code() * 4 + lane; | 
|  | VmovExtended(s_code, src_lane.code()); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::ReplaceLane(QwNeonRegister dst, QwNeonRegister src, | 
|  | DwVfpRegister src_lane, int lane) { | 
|  | Move(dst, src); | 
|  | DwVfpRegister double_dst = DwVfpRegister::from_code(dst.code() * 2 + lane); | 
|  | vmov(double_dst, src_lane); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::LslPair(Register dst_low, Register dst_high, | 
|  | Register src_low, Register src_high, | 
|  | Register shift) { | 
|  | DCHECK(!AreAliased(dst_high, src_low)); | 
|  | DCHECK(!AreAliased(dst_high, shift)); | 
|  | UseScratchRegisterScope temps(this); | 
|  | Register scratch = temps.Acquire(); | 
|  |  | 
|  | Label less_than_32; | 
|  | Label done; | 
|  | rsb(scratch, shift, Operand(32), SetCC); | 
|  | b(gt, &less_than_32); | 
|  | // If shift >= 32 | 
|  | and_(scratch, shift, Operand(0x1F)); | 
|  | lsl(dst_high, src_low, Operand(scratch)); | 
|  | mov(dst_low, Operand(0)); | 
|  | jmp(&done); | 
|  | bind(&less_than_32); | 
|  | // If shift < 32 | 
|  | lsl(dst_high, src_high, Operand(shift)); | 
|  | orr(dst_high, dst_high, Operand(src_low, LSR, scratch)); | 
|  | lsl(dst_low, src_low, Operand(shift)); | 
|  | bind(&done); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::LslPair(Register dst_low, Register dst_high, | 
|  | Register src_low, Register src_high, | 
|  | uint32_t shift) { | 
|  | DCHECK_GE(63, shift); | 
|  | DCHECK(!AreAliased(dst_high, src_low)); | 
|  |  | 
|  | if (shift == 0) { | 
|  | Move(dst_high, src_high); | 
|  | Move(dst_low, src_low); | 
|  | } else if (shift == 32) { | 
|  | Move(dst_high, src_low); | 
|  | Move(dst_low, Operand(0)); | 
|  | } else if (shift >= 32) { | 
|  | shift &= 0x1F; | 
|  | lsl(dst_high, src_low, Operand(shift)); | 
|  | mov(dst_low, Operand(0)); | 
|  | } else { | 
|  | lsl(dst_high, src_high, Operand(shift)); | 
|  | orr(dst_high, dst_high, Operand(src_low, LSR, 32 - shift)); | 
|  | lsl(dst_low, src_low, Operand(shift)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void TurboAssembler::LsrPair(Register dst_low, Register dst_high, | 
|  | Register src_low, Register src_high, | 
|  | Register shift) { | 
|  | DCHECK(!AreAliased(dst_low, src_high)); | 
|  | DCHECK(!AreAliased(dst_low, shift)); | 
|  | UseScratchRegisterScope temps(this); | 
|  | Register scratch = temps.Acquire(); | 
|  |  | 
|  | Label less_than_32; | 
|  | Label done; | 
|  | rsb(scratch, shift, Operand(32), SetCC); | 
|  | b(gt, &less_than_32); | 
|  | // If shift >= 32 | 
|  | and_(scratch, shift, Operand(0x1F)); | 
|  | lsr(dst_low, src_high, Operand(scratch)); | 
|  | mov(dst_high, Operand(0)); | 
|  | jmp(&done); | 
|  | bind(&less_than_32); | 
|  | // If shift < 32 | 
|  |  | 
|  | lsr(dst_low, src_low, Operand(shift)); | 
|  | orr(dst_low, dst_low, Operand(src_high, LSL, scratch)); | 
|  | lsr(dst_high, src_high, Operand(shift)); | 
|  | bind(&done); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::LsrPair(Register dst_low, Register dst_high, | 
|  | Register src_low, Register src_high, | 
|  | uint32_t shift) { | 
|  | DCHECK_GE(63, shift); | 
|  | DCHECK(!AreAliased(dst_low, src_high)); | 
|  |  | 
|  | if (shift == 32) { | 
|  | mov(dst_low, src_high); | 
|  | mov(dst_high, Operand(0)); | 
|  | } else if (shift > 32) { | 
|  | shift &= 0x1F; | 
|  | lsr(dst_low, src_high, Operand(shift)); | 
|  | mov(dst_high, Operand(0)); | 
|  | } else if (shift == 0) { | 
|  | Move(dst_low, src_low); | 
|  | Move(dst_high, src_high); | 
|  | } else { | 
|  | lsr(dst_low, src_low, Operand(shift)); | 
|  | orr(dst_low, dst_low, Operand(src_high, LSL, 32 - shift)); | 
|  | lsr(dst_high, src_high, Operand(shift)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void TurboAssembler::AsrPair(Register dst_low, Register dst_high, | 
|  | Register src_low, Register src_high, | 
|  | Register shift) { | 
|  | DCHECK(!AreAliased(dst_low, src_high)); | 
|  | DCHECK(!AreAliased(dst_low, shift)); | 
|  | UseScratchRegisterScope temps(this); | 
|  | Register scratch = temps.Acquire(); | 
|  |  | 
|  | Label less_than_32; | 
|  | Label done; | 
|  | rsb(scratch, shift, Operand(32), SetCC); | 
|  | b(gt, &less_than_32); | 
|  | // If shift >= 32 | 
|  | and_(scratch, shift, Operand(0x1F)); | 
|  | asr(dst_low, src_high, Operand(scratch)); | 
|  | asr(dst_high, src_high, Operand(31)); | 
|  | jmp(&done); | 
|  | bind(&less_than_32); | 
|  | // If shift < 32 | 
|  | lsr(dst_low, src_low, Operand(shift)); | 
|  | orr(dst_low, dst_low, Operand(src_high, LSL, scratch)); | 
|  | asr(dst_high, src_high, Operand(shift)); | 
|  | bind(&done); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::AsrPair(Register dst_low, Register dst_high, | 
|  | Register src_low, Register src_high, | 
|  | uint32_t shift) { | 
|  | DCHECK_GE(63, shift); | 
|  | DCHECK(!AreAliased(dst_low, src_high)); | 
|  |  | 
|  | if (shift == 32) { | 
|  | mov(dst_low, src_high); | 
|  | asr(dst_high, src_high, Operand(31)); | 
|  | } else if (shift > 32) { | 
|  | shift &= 0x1F; | 
|  | asr(dst_low, src_high, Operand(shift)); | 
|  | asr(dst_high, src_high, Operand(31)); | 
|  | } else if (shift == 0) { | 
|  | Move(dst_low, src_low); | 
|  | Move(dst_high, src_high); | 
|  | } else { | 
|  | lsr(dst_low, src_low, Operand(shift)); | 
|  | orr(dst_low, dst_low, Operand(src_high, LSL, 32 - shift)); | 
|  | asr(dst_high, src_high, Operand(shift)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void TurboAssembler::StubPrologue(StackFrame::Type type) { | 
|  | UseScratchRegisterScope temps(this); | 
|  | Register scratch = temps.Acquire(); | 
|  | mov(scratch, Operand(StackFrame::TypeToMarker(type))); | 
|  | PushCommonFrame(scratch); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::Prologue() { PushStandardFrame(r1); } | 
|  |  | 
|  | void TurboAssembler::EnterFrame(StackFrame::Type type, | 
|  | bool load_constant_pool_pointer_reg) { | 
|  | // r0-r3: preserved | 
|  | UseScratchRegisterScope temps(this); | 
|  | Register scratch = temps.Acquire(); | 
|  | mov(scratch, Operand(StackFrame::TypeToMarker(type))); | 
|  | PushCommonFrame(scratch); | 
|  | } | 
|  |  | 
|  | int TurboAssembler::LeaveFrame(StackFrame::Type type) { | 
|  | // r0: preserved | 
|  | // r1: preserved | 
|  | // r2: preserved | 
|  |  | 
|  | // Drop the execution stack down to the frame pointer and restore | 
|  | // the caller frame pointer and return address. | 
|  | mov(sp, fp); | 
|  | int frame_ends = pc_offset(); | 
|  | ldm(ia_w, sp, fp.bit() | lr.bit()); | 
|  | return frame_ends; | 
|  | } | 
|  |  | 
|  | #ifdef V8_OS_WIN | 
|  | void TurboAssembler::AllocateStackSpace(Register bytes_scratch) { | 
|  | // "Functions that allocate 4 KB or more on the stack must ensure that each | 
|  | // page prior to the final page is touched in order." Source: | 
|  | // https://docs.microsoft.com/en-us/cpp/build/overview-of-arm-abi-conventions?view=vs-2019#stack | 
|  | UseScratchRegisterScope temps(this); | 
|  | DwVfpRegister scratch = temps.AcquireD(); | 
|  | Label check_offset; | 
|  | Label touch_next_page; | 
|  | jmp(&check_offset); | 
|  | bind(&touch_next_page); | 
|  | sub(sp, sp, Operand(kStackPageSize)); | 
|  | // Just to touch the page, before we increment further. | 
|  | vldr(scratch, MemOperand(sp)); | 
|  | sub(bytes_scratch, bytes_scratch, Operand(kStackPageSize)); | 
|  |  | 
|  | bind(&check_offset); | 
|  | cmp(bytes_scratch, Operand(kStackPageSize)); | 
|  | b(gt, &touch_next_page); | 
|  |  | 
|  | sub(sp, sp, bytes_scratch); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::AllocateStackSpace(int bytes) { | 
|  | UseScratchRegisterScope temps(this); | 
|  | DwVfpRegister scratch = no_dreg; | 
|  | while (bytes > kStackPageSize) { | 
|  | if (scratch == no_dreg) { | 
|  | scratch = temps.AcquireD(); | 
|  | } | 
|  | sub(sp, sp, Operand(kStackPageSize)); | 
|  | vldr(scratch, MemOperand(sp)); | 
|  | bytes -= kStackPageSize; | 
|  | } | 
|  | sub(sp, sp, Operand(bytes)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void MacroAssembler::EnterExitFrame(bool save_doubles, int stack_space, | 
|  | StackFrame::Type frame_type) { | 
|  | DCHECK(frame_type == StackFrame::EXIT || | 
|  | frame_type == StackFrame::BUILTIN_EXIT); | 
|  | UseScratchRegisterScope temps(this); | 
|  | Register scratch = temps.Acquire(); | 
|  |  | 
|  | // Set up the frame structure on the stack. | 
|  | DCHECK_EQ(2 * kPointerSize, ExitFrameConstants::kCallerSPDisplacement); | 
|  | DCHECK_EQ(1 * kPointerSize, ExitFrameConstants::kCallerPCOffset); | 
|  | DCHECK_EQ(0 * kPointerSize, ExitFrameConstants::kCallerFPOffset); | 
|  | mov(scratch, Operand(StackFrame::TypeToMarker(frame_type))); | 
|  | PushCommonFrame(scratch); | 
|  | // Reserve room for saved entry sp. | 
|  | sub(sp, fp, Operand(ExitFrameConstants::kFixedFrameSizeFromFp)); | 
|  | if (emit_debug_code()) { | 
|  | mov(scratch, Operand::Zero()); | 
|  | str(scratch, MemOperand(fp, ExitFrameConstants::kSPOffset)); | 
|  | } | 
|  |  | 
|  | // Save the frame pointer and the context in top. | 
|  | Move(scratch, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, | 
|  | isolate())); | 
|  | str(fp, MemOperand(scratch)); | 
|  | Move(scratch, | 
|  | ExternalReference::Create(IsolateAddressId::kContextAddress, isolate())); | 
|  | str(cp, MemOperand(scratch)); | 
|  |  | 
|  | // Optionally save all double registers. | 
|  | if (save_doubles) { | 
|  | SaveFPRegs(sp, scratch); | 
|  | // Note that d0 will be accessible at | 
|  | //   fp - ExitFrameConstants::kFrameSize - | 
|  | //   DwVfpRegister::kNumRegisters * kDoubleSize, | 
|  | // since the sp slot and code slot were pushed after the fp. | 
|  | } | 
|  |  | 
|  | // Reserve place for the return address and stack space and align the frame | 
|  | // preparing for calling the runtime function. | 
|  | const int frame_alignment = MacroAssembler::ActivationFrameAlignment(); | 
|  | AllocateStackSpace((stack_space + 1) * kPointerSize); | 
|  | if (frame_alignment > 0) { | 
|  | DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); | 
|  | and_(sp, sp, Operand(-frame_alignment)); | 
|  | } | 
|  |  | 
|  | // Set the exit frame sp value to point just before the return address | 
|  | // location. | 
|  | add(scratch, sp, Operand(kPointerSize)); | 
|  | str(scratch, MemOperand(fp, ExitFrameConstants::kSPOffset)); | 
|  | } | 
|  |  | 
|  | int TurboAssembler::ActivationFrameAlignment() { | 
|  | #if V8_HOST_ARCH_ARM | 
|  | // Running on the real platform. Use the alignment as mandated by the local | 
|  | // environment. | 
|  | // Note: This will break if we ever start generating snapshots on one ARM | 
|  | // platform for another ARM platform with a different alignment. | 
|  | return base::OS::ActivationFrameAlignment(); | 
|  | #else   // V8_HOST_ARCH_ARM | 
|  | // If we are using the simulator then we should always align to the expected | 
|  | // alignment. As the simulator is used to generate snapshots we do not know | 
|  | // if the target platform will need alignment, so this is controlled from a | 
|  | // flag. | 
|  | return FLAG_sim_stack_alignment; | 
|  | #endif  // V8_HOST_ARCH_ARM | 
|  | } | 
|  |  | 
|  | void MacroAssembler::LeaveExitFrame(bool save_doubles, Register argument_count, | 
|  | bool argument_count_is_length) { | 
|  | ConstantPoolUnavailableScope constant_pool_unavailable(this); | 
|  | UseScratchRegisterScope temps(this); | 
|  | Register scratch = temps.Acquire(); | 
|  |  | 
|  | // Optionally restore all double registers. | 
|  | if (save_doubles) { | 
|  | // Calculate the stack location of the saved doubles and restore them. | 
|  | const int offset = ExitFrameConstants::kFixedFrameSizeFromFp; | 
|  | sub(r3, fp, Operand(offset + DwVfpRegister::kNumRegisters * kDoubleSize)); | 
|  | RestoreFPRegs(r3, scratch); | 
|  | } | 
|  |  | 
|  | // Clear top frame. | 
|  | mov(r3, Operand::Zero()); | 
|  | Move(scratch, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, | 
|  | isolate())); | 
|  | str(r3, MemOperand(scratch)); | 
|  |  | 
|  | // Restore current context from top and clear it in debug mode. | 
|  | Move(scratch, | 
|  | ExternalReference::Create(IsolateAddressId::kContextAddress, isolate())); | 
|  | ldr(cp, MemOperand(scratch)); | 
|  | #ifdef DEBUG | 
|  | mov(r3, Operand(Context::kInvalidContext)); | 
|  | Move(scratch, | 
|  | ExternalReference::Create(IsolateAddressId::kContextAddress, isolate())); | 
|  | str(r3, MemOperand(scratch)); | 
|  | #endif | 
|  |  | 
|  | // Tear down the exit frame, pop the arguments, and return. | 
|  | mov(sp, Operand(fp)); | 
|  | ldm(ia_w, sp, fp.bit() | lr.bit()); | 
|  | if (argument_count.is_valid()) { | 
|  | if (argument_count_is_length) { | 
|  | add(sp, sp, argument_count); | 
|  | } else { | 
|  | add(sp, sp, Operand(argument_count, LSL, kPointerSizeLog2)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void TurboAssembler::MovFromFloatResult(const DwVfpRegister dst) { | 
|  | if (use_eabi_hardfloat()) { | 
|  | Move(dst, d0); | 
|  | } else { | 
|  | vmov(dst, r0, r1); | 
|  | } | 
|  | } | 
|  |  | 
|  | // On ARM this is just a synonym to make the purpose clear. | 
|  | void TurboAssembler::MovFromFloatParameter(DwVfpRegister dst) { | 
|  | MovFromFloatResult(dst); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::PrepareForTailCall(Register callee_args_count, | 
|  | Register caller_args_count, | 
|  | Register scratch0, Register scratch1) { | 
|  | DCHECK(!AreAliased(callee_args_count, caller_args_count, scratch0, scratch1)); | 
|  |  | 
|  | // Calculate the end of destination area where we will put the arguments | 
|  | // after we drop current frame. We add kPointerSize to count the receiver | 
|  | // argument which is not included into formal parameters count. | 
|  | Register dst_reg = scratch0; | 
|  | add(dst_reg, fp, Operand(caller_args_count, LSL, kPointerSizeLog2)); | 
|  | add(dst_reg, dst_reg, | 
|  | Operand(StandardFrameConstants::kCallerSPOffset + kPointerSize)); | 
|  |  | 
|  | Register src_reg = caller_args_count; | 
|  | // Calculate the end of source area. +kPointerSize is for the receiver. | 
|  | add(src_reg, sp, Operand(callee_args_count, LSL, kPointerSizeLog2)); | 
|  | add(src_reg, src_reg, Operand(kPointerSize)); | 
|  |  | 
|  | if (FLAG_debug_code) { | 
|  | cmp(src_reg, dst_reg); | 
|  | Check(lo, AbortReason::kStackAccessBelowStackPointer); | 
|  | } | 
|  |  | 
|  | // Restore caller's frame pointer and return address now as they will be | 
|  | // overwritten by the copying loop. | 
|  | ldr(lr, MemOperand(fp, StandardFrameConstants::kCallerPCOffset)); | 
|  | ldr(fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); | 
|  |  | 
|  | // Now copy callee arguments to the caller frame going backwards to avoid | 
|  | // callee arguments corruption (source and destination areas could overlap). | 
|  |  | 
|  | // Both src_reg and dst_reg are pointing to the word after the one to copy, | 
|  | // so they must be pre-decremented in the loop. | 
|  | Register tmp_reg = scratch1; | 
|  | Label loop, entry; | 
|  | b(&entry); | 
|  | bind(&loop); | 
|  | ldr(tmp_reg, MemOperand(src_reg, -kPointerSize, PreIndex)); | 
|  | str(tmp_reg, MemOperand(dst_reg, -kPointerSize, PreIndex)); | 
|  | bind(&entry); | 
|  | cmp(sp, src_reg); | 
|  | b(ne, &loop); | 
|  |  | 
|  | // Leave current frame. | 
|  | mov(sp, dst_reg); | 
|  | } | 
|  |  | 
|  | void MacroAssembler::LoadStackLimit(Register destination, StackLimitKind kind) { | 
|  | DCHECK(root_array_available()); | 
|  | Isolate* isolate = this->isolate(); | 
|  | ExternalReference limit = | 
|  | kind == StackLimitKind::kRealStackLimit | 
|  | ? ExternalReference::address_of_real_jslimit(isolate) | 
|  | : ExternalReference::address_of_jslimit(isolate); | 
|  | DCHECK(TurboAssembler::IsAddressableThroughRootRegister(isolate, limit)); | 
|  |  | 
|  | intptr_t offset = | 
|  | TurboAssembler::RootRegisterOffsetForExternalReference(isolate, limit); | 
|  | CHECK(is_int32(offset)); | 
|  | ldr(destination, MemOperand(kRootRegister, offset)); | 
|  | } | 
|  |  | 
|  | void MacroAssembler::StackOverflowCheck(Register num_args, Register scratch, | 
|  | Label* stack_overflow) { | 
|  | // Check the stack for overflow. We are not trying to catch | 
|  | // interruptions (e.g. debug break and preemption) here, so the "real stack | 
|  | // limit" is checked. | 
|  | LoadStackLimit(scratch, StackLimitKind::kRealStackLimit); | 
|  | // Make scratch the space we have left. The stack might already be overflowed | 
|  | // here which will cause scratch to become negative. | 
|  | sub(scratch, sp, scratch); | 
|  | // Check if the arguments will overflow the stack. | 
|  | cmp(scratch, Operand(num_args, LSL, kPointerSizeLog2)); | 
|  | b(le, stack_overflow);  // Signed comparison. | 
|  | } | 
|  |  | 
|  | void MacroAssembler::InvokePrologue(Register expected_parameter_count, | 
|  | Register actual_parameter_count, | 
|  | Label* done, InvokeFlag flag) { | 
|  | Label regular_invoke; | 
|  | //  r0: actual arguments count | 
|  | //  r1: function (passed through to callee) | 
|  | //  r2: expected arguments count | 
|  | DCHECK_EQ(actual_parameter_count, r0); | 
|  | DCHECK_EQ(expected_parameter_count, r2); | 
|  |  | 
|  | #ifdef V8_NO_ARGUMENTS_ADAPTOR | 
|  | // If the expected parameter count is equal to the adaptor sentinel, no need | 
|  | // to push undefined value as arguments. | 
|  | cmp(expected_parameter_count, Operand(kDontAdaptArgumentsSentinel)); | 
|  | b(eq, ®ular_invoke); | 
|  |  | 
|  | // If overapplication or if the actual argument count is equal to the | 
|  | // formal parameter count, no need to push extra undefined values. | 
|  | sub(expected_parameter_count, expected_parameter_count, | 
|  | actual_parameter_count, SetCC); | 
|  | b(le, ®ular_invoke); | 
|  |  | 
|  | Label stack_overflow; | 
|  | Register scratch = r4; | 
|  | StackOverflowCheck(expected_parameter_count, scratch, &stack_overflow); | 
|  |  | 
|  | // Underapplication. Move the arguments already in the stack, including the | 
|  | // receiver and the return address. | 
|  | { | 
|  | Label copy, check; | 
|  | Register num = r5, src = r6, dest = r9;  // r7 and r8 are context and root. | 
|  | mov(src, sp); | 
|  | // Update stack pointer. | 
|  | lsl(scratch, expected_parameter_count, Operand(kSystemPointerSizeLog2)); | 
|  | AllocateStackSpace(scratch); | 
|  | mov(dest, sp); | 
|  | mov(num, actual_parameter_count); | 
|  | b(&check); | 
|  | bind(©); | 
|  | ldr(scratch, MemOperand(src, kSystemPointerSize, PostIndex)); | 
|  | str(scratch, MemOperand(dest, kSystemPointerSize, PostIndex)); | 
|  | sub(num, num, Operand(1), SetCC); | 
|  | bind(&check); | 
|  | b(ge, ©); | 
|  | } | 
|  |  | 
|  | // Fill remaining expected arguments with undefined values. | 
|  | LoadRoot(scratch, RootIndex::kUndefinedValue); | 
|  | { | 
|  | Label loop; | 
|  | bind(&loop); | 
|  | str(scratch, MemOperand(r9, kSystemPointerSize, PostIndex)); | 
|  | sub(expected_parameter_count, expected_parameter_count, Operand(1), SetCC); | 
|  | b(gt, &loop); | 
|  | } | 
|  | b(®ular_invoke); | 
|  |  | 
|  | bind(&stack_overflow); | 
|  | { | 
|  | FrameScope frame(this, | 
|  | has_frame() ? StackFrame::NONE : StackFrame::INTERNAL); | 
|  | CallRuntime(Runtime::kThrowStackOverflow); | 
|  | bkpt(0); | 
|  | } | 
|  | #else | 
|  | // Check whether the expected and actual arguments count match. If not, | 
|  | // setup registers according to contract with ArgumentsAdaptorTrampoline. | 
|  | cmp(expected_parameter_count, actual_parameter_count); | 
|  | b(eq, ®ular_invoke); | 
|  |  | 
|  | Handle<Code> adaptor = BUILTIN_CODE(isolate(), ArgumentsAdaptorTrampoline); | 
|  | if (flag == CALL_FUNCTION) { | 
|  | Call(adaptor); | 
|  | b(done); | 
|  | } else { | 
|  | Jump(adaptor, RelocInfo::CODE_TARGET); | 
|  | } | 
|  | #endif | 
|  | bind(®ular_invoke); | 
|  | } | 
|  |  | 
|  | void MacroAssembler::CallDebugOnFunctionCall(Register fun, Register new_target, | 
|  | Register expected_parameter_count, | 
|  | Register actual_parameter_count) { | 
|  | // Load receiver to pass it later to DebugOnFunctionCall hook. | 
|  | ldr(r4, ReceiverOperand(actual_parameter_count)); | 
|  | FrameScope frame(this, has_frame() ? StackFrame::NONE : StackFrame::INTERNAL); | 
|  |  | 
|  | SmiTag(expected_parameter_count); | 
|  | Push(expected_parameter_count); | 
|  |  | 
|  | SmiTag(actual_parameter_count); | 
|  | Push(actual_parameter_count); | 
|  |  | 
|  | if (new_target.is_valid()) { | 
|  | Push(new_target); | 
|  | } | 
|  | Push(fun); | 
|  | Push(fun); | 
|  | Push(r4); | 
|  | CallRuntime(Runtime::kDebugOnFunctionCall); | 
|  | Pop(fun); | 
|  | if (new_target.is_valid()) { | 
|  | Pop(new_target); | 
|  | } | 
|  |  | 
|  | Pop(actual_parameter_count); | 
|  | SmiUntag(actual_parameter_count); | 
|  |  | 
|  | Pop(expected_parameter_count); | 
|  | SmiUntag(expected_parameter_count); | 
|  | } | 
|  |  | 
|  | void MacroAssembler::InvokeFunctionCode(Register function, Register new_target, | 
|  | Register expected_parameter_count, | 
|  | Register actual_parameter_count, | 
|  | InvokeFlag flag) { | 
|  | // You can't call a function without a valid frame. | 
|  | DCHECK_IMPLIES(flag == CALL_FUNCTION, has_frame()); | 
|  | DCHECK_EQ(function, r1); | 
|  | DCHECK_IMPLIES(new_target.is_valid(), new_target == r3); | 
|  |  | 
|  | // On function call, call into the debugger if necessary. | 
|  | Label debug_hook, continue_after_hook; | 
|  | { | 
|  | ExternalReference debug_hook_active = | 
|  | ExternalReference::debug_hook_on_function_call_address(isolate()); | 
|  | Move(r4, debug_hook_active); | 
|  | ldrsb(r4, MemOperand(r4)); | 
|  | cmp(r4, Operand(0)); | 
|  | b(ne, &debug_hook); | 
|  | } | 
|  | bind(&continue_after_hook); | 
|  |  | 
|  | // Clear the new.target register if not given. | 
|  | if (!new_target.is_valid()) { | 
|  | LoadRoot(r3, RootIndex::kUndefinedValue); | 
|  | } | 
|  |  | 
|  | Label done; | 
|  | InvokePrologue(expected_parameter_count, actual_parameter_count, &done, flag); | 
|  | // We call indirectly through the code field in the function to | 
|  | // allow recompilation to take effect without changing any of the | 
|  | // call sites. | 
|  | Register code = kJavaScriptCallCodeStartRegister; | 
|  | ldr(code, FieldMemOperand(function, JSFunction::kCodeOffset)); | 
|  | if (flag == CALL_FUNCTION) { | 
|  | CallCodeObject(code); | 
|  | } else { | 
|  | DCHECK(flag == JUMP_FUNCTION); | 
|  | JumpCodeObject(code); | 
|  | } | 
|  | b(&done); | 
|  |  | 
|  | // Deferred debug hook. | 
|  | bind(&debug_hook); | 
|  | CallDebugOnFunctionCall(function, new_target, expected_parameter_count, | 
|  | actual_parameter_count); | 
|  | b(&continue_after_hook); | 
|  |  | 
|  | // Continue here if InvokePrologue does handle the invocation due to | 
|  | // mismatched parameter counts. | 
|  | bind(&done); | 
|  | } | 
|  |  | 
|  | void MacroAssembler::InvokeFunctionWithNewTarget( | 
|  | Register fun, Register new_target, Register actual_parameter_count, | 
|  | InvokeFlag flag) { | 
|  | // You can't call a function without a valid frame. | 
|  | DCHECK_IMPLIES(flag == CALL_FUNCTION, has_frame()); | 
|  |  | 
|  | // Contract with called JS functions requires that function is passed in r1. | 
|  | DCHECK_EQ(fun, r1); | 
|  |  | 
|  | Register expected_reg = r2; | 
|  | Register temp_reg = r4; | 
|  |  | 
|  | ldr(temp_reg, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); | 
|  | ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset)); | 
|  | ldrh(expected_reg, | 
|  | FieldMemOperand(temp_reg, | 
|  | SharedFunctionInfo::kFormalParameterCountOffset)); | 
|  |  | 
|  | InvokeFunctionCode(fun, new_target, expected_reg, actual_parameter_count, | 
|  | flag); | 
|  | } | 
|  |  | 
|  | void MacroAssembler::InvokeFunction(Register function, | 
|  | Register expected_parameter_count, | 
|  | Register actual_parameter_count, | 
|  | InvokeFlag flag) { | 
|  | // You can't call a function without a valid frame. | 
|  | DCHECK_IMPLIES(flag == CALL_FUNCTION, has_frame()); | 
|  |  | 
|  | // Contract with called JS functions requires that function is passed in r1. | 
|  | DCHECK_EQ(function, r1); | 
|  |  | 
|  | // Get the function and setup the context. | 
|  | ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset)); | 
|  |  | 
|  | InvokeFunctionCode(r1, no_reg, expected_parameter_count, | 
|  | actual_parameter_count, flag); | 
|  | } | 
|  |  | 
|  | void MacroAssembler::MaybeDropFrames() { | 
|  | // Check whether we need to drop frames to restart a function on the stack. | 
|  | ExternalReference restart_fp = | 
|  | ExternalReference::debug_restart_fp_address(isolate()); | 
|  | Move(r1, restart_fp); | 
|  | ldr(r1, MemOperand(r1)); | 
|  | tst(r1, r1); | 
|  | Jump(BUILTIN_CODE(isolate(), FrameDropperTrampoline), RelocInfo::CODE_TARGET, | 
|  | ne); | 
|  | } | 
|  |  | 
|  | void MacroAssembler::PushStackHandler() { | 
|  | // Adjust this code if not the case. | 
|  | STATIC_ASSERT(StackHandlerConstants::kSize == 2 * kPointerSize); | 
|  | STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize); | 
|  |  | 
|  | Push(Smi::zero());  // Padding. | 
|  | // Link the current handler as the next handler. | 
|  | Move(r6, | 
|  | ExternalReference::Create(IsolateAddressId::kHandlerAddress, isolate())); | 
|  | ldr(r5, MemOperand(r6)); | 
|  | push(r5); | 
|  | // Set this new handler as the current one. | 
|  | str(sp, MemOperand(r6)); | 
|  | } | 
|  |  | 
|  | void MacroAssembler::PopStackHandler() { | 
|  | UseScratchRegisterScope temps(this); | 
|  | Register scratch = temps.Acquire(); | 
|  | STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); | 
|  | pop(r1); | 
|  | Move(scratch, | 
|  | ExternalReference::Create(IsolateAddressId::kHandlerAddress, isolate())); | 
|  | str(r1, MemOperand(scratch)); | 
|  | add(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize)); | 
|  | } | 
|  |  | 
|  | void MacroAssembler::CompareObjectType(Register object, Register map, | 
|  | Register type_reg, InstanceType type) { | 
|  | UseScratchRegisterScope temps(this); | 
|  | const Register temp = type_reg == no_reg ? temps.Acquire() : type_reg; | 
|  |  | 
|  | LoadMap(map, object); | 
|  | CompareInstanceType(map, temp, type); | 
|  | } | 
|  |  | 
|  | void MacroAssembler::CompareInstanceType(Register map, Register type_reg, | 
|  | InstanceType type) { | 
|  | ldrh(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset)); | 
|  | cmp(type_reg, Operand(type)); | 
|  | } | 
|  |  | 
|  | void MacroAssembler::CompareRoot(Register obj, RootIndex index) { | 
|  | UseScratchRegisterScope temps(this); | 
|  | Register scratch = temps.Acquire(); | 
|  | DCHECK(obj != scratch); | 
|  | LoadRoot(scratch, index); | 
|  | cmp(obj, scratch); | 
|  | } | 
|  |  | 
|  | void MacroAssembler::JumpIfIsInRange(Register value, unsigned lower_limit, | 
|  | unsigned higher_limit, | 
|  | Label* on_in_range) { | 
|  | if (lower_limit != 0) { | 
|  | UseScratchRegisterScope temps(this); | 
|  | Register scratch = temps.Acquire(); | 
|  | sub(scratch, value, Operand(lower_limit)); | 
|  | cmp(scratch, Operand(higher_limit - lower_limit)); | 
|  | } else { | 
|  | cmp(value, Operand(higher_limit)); | 
|  | } | 
|  | b(ls, on_in_range); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::TryInlineTruncateDoubleToI(Register result, | 
|  | DwVfpRegister double_input, | 
|  | Label* done) { | 
|  | UseScratchRegisterScope temps(this); | 
|  | SwVfpRegister single_scratch = SwVfpRegister::no_reg(); | 
|  | if (temps.CanAcquireVfp<SwVfpRegister>()) { | 
|  | single_scratch = temps.AcquireS(); | 
|  | } else { | 
|  | // Re-use the input as a scratch register. However, we can only do this if | 
|  | // the input register is d0-d15 as there are no s32+ registers. | 
|  | DCHECK_LT(double_input.code(), LowDwVfpRegister::kNumRegisters); | 
|  | LowDwVfpRegister double_scratch = | 
|  | LowDwVfpRegister::from_code(double_input.code()); | 
|  | single_scratch = double_scratch.low(); | 
|  | } | 
|  | vcvt_s32_f64(single_scratch, double_input); | 
|  | vmov(result, single_scratch); | 
|  |  | 
|  | Register scratch = temps.Acquire(); | 
|  | // If result is not saturated (0x7FFFFFFF or 0x80000000), we are done. | 
|  | sub(scratch, result, Operand(1)); | 
|  | cmp(scratch, Operand(0x7FFFFFFE)); | 
|  | b(lt, done); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::TruncateDoubleToI(Isolate* isolate, Zone* zone, | 
|  | Register result, | 
|  | DwVfpRegister double_input, | 
|  | StubCallMode stub_mode) { | 
|  | Label done; | 
|  |  | 
|  | TryInlineTruncateDoubleToI(result, double_input, &done); | 
|  |  | 
|  | // If we fell through then inline version didn't succeed - call stub instead. | 
|  | push(lr); | 
|  | AllocateStackSpace(kDoubleSize);  // Put input on stack. | 
|  | vstr(double_input, MemOperand(sp, 0)); | 
|  |  | 
|  | if (stub_mode == StubCallMode::kCallWasmRuntimeStub) { | 
|  | Call(wasm::WasmCode::kDoubleToI, RelocInfo::WASM_STUB_CALL); | 
|  | } else if (options().inline_offheap_trampolines) { | 
|  | CallBuiltin(Builtins::kDoubleToI); | 
|  | } else { | 
|  | Call(BUILTIN_CODE(isolate, DoubleToI), RelocInfo::CODE_TARGET); | 
|  | } | 
|  | ldr(result, MemOperand(sp, 0)); | 
|  |  | 
|  | add(sp, sp, Operand(kDoubleSize)); | 
|  | pop(lr); | 
|  |  | 
|  | bind(&done); | 
|  | } | 
|  |  | 
|  | void MacroAssembler::CallRuntime(const Runtime::Function* f, int num_arguments, | 
|  | SaveFPRegsMode save_doubles) { | 
|  | // All parameters are on the stack.  r0 has the return value after call. | 
|  |  | 
|  | // If the expected number of arguments of the runtime function is | 
|  | // constant, we check that the actual number of arguments match the | 
|  | // expectation. | 
|  | CHECK(f->nargs < 0 || f->nargs == num_arguments); | 
|  |  | 
|  | // TODO(1236192): Most runtime routines don't need the number of | 
|  | // arguments passed in because it is constant. At some point we | 
|  | // should remove this need and make the runtime routine entry code | 
|  | // smarter. | 
|  | mov(r0, Operand(num_arguments)); | 
|  | Move(r1, ExternalReference::Create(f)); | 
|  | Handle<Code> code = | 
|  | CodeFactory::CEntry(isolate(), f->result_size, save_doubles); | 
|  | Call(code, RelocInfo::CODE_TARGET); | 
|  | } | 
|  |  | 
|  | void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid) { | 
|  | const Runtime::Function* function = Runtime::FunctionForId(fid); | 
|  | DCHECK_EQ(1, function->result_size); | 
|  | if (function->nargs >= 0) { | 
|  | // TODO(1236192): Most runtime routines don't need the number of | 
|  | // arguments passed in because it is constant. At some point we | 
|  | // should remove this need and make the runtime routine entry code | 
|  | // smarter. | 
|  | mov(r0, Operand(function->nargs)); | 
|  | } | 
|  | JumpToExternalReference(ExternalReference::Create(fid)); | 
|  | } | 
|  |  | 
|  | void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin, | 
|  | bool builtin_exit_frame) { | 
|  | #if defined(__thumb__) | 
|  | // Thumb mode builtin. | 
|  | DCHECK_EQ(builtin.address() & 1, 1); | 
|  | #endif | 
|  | Move(r1, builtin); | 
|  | Handle<Code> code = CodeFactory::CEntry(isolate(), 1, kDontSaveFPRegs, | 
|  | kArgvOnStack, builtin_exit_frame); | 
|  | Jump(code, RelocInfo::CODE_TARGET); | 
|  | } | 
|  |  | 
|  | void MacroAssembler::JumpToInstructionStream(Address entry) { | 
|  | mov(kOffHeapTrampolineRegister, Operand(entry, RelocInfo::OFF_HEAP_TARGET)); | 
|  | Jump(kOffHeapTrampolineRegister); | 
|  | } | 
|  |  | 
|  | void MacroAssembler::LoadWeakValue(Register out, Register in, | 
|  | Label* target_if_cleared) { | 
|  | cmp(in, Operand(kClearedWeakHeapObjectLower32)); | 
|  | b(eq, target_if_cleared); | 
|  |  | 
|  | and_(out, in, Operand(~kWeakHeapObjectMask)); | 
|  | } | 
|  |  | 
|  | void MacroAssembler::IncrementCounter(StatsCounter* counter, int value, | 
|  | Register scratch1, Register scratch2) { | 
|  | DCHECK_GT(value, 0); | 
|  | if (FLAG_native_code_counters && counter->Enabled()) { | 
|  | Move(scratch2, ExternalReference::Create(counter)); | 
|  | ldr(scratch1, MemOperand(scratch2)); | 
|  | add(scratch1, scratch1, Operand(value)); | 
|  | str(scratch1, MemOperand(scratch2)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void MacroAssembler::DecrementCounter(StatsCounter* counter, int value, | 
|  | Register scratch1, Register scratch2) { | 
|  | DCHECK_GT(value, 0); | 
|  | if (FLAG_native_code_counters && counter->Enabled()) { | 
|  | Move(scratch2, ExternalReference::Create(counter)); | 
|  | ldr(scratch1, MemOperand(scratch2)); | 
|  | sub(scratch1, scratch1, Operand(value)); | 
|  | str(scratch1, MemOperand(scratch2)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void TurboAssembler::Assert(Condition cond, AbortReason reason) { | 
|  | if (emit_debug_code()) Check(cond, reason); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::AssertUnreachable(AbortReason reason) { | 
|  | if (emit_debug_code()) Abort(reason); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::Check(Condition cond, AbortReason reason) { | 
|  | Label L; | 
|  | b(cond, &L); | 
|  | Abort(reason); | 
|  | // will not return here | 
|  | bind(&L); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::Abort(AbortReason reason) { | 
|  | Label abort_start; | 
|  | bind(&abort_start); | 
|  | #ifdef DEBUG | 
|  | const char* msg = GetAbortReason(reason); | 
|  | RecordComment("Abort message: "); | 
|  | RecordComment(msg); | 
|  | #endif | 
|  |  | 
|  | // Avoid emitting call to builtin if requested. | 
|  | if (trap_on_abort()) { | 
|  | stop(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (should_abort_hard()) { | 
|  | // We don't care if we constructed a frame. Just pretend we did. | 
|  | FrameScope assume_frame(this, StackFrame::NONE); | 
|  | Move32BitImmediate(r0, Operand(static_cast<int>(reason))); | 
|  | PrepareCallCFunction(1, 0, r1); | 
|  | Move(r1, ExternalReference::abort_with_reason()); | 
|  | // Use Call directly to avoid any unneeded overhead. The function won't | 
|  | // return anyway. | 
|  | Call(r1); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Move(r1, Smi::FromInt(static_cast<int>(reason))); | 
|  |  | 
|  | // Disable stub call restrictions to always allow calls to abort. | 
|  | if (!has_frame()) { | 
|  | // We don't actually want to generate a pile of code for this, so just | 
|  | // claim there is a stack frame, without generating one. | 
|  | FrameScope scope(this, StackFrame::NONE); | 
|  | Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET); | 
|  | } else { | 
|  | Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET); | 
|  | } | 
|  | // will not return here | 
|  | } | 
|  |  | 
|  | void MacroAssembler::LoadMap(Register destination, Register object) { | 
|  | ldr(destination, FieldMemOperand(object, HeapObject::kMapOffset)); | 
|  | } | 
|  |  | 
|  | void MacroAssembler::LoadGlobalProxy(Register dst) { | 
|  | LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst); | 
|  | } | 
|  |  | 
|  | void MacroAssembler::LoadNativeContextSlot(int index, Register dst) { | 
|  | LoadMap(dst, cp); | 
|  | ldr(dst, FieldMemOperand( | 
|  | dst, Map::kConstructorOrBackPointerOrNativeContextOffset)); | 
|  | ldr(dst, MemOperand(dst, Context::SlotOffset(index))); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::InitializeRootRegister() { | 
|  | ExternalReference isolate_root = ExternalReference::isolate_root(isolate()); | 
|  | mov(kRootRegister, Operand(isolate_root)); | 
|  | } | 
|  |  | 
|  | void MacroAssembler::SmiTag(Register reg, SBit s) { | 
|  | add(reg, reg, Operand(reg), s); | 
|  | } | 
|  |  | 
|  | void MacroAssembler::SmiTag(Register dst, Register src, SBit s) { | 
|  | add(dst, src, Operand(src), s); | 
|  | } | 
|  |  | 
|  | void MacroAssembler::SmiTst(Register value) { | 
|  | tst(value, Operand(kSmiTagMask)); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::JumpIfSmi(Register value, Label* smi_label) { | 
|  | tst(value, Operand(kSmiTagMask)); | 
|  | b(eq, smi_label); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::JumpIfEqual(Register x, int32_t y, Label* dest) { | 
|  | cmp(x, Operand(y)); | 
|  | b(eq, dest); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::JumpIfLessThan(Register x, int32_t y, Label* dest) { | 
|  | cmp(x, Operand(y)); | 
|  | b(lt, dest); | 
|  | } | 
|  |  | 
|  | void MacroAssembler::JumpIfNotSmi(Register value, Label* not_smi_label) { | 
|  | tst(value, Operand(kSmiTagMask)); | 
|  | b(ne, not_smi_label); | 
|  | } | 
|  |  | 
|  | void MacroAssembler::AssertNotSmi(Register object) { | 
|  | if (emit_debug_code()) { | 
|  | STATIC_ASSERT(kSmiTag == 0); | 
|  | tst(object, Operand(kSmiTagMask)); | 
|  | Check(ne, AbortReason::kOperandIsASmi); | 
|  | } | 
|  | } | 
|  |  | 
|  | void MacroAssembler::AssertSmi(Register object) { | 
|  | if (emit_debug_code()) { | 
|  | STATIC_ASSERT(kSmiTag == 0); | 
|  | tst(object, Operand(kSmiTagMask)); | 
|  | Check(eq, AbortReason::kOperandIsNotASmi); | 
|  | } | 
|  | } | 
|  |  | 
|  | void MacroAssembler::AssertConstructor(Register object) { | 
|  | if (emit_debug_code()) { | 
|  | STATIC_ASSERT(kSmiTag == 0); | 
|  | tst(object, Operand(kSmiTagMask)); | 
|  | Check(ne, AbortReason::kOperandIsASmiAndNotAConstructor); | 
|  | push(object); | 
|  | LoadMap(object, object); | 
|  | ldrb(object, FieldMemOperand(object, Map::kBitFieldOffset)); | 
|  | tst(object, Operand(Map::Bits1::IsConstructorBit::kMask)); | 
|  | pop(object); | 
|  | Check(ne, AbortReason::kOperandIsNotAConstructor); | 
|  | } | 
|  | } | 
|  |  | 
|  | void MacroAssembler::AssertFunction(Register object) { | 
|  | if (emit_debug_code()) { | 
|  | STATIC_ASSERT(kSmiTag == 0); | 
|  | tst(object, Operand(kSmiTagMask)); | 
|  | Check(ne, AbortReason::kOperandIsASmiAndNotAFunction); | 
|  | push(object); | 
|  | CompareObjectType(object, object, object, JS_FUNCTION_TYPE); | 
|  | pop(object); | 
|  | Check(eq, AbortReason::kOperandIsNotAFunction); | 
|  | } | 
|  | } | 
|  |  | 
|  | void MacroAssembler::AssertBoundFunction(Register object) { | 
|  | if (emit_debug_code()) { | 
|  | STATIC_ASSERT(kSmiTag == 0); | 
|  | tst(object, Operand(kSmiTagMask)); | 
|  | Check(ne, AbortReason::kOperandIsASmiAndNotABoundFunction); | 
|  | push(object); | 
|  | CompareObjectType(object, object, object, JS_BOUND_FUNCTION_TYPE); | 
|  | pop(object); | 
|  | Check(eq, AbortReason::kOperandIsNotABoundFunction); | 
|  | } | 
|  | } | 
|  |  | 
|  | void MacroAssembler::AssertGeneratorObject(Register object) { | 
|  | if (!emit_debug_code()) return; | 
|  | tst(object, Operand(kSmiTagMask)); | 
|  | Check(ne, AbortReason::kOperandIsASmiAndNotAGeneratorObject); | 
|  |  | 
|  | // Load map | 
|  | Register map = object; | 
|  | push(object); | 
|  | LoadMap(map, object); | 
|  |  | 
|  | // Check if JSGeneratorObject | 
|  | Label do_check; | 
|  | Register instance_type = object; | 
|  | CompareInstanceType(map, instance_type, JS_GENERATOR_OBJECT_TYPE); | 
|  | b(eq, &do_check); | 
|  |  | 
|  | // Check if JSAsyncFunctionObject (See MacroAssembler::CompareInstanceType) | 
|  | cmp(instance_type, Operand(JS_ASYNC_FUNCTION_OBJECT_TYPE)); | 
|  | b(eq, &do_check); | 
|  |  | 
|  | // Check if JSAsyncGeneratorObject (See MacroAssembler::CompareInstanceType) | 
|  | cmp(instance_type, Operand(JS_ASYNC_GENERATOR_OBJECT_TYPE)); | 
|  |  | 
|  | bind(&do_check); | 
|  | // Restore generator object to register and perform assertion | 
|  | pop(object); | 
|  | Check(eq, AbortReason::kOperandIsNotAGeneratorObject); | 
|  | } | 
|  |  | 
|  | void MacroAssembler::AssertUndefinedOrAllocationSite(Register object, | 
|  | Register scratch) { | 
|  | if (emit_debug_code()) { | 
|  | Label done_checking; | 
|  | AssertNotSmi(object); | 
|  | CompareRoot(object, RootIndex::kUndefinedValue); | 
|  | b(eq, &done_checking); | 
|  | LoadMap(scratch, object); | 
|  | CompareInstanceType(scratch, scratch, ALLOCATION_SITE_TYPE); | 
|  | Assert(eq, AbortReason::kExpectedUndefinedOrCell); | 
|  | bind(&done_checking); | 
|  | } | 
|  | } | 
|  |  | 
|  | void TurboAssembler::CheckFor32DRegs(Register scratch) { | 
|  | Move(scratch, ExternalReference::cpu_features()); | 
|  | ldr(scratch, MemOperand(scratch)); | 
|  | tst(scratch, Operand(1u << VFP32DREGS)); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::SaveFPRegs(Register location, Register scratch) { | 
|  | CpuFeatureScope scope(this, VFP32DREGS, CpuFeatureScope::kDontCheckSupported); | 
|  | CheckFor32DRegs(scratch); | 
|  | vstm(db_w, location, d16, d31, ne); | 
|  | sub(location, location, Operand(16 * kDoubleSize), LeaveCC, eq); | 
|  | vstm(db_w, location, d0, d15); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::RestoreFPRegs(Register location, Register scratch) { | 
|  | CpuFeatureScope scope(this, VFP32DREGS, CpuFeatureScope::kDontCheckSupported); | 
|  | CheckFor32DRegs(scratch); | 
|  | vldm(ia_w, location, d0, d15); | 
|  | vldm(ia_w, location, d16, d31, ne); | 
|  | add(location, location, Operand(16 * kDoubleSize), LeaveCC, eq); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::SaveFPRegsToHeap(Register location, Register scratch) { | 
|  | CpuFeatureScope scope(this, VFP32DREGS, CpuFeatureScope::kDontCheckSupported); | 
|  | CheckFor32DRegs(scratch); | 
|  | vstm(ia_w, location, d0, d15); | 
|  | vstm(ia_w, location, d16, d31, ne); | 
|  | add(location, location, Operand(16 * kDoubleSize), LeaveCC, eq); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::RestoreFPRegsFromHeap(Register location, | 
|  | Register scratch) { | 
|  | CpuFeatureScope scope(this, VFP32DREGS, CpuFeatureScope::kDontCheckSupported); | 
|  | CheckFor32DRegs(scratch); | 
|  | vldm(ia_w, location, d0, d15); | 
|  | vldm(ia_w, location, d16, d31, ne); | 
|  | add(location, location, Operand(16 * kDoubleSize), LeaveCC, eq); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | void TurboAssembler::FloatMaxHelper(T result, T left, T right, | 
|  | Label* out_of_line) { | 
|  | // This trivial case is caught sooner, so that the out-of-line code can be | 
|  | // completely avoided. | 
|  | DCHECK(left != right); | 
|  |  | 
|  | if (CpuFeatures::IsSupported(ARMv8)) { | 
|  | CpuFeatureScope scope(this, ARMv8); | 
|  | VFPCompareAndSetFlags(left, right); | 
|  | b(vs, out_of_line); | 
|  | vmaxnm(result, left, right); | 
|  | } else { | 
|  | Label done; | 
|  | VFPCompareAndSetFlags(left, right); | 
|  | b(vs, out_of_line); | 
|  | // Avoid a conditional instruction if the result register is unique. | 
|  | bool aliased_result_reg = result == left || result == right; | 
|  | Move(result, right, aliased_result_reg ? mi : al); | 
|  | Move(result, left, gt); | 
|  | b(ne, &done); | 
|  | // Left and right are equal, but check for +/-0. | 
|  | VFPCompareAndSetFlags(left, 0.0); | 
|  | b(eq, out_of_line); | 
|  | // The arguments are equal and not zero, so it doesn't matter which input we | 
|  | // pick. We have already moved one input into the result (if it didn't | 
|  | // already alias) so there's nothing more to do. | 
|  | bind(&done); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | void TurboAssembler::FloatMaxOutOfLineHelper(T result, T left, T right) { | 
|  | DCHECK(left != right); | 
|  |  | 
|  | // ARMv8: At least one of left and right is a NaN. | 
|  | // Anything else: At least one of left and right is a NaN, or both left and | 
|  | // right are zeroes with unknown sign. | 
|  |  | 
|  | // If left and right are +/-0, select the one with the most positive sign. | 
|  | // If left or right are NaN, vadd propagates the appropriate one. | 
|  | vadd(result, left, right); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | void TurboAssembler::FloatMinHelper(T result, T left, T right, | 
|  | Label* out_of_line) { | 
|  | // This trivial case is caught sooner, so that the out-of-line code can be | 
|  | // completely avoided. | 
|  | DCHECK(left != right); | 
|  |  | 
|  | if (CpuFeatures::IsSupported(ARMv8)) { | 
|  | CpuFeatureScope scope(this, ARMv8); | 
|  | VFPCompareAndSetFlags(left, right); | 
|  | b(vs, out_of_line); | 
|  | vminnm(result, left, right); | 
|  | } else { | 
|  | Label done; | 
|  | VFPCompareAndSetFlags(left, right); | 
|  | b(vs, out_of_line); | 
|  | // Avoid a conditional instruction if the result register is unique. | 
|  | bool aliased_result_reg = result == left || result == right; | 
|  | Move(result, left, aliased_result_reg ? mi : al); | 
|  | Move(result, right, gt); | 
|  | b(ne, &done); | 
|  | // Left and right are equal, but check for +/-0. | 
|  | VFPCompareAndSetFlags(left, 0.0); | 
|  | // If the arguments are equal and not zero, it doesn't matter which input we | 
|  | // pick. We have already moved one input into the result (if it didn't | 
|  | // already alias) so there's nothing more to do. | 
|  | b(ne, &done); | 
|  | // At this point, both left and right are either 0 or -0. | 
|  | // We could use a single 'vorr' instruction here if we had NEON support. | 
|  | // The algorithm used is -((-L) + (-R)), which is most efficiently expressed | 
|  | // as -((-L) - R). | 
|  | if (left == result) { | 
|  | DCHECK(right != result); | 
|  | vneg(result, left); | 
|  | vsub(result, result, right); | 
|  | vneg(result, result); | 
|  | } else { | 
|  | DCHECK(left != result); | 
|  | vneg(result, right); | 
|  | vsub(result, result, left); | 
|  | vneg(result, result); | 
|  | } | 
|  | bind(&done); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | void TurboAssembler::FloatMinOutOfLineHelper(T result, T left, T right) { | 
|  | DCHECK(left != right); | 
|  |  | 
|  | // At least one of left and right is a NaN. Use vadd to propagate the NaN | 
|  | // appropriately. +/-0 is handled inline. | 
|  | vadd(result, left, right); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::FloatMax(SwVfpRegister result, SwVfpRegister left, | 
|  | SwVfpRegister right, Label* out_of_line) { | 
|  | FloatMaxHelper(result, left, right, out_of_line); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::FloatMin(SwVfpRegister result, SwVfpRegister left, | 
|  | SwVfpRegister right, Label* out_of_line) { | 
|  | FloatMinHelper(result, left, right, out_of_line); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::FloatMax(DwVfpRegister result, DwVfpRegister left, | 
|  | DwVfpRegister right, Label* out_of_line) { | 
|  | FloatMaxHelper(result, left, right, out_of_line); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::FloatMin(DwVfpRegister result, DwVfpRegister left, | 
|  | DwVfpRegister right, Label* out_of_line) { | 
|  | FloatMinHelper(result, left, right, out_of_line); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::FloatMaxOutOfLine(SwVfpRegister result, SwVfpRegister left, | 
|  | SwVfpRegister right) { | 
|  | FloatMaxOutOfLineHelper(result, left, right); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::FloatMinOutOfLine(SwVfpRegister result, SwVfpRegister left, | 
|  | SwVfpRegister right) { | 
|  | FloatMinOutOfLineHelper(result, left, right); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::FloatMaxOutOfLine(DwVfpRegister result, DwVfpRegister left, | 
|  | DwVfpRegister right) { | 
|  | FloatMaxOutOfLineHelper(result, left, right); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::FloatMinOutOfLine(DwVfpRegister result, DwVfpRegister left, | 
|  | DwVfpRegister right) { | 
|  | FloatMinOutOfLineHelper(result, left, right); | 
|  | } | 
|  |  | 
|  | static const int kRegisterPassedArguments = 4; | 
|  | // The hardfloat calling convention passes double arguments in registers d0-d7. | 
|  | static const int kDoubleRegisterPassedArguments = 8; | 
|  |  | 
|  | int TurboAssembler::CalculateStackPassedWords(int num_reg_arguments, | 
|  | int num_double_arguments) { | 
|  | int stack_passed_words = 0; | 
|  | if (use_eabi_hardfloat()) { | 
|  | // In the hard floating point calling convention, we can use the first 8 | 
|  | // registers to pass doubles. | 
|  | if (num_double_arguments > kDoubleRegisterPassedArguments) { | 
|  | stack_passed_words += | 
|  | 2 * (num_double_arguments - kDoubleRegisterPassedArguments); | 
|  | } | 
|  | } else { | 
|  | // In the soft floating point calling convention, every double | 
|  | // argument is passed using two registers. | 
|  | num_reg_arguments += 2 * num_double_arguments; | 
|  | } | 
|  | // Up to four simple arguments are passed in registers r0..r3. | 
|  | if (num_reg_arguments > kRegisterPassedArguments) { | 
|  | stack_passed_words += num_reg_arguments - kRegisterPassedArguments; | 
|  | } | 
|  | return stack_passed_words; | 
|  | } | 
|  |  | 
|  | void TurboAssembler::PrepareCallCFunction(int num_reg_arguments, | 
|  | int num_double_arguments, | 
|  | Register scratch) { | 
|  | int frame_alignment = ActivationFrameAlignment(); | 
|  | int stack_passed_arguments = | 
|  | CalculateStackPassedWords(num_reg_arguments, num_double_arguments); | 
|  | if (frame_alignment > kPointerSize) { | 
|  | UseScratchRegisterScope temps(this); | 
|  | if (!scratch.is_valid()) scratch = temps.Acquire(); | 
|  | // Make stack end at alignment and make room for num_arguments - 4 words | 
|  | // and the original value of sp. | 
|  | mov(scratch, sp); | 
|  | AllocateStackSpace((stack_passed_arguments + 1) * kPointerSize); | 
|  | DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); | 
|  | and_(sp, sp, Operand(-frame_alignment)); | 
|  | str(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize)); | 
|  | } else if (stack_passed_arguments > 0) { | 
|  | AllocateStackSpace(stack_passed_arguments * kPointerSize); | 
|  | } | 
|  | } | 
|  |  | 
|  | void TurboAssembler::MovToFloatParameter(DwVfpRegister src) { | 
|  | DCHECK(src == d0); | 
|  | if (!use_eabi_hardfloat()) { | 
|  | vmov(r0, r1, src); | 
|  | } | 
|  | } | 
|  |  | 
|  | // On ARM this is just a synonym to make the purpose clear. | 
|  | void TurboAssembler::MovToFloatResult(DwVfpRegister src) { | 
|  | MovToFloatParameter(src); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::MovToFloatParameters(DwVfpRegister src1, | 
|  | DwVfpRegister src2) { | 
|  | DCHECK(src1 == d0); | 
|  | DCHECK(src2 == d1); | 
|  | if (!use_eabi_hardfloat()) { | 
|  | vmov(r0, r1, src1); | 
|  | vmov(r2, r3, src2); | 
|  | } | 
|  | } | 
|  |  | 
|  | void TurboAssembler::CallCFunction(ExternalReference function, | 
|  | int num_reg_arguments, | 
|  | int num_double_arguments) { | 
|  | UseScratchRegisterScope temps(this); | 
|  | Register scratch = temps.Acquire(); | 
|  | Move(scratch, function); | 
|  | CallCFunctionHelper(scratch, num_reg_arguments, num_double_arguments); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::CallCFunction(Register function, int num_reg_arguments, | 
|  | int num_double_arguments) { | 
|  | CallCFunctionHelper(function, num_reg_arguments, num_double_arguments); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::CallCFunction(ExternalReference function, | 
|  | int num_arguments) { | 
|  | CallCFunction(function, num_arguments, 0); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::CallCFunction(Register function, int num_arguments) { | 
|  | CallCFunction(function, num_arguments, 0); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::CallCFunctionHelper(Register function, | 
|  | int num_reg_arguments, | 
|  | int num_double_arguments) { | 
|  | DCHECK_LE(num_reg_arguments + num_double_arguments, kMaxCParameters); | 
|  | DCHECK(has_frame()); | 
|  | // Make sure that the stack is aligned before calling a C function unless | 
|  | // running in the simulator. The simulator has its own alignment check which | 
|  | // provides more information. | 
|  | #if V8_HOST_ARCH_ARM | 
|  | if (emit_debug_code()) { | 
|  | int frame_alignment = base::OS::ActivationFrameAlignment(); | 
|  | int frame_alignment_mask = frame_alignment - 1; | 
|  | if (frame_alignment > kPointerSize) { | 
|  | DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); | 
|  | Label alignment_as_expected; | 
|  | tst(sp, Operand(frame_alignment_mask)); | 
|  | b(eq, &alignment_as_expected); | 
|  | // Don't use Check here, as it will call Runtime_Abort possibly | 
|  | // re-entering here. | 
|  | stop(); | 
|  | bind(&alignment_as_expected); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Save the frame pointer and PC so that the stack layout remains iterable, | 
|  | // even without an ExitFrame which normally exists between JS and C frames. | 
|  | Register addr_scratch = r4; | 
|  | // See x64 code for reasoning about how to address the isolate data fields. | 
|  | if (root_array_available()) { | 
|  | str(pc, | 
|  | MemOperand(kRootRegister, IsolateData::fast_c_call_caller_pc_offset())); | 
|  | str(fp, | 
|  | MemOperand(kRootRegister, IsolateData::fast_c_call_caller_fp_offset())); | 
|  | } else { | 
|  | DCHECK_NOT_NULL(isolate()); | 
|  | Push(addr_scratch); | 
|  |  | 
|  | Move(addr_scratch, | 
|  | ExternalReference::fast_c_call_caller_pc_address(isolate())); | 
|  | str(pc, MemOperand(addr_scratch)); | 
|  | Move(addr_scratch, | 
|  | ExternalReference::fast_c_call_caller_fp_address(isolate())); | 
|  | str(fp, MemOperand(addr_scratch)); | 
|  |  | 
|  | Pop(addr_scratch); | 
|  | } | 
|  |  | 
|  | // Just call directly. The function called cannot cause a GC, or | 
|  | // allow preemption, so the return address in the link register | 
|  | // stays correct. | 
|  | Call(function); | 
|  |  | 
|  | // We don't unset the PC; the FP is the source of truth. | 
|  | Register zero_scratch = r5; | 
|  | Push(zero_scratch); | 
|  | mov(zero_scratch, Operand::Zero()); | 
|  |  | 
|  | if (root_array_available()) { | 
|  | str(zero_scratch, | 
|  | MemOperand(kRootRegister, IsolateData::fast_c_call_caller_fp_offset())); | 
|  | } else { | 
|  | DCHECK_NOT_NULL(isolate()); | 
|  | Push(addr_scratch); | 
|  | Move(addr_scratch, | 
|  | ExternalReference::fast_c_call_caller_fp_address(isolate())); | 
|  | str(zero_scratch, MemOperand(addr_scratch)); | 
|  | Pop(addr_scratch); | 
|  | } | 
|  |  | 
|  | Pop(zero_scratch); | 
|  |  | 
|  | int stack_passed_arguments = | 
|  | CalculateStackPassedWords(num_reg_arguments, num_double_arguments); | 
|  | if (ActivationFrameAlignment() > kPointerSize) { | 
|  | ldr(sp, MemOperand(sp, stack_passed_arguments * kPointerSize)); | 
|  | } else { | 
|  | add(sp, sp, Operand(stack_passed_arguments * kPointerSize)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void TurboAssembler::CheckPageFlag(Register object, int mask, Condition cc, | 
|  | Label* condition_met) { | 
|  | UseScratchRegisterScope temps(this); | 
|  | Register scratch = temps.Acquire(); | 
|  | DCHECK(cc == eq || cc == ne); | 
|  | Bfc(scratch, object, 0, kPageSizeBits); | 
|  | ldr(scratch, MemOperand(scratch, BasicMemoryChunk::kFlagsOffset)); | 
|  | tst(scratch, Operand(mask)); | 
|  | b(cc, condition_met); | 
|  | } | 
|  |  | 
|  | Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2, Register reg3, | 
|  | Register reg4, Register reg5, | 
|  | Register reg6) { | 
|  | RegList regs = 0; | 
|  | if (reg1.is_valid()) regs |= reg1.bit(); | 
|  | if (reg2.is_valid()) regs |= reg2.bit(); | 
|  | if (reg3.is_valid()) regs |= reg3.bit(); | 
|  | if (reg4.is_valid()) regs |= reg4.bit(); | 
|  | if (reg5.is_valid()) regs |= reg5.bit(); | 
|  | if (reg6.is_valid()) regs |= reg6.bit(); | 
|  |  | 
|  | const RegisterConfiguration* config = RegisterConfiguration::Default(); | 
|  | for (int i = 0; i < config->num_allocatable_general_registers(); ++i) { | 
|  | int code = config->GetAllocatableGeneralCode(i); | 
|  | Register candidate = Register::from_code(code); | 
|  | if (regs & candidate.bit()) continue; | 
|  | return candidate; | 
|  | } | 
|  | UNREACHABLE(); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::ComputeCodeStartAddress(Register dst) { | 
|  | // We can use the register pc - 8 for the address of the current instruction. | 
|  | sub(dst, pc, Operand(pc_offset() + Instruction::kPcLoadDelta)); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::ResetSpeculationPoisonRegister() { | 
|  | mov(kSpeculationPoisonRegister, Operand(-1)); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::CallForDeoptimization(Builtins::Name target, int, | 
|  | Label* exit, DeoptimizeKind kind, | 
|  | Label*) { | 
|  | BlockConstPoolScope block_const_pool(this); | 
|  | ldr(ip, MemOperand(kRootRegister, | 
|  | IsolateData::builtin_entry_slot_offset(target))); | 
|  | Call(ip); | 
|  | DCHECK_EQ(SizeOfCodeGeneratedSince(exit), | 
|  | (kind == DeoptimizeKind::kLazy) | 
|  | ? Deoptimizer::kLazyDeoptExitSize | 
|  | : Deoptimizer::kNonLazyDeoptExitSize); | 
|  | USE(exit, kind); | 
|  | } | 
|  |  | 
|  | void TurboAssembler::Trap() { stop(); } | 
|  | void TurboAssembler::DebugBreak() { stop(); } | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace v8 | 
|  |  | 
|  | #endif  // V8_TARGET_ARCH_ARM |