| #!/usr/bin/env python | 
 | # | 
 | # Copyright 2015 the V8 project authors. All rights reserved. | 
 | # Use of this source code is governed by a BSD-style license that can be | 
 | # found in the LICENSE file. | 
 |  | 
 | """This script is used to analyze GCTracer's NVP output.""" | 
 |  | 
 |  | 
 | # for py2/py3 compatibility | 
 | from __future__ import print_function | 
 |  | 
 |  | 
 | from argparse import ArgumentParser | 
 | from copy import deepcopy | 
 | from gc_nvp_common import split_nvp | 
 | from math import ceil, log | 
 | from sys import stdin | 
 |  | 
 |  | 
 | class LinearBucket: | 
 |   def __init__(self, granularity): | 
 |     self.granularity = granularity | 
 |  | 
 |   def value_to_bucket(self, value): | 
 |     return int(value / self.granularity) | 
 |  | 
 |   def bucket_to_range(self, bucket): | 
 |     return (bucket * self.granularity, (bucket + 1) * self.granularity) | 
 |  | 
 |  | 
 | class Log2Bucket: | 
 |   def __init__(self, start): | 
 |     self.start = int(log(start, 2)) - 1 | 
 |  | 
 |   def value_to_bucket(self, value): | 
 |     index = int(log(value, 2)) | 
 |     index -= self.start | 
 |     if index < 0: | 
 |       index = 0 | 
 |     return index | 
 |  | 
 |   def bucket_to_range(self, bucket): | 
 |     if bucket == 0: | 
 |       return (0, 2 ** (self.start + 1)) | 
 |     bucket += self.start | 
 |     return (2 ** bucket, 2 ** (bucket + 1)) | 
 |  | 
 |  | 
 | class Histogram: | 
 |   def __init__(self, bucket_trait, fill_empty): | 
 |     self.histogram = {} | 
 |     self.fill_empty = fill_empty | 
 |     self.bucket_trait = bucket_trait | 
 |  | 
 |   def add(self, key): | 
 |     index = self.bucket_trait.value_to_bucket(key) | 
 |     if index not in self.histogram: | 
 |       self.histogram[index] = 0 | 
 |     self.histogram[index] += 1 | 
 |  | 
 |   def __str__(self): | 
 |     ret = [] | 
 |     keys = self.histogram.keys() | 
 |     keys.sort() | 
 |     last = keys[len(keys) - 1] | 
 |     for i in range(0, last + 1): | 
 |       (min_value, max_value) = self.bucket_trait.bucket_to_range(i) | 
 |       if i == keys[0]: | 
 |         keys.pop(0) | 
 |         ret.append("  [{0},{1}[: {2}".format( | 
 |           str(min_value), str(max_value), self.histogram[i])) | 
 |       else: | 
 |         if self.fill_empty: | 
 |           ret.append("  [{0},{1}[: {2}".format( | 
 |             str(min_value), str(max_value), 0)) | 
 |     return "\n".join(ret) | 
 |  | 
 |  | 
 | class Category: | 
 |   def __init__(self, key, histogram, csv, percentiles): | 
 |     self.key = key | 
 |     self.values = [] | 
 |     self.histogram = histogram | 
 |     self.csv = csv | 
 |     self.percentiles = percentiles | 
 |  | 
 |   def process_entry(self, entry): | 
 |     if self.key in entry: | 
 |       self.values.append(float(entry[self.key])) | 
 |       if self.histogram: | 
 |         self.histogram.add(float(entry[self.key])) | 
 |  | 
 |   def min(self): | 
 |     return min(self.values) | 
 |  | 
 |   def max(self): | 
 |     return max(self.values) | 
 |  | 
 |   def avg(self): | 
 |     if len(self.values) == 0: | 
 |       return 0.0 | 
 |     return sum(self.values) / len(self.values) | 
 |  | 
 |   def empty(self): | 
 |     return len(self.values) == 0 | 
 |  | 
 |   def _compute_percentiles(self): | 
 |     ret = [] | 
 |     if len(self.values) == 0: | 
 |       return ret | 
 |     sorted_values = sorted(self.values) | 
 |     for percentile in self.percentiles: | 
 |       index = int(ceil((len(self.values) - 1) * percentile / 100)) | 
 |       ret.append("  {0}%: {1}".format(percentile, sorted_values[index])) | 
 |     return ret | 
 |  | 
 |   def __str__(self): | 
 |     if self.csv: | 
 |       ret = [self.key] | 
 |       ret.append(len(self.values)) | 
 |       ret.append(self.min()) | 
 |       ret.append(self.max()) | 
 |       ret.append(self.avg()) | 
 |       ret = [str(x) for x in ret] | 
 |       return ",".join(ret) | 
 |     else: | 
 |       ret = [self.key] | 
 |       ret.append("  len: {0}".format(len(self.values))) | 
 |       if len(self.values) > 0: | 
 |         ret.append("  min: {0}".format(self.min())) | 
 |         ret.append("  max: {0}".format(self.max())) | 
 |         ret.append("  avg: {0}".format(self.avg())) | 
 |         if self.histogram: | 
 |           ret.append(str(self.histogram)) | 
 |         if self.percentiles: | 
 |           ret.append("\n".join(self._compute_percentiles())) | 
 |       return "\n".join(ret) | 
 |  | 
 |   def __repr__(self): | 
 |     return "<Category: {0}>".format(self.key) | 
 |  | 
 |  | 
 | def make_key_func(cmp_metric): | 
 |   def key_func(a): | 
 |     return getattr(a, cmp_metric)() | 
 |   return key_func | 
 |  | 
 |  | 
 | def main(): | 
 |   parser = ArgumentParser(description="Process GCTracer's NVP output") | 
 |   parser.add_argument('keys', metavar='KEY', type=str, nargs='+', | 
 |                       help='the keys of NVPs to process') | 
 |   parser.add_argument('--histogram-type', metavar='<linear|log2>', | 
 |                       type=str, nargs='?', default="linear", | 
 |                       help='histogram type to use (default: linear)') | 
 |   linear_group = parser.add_argument_group('linear histogram specific') | 
 |   linear_group.add_argument('--linear-histogram-granularity', | 
 |                             metavar='GRANULARITY', type=int, nargs='?', | 
 |                             default=5, | 
 |                             help='histogram granularity (default: 5)') | 
 |   log2_group = parser.add_argument_group('log2 histogram specific') | 
 |   log2_group.add_argument('--log2-histogram-init-bucket', metavar='START', | 
 |                           type=int, nargs='?', default=64, | 
 |                           help='initial buck size (default: 64)') | 
 |   parser.add_argument('--histogram-omit-empty-buckets', | 
 |                       dest='histogram_omit_empty', | 
 |                       action='store_true', | 
 |                       help='omit empty histogram buckets') | 
 |   parser.add_argument('--no-histogram', dest='histogram', | 
 |                       action='store_false', help='do not print histogram') | 
 |   parser.set_defaults(histogram=True) | 
 |   parser.set_defaults(histogram_omit_empty=False) | 
 |   parser.add_argument('--rank', metavar='<no|min|max|avg>', | 
 |                       type=str, nargs='?', | 
 |                       default="no", | 
 |                       help="rank keys by metric (default: no)") | 
 |   parser.add_argument('--csv', dest='csv', | 
 |                       action='store_true', help='provide output as csv') | 
 |   parser.add_argument('--percentiles', dest='percentiles', | 
 |                       type=str, default="", | 
 |                       help='comma separated list of percentiles') | 
 |   args = parser.parse_args() | 
 |  | 
 |   histogram = None | 
 |   if args.histogram: | 
 |     bucket_trait = None | 
 |     if args.histogram_type == "log2": | 
 |       bucket_trait = Log2Bucket(args.log2_histogram_init_bucket) | 
 |     else: | 
 |       bucket_trait = LinearBucket(args.linear_histogram_granularity) | 
 |     histogram = Histogram(bucket_trait, not args.histogram_omit_empty) | 
 |  | 
 |   percentiles = [] | 
 |   for percentile in args.percentiles.split(','): | 
 |     try: | 
 |       percentiles.append(float(percentile)) | 
 |     except ValueError: | 
 |       pass | 
 |  | 
 |   categories = [ Category(key, deepcopy(histogram), args.csv, percentiles) | 
 |                  for key in args.keys ] | 
 |  | 
 |   while True: | 
 |     line = stdin.readline() | 
 |     if not line: | 
 |       break | 
 |     obj = split_nvp(line) | 
 |     for category in categories: | 
 |       category.process_entry(obj) | 
 |  | 
 |   # Filter out empty categories. | 
 |   categories = [x for x in categories if not x.empty()] | 
 |  | 
 |   if args.rank != "no": | 
 |     categories = sorted(categories, key=make_key_func(args.rank), reverse=True) | 
 |  | 
 |   for category in categories: | 
 |     print(category) | 
 |  | 
 |  | 
 | if __name__ == '__main__': | 
 |   main() |