| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "crypto/ghash.h" |
| |
| #include "base/logging.h" |
| #include "base/sys_byteorder.h" |
| |
| namespace crypto { |
| |
| // GaloisHash is a polynomial authenticator that works in GF(2^128). |
| // |
| // Elements of the field are represented in `little-endian' order (which |
| // matches the description in the paper[1]), thus the most significant bit is |
| // the right-most bit. (This is backwards from the way that everybody else does |
| // it.) |
| // |
| // We store field elements in a pair of such `little-endian' uint64s. So the |
| // value one is represented by {low = 2**63, high = 0} and doubling a value |
| // involves a *right* shift. |
| // |
| // [1] http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf |
| |
| namespace { |
| |
| // Get64 reads a 64-bit, big-endian number from |bytes|. |
| uint64 Get64(const uint8 bytes[8]) { |
| uint64 t; |
| memcpy(&t, bytes, sizeof(t)); |
| return base::NetToHost64(t); |
| } |
| |
| // Put64 writes |x| to |bytes| as a 64-bit, big-endian number. |
| void Put64(uint8 bytes[8], uint64 x) { |
| x = base::HostToNet64(x); |
| memcpy(bytes, &x, sizeof(x)); |
| } |
| |
| // Reverse reverses the order of the bits of 4-bit number in |i|. |
| int Reverse(int i) { |
| i = ((i << 2) & 0xc) | ((i >> 2) & 0x3); |
| i = ((i << 1) & 0xa) | ((i >> 1) & 0x5); |
| return i; |
| } |
| |
| } // namespace |
| |
| GaloisHash::GaloisHash(const uint8 key[16]) { |
| Reset(); |
| |
| // We precompute 16 multiples of |key|. However, when we do lookups into this |
| // table we'll be using bits from a field element and therefore the bits will |
| // be in the reverse order. So normally one would expect, say, 4*key to be in |
| // index 4 of the table but due to this bit ordering it will actually be in |
| // index 0010 (base 2) = 2. |
| FieldElement x = {Get64(key), Get64(key+8)}; |
| product_table_[0].low = 0; |
| product_table_[0].hi = 0; |
| product_table_[Reverse(1)] = x; |
| |
| for (int i = 0; i < 16; i += 2) { |
| product_table_[Reverse(i)] = Double(product_table_[Reverse(i/2)]); |
| product_table_[Reverse(i+1)] = Add(product_table_[Reverse(i)], x); |
| } |
| } |
| |
| void GaloisHash::Reset() { |
| state_ = kHashingAdditionalData; |
| additional_bytes_ = 0; |
| ciphertext_bytes_ = 0; |
| buf_used_ = 0; |
| y_.low = 0; |
| y_.hi = 0; |
| } |
| |
| void GaloisHash::UpdateAdditional(const uint8* data, size_t length) { |
| DCHECK_EQ(state_, kHashingAdditionalData); |
| additional_bytes_ += length; |
| Update(data, length); |
| } |
| |
| void GaloisHash::UpdateCiphertext(const uint8* data, size_t length) { |
| if (state_ == kHashingAdditionalData) { |
| // If there's any remaining additional data it's zero padded to the next |
| // full block. |
| if (buf_used_ > 0) { |
| memset(&buf_[buf_used_], 0, sizeof(buf_)-buf_used_); |
| UpdateBlocks(buf_, 1); |
| buf_used_ = 0; |
| } |
| state_ = kHashingCiphertext; |
| } |
| |
| DCHECK_EQ(state_, kHashingCiphertext); |
| ciphertext_bytes_ += length; |
| Update(data, length); |
| } |
| |
| void GaloisHash::Finish(void* output, size_t len) { |
| DCHECK(state_ != kComplete); |
| |
| if (buf_used_ > 0) { |
| // If there's any remaining data (additional data or ciphertext), it's zero |
| // padded to the next full block. |
| memset(&buf_[buf_used_], 0, sizeof(buf_)-buf_used_); |
| UpdateBlocks(buf_, 1); |
| buf_used_ = 0; |
| } |
| |
| state_ = kComplete; |
| |
| // The lengths of the additional data and ciphertext are included as the last |
| // block. The lengths are the number of bits. |
| y_.low ^= additional_bytes_*8; |
| y_.hi ^= ciphertext_bytes_*8; |
| MulAfterPrecomputation(product_table_, &y_); |
| |
| uint8 *result, result_tmp[16]; |
| if (len >= 16) { |
| result = reinterpret_cast<uint8*>(output); |
| } else { |
| result = result_tmp; |
| } |
| |
| Put64(result, y_.low); |
| Put64(result + 8, y_.hi); |
| |
| if (len < 16) |
| memcpy(output, result_tmp, len); |
| } |
| |
| // static |
| GaloisHash::FieldElement GaloisHash::Add( |
| const FieldElement& x, |
| const FieldElement& y) { |
| // Addition in a characteristic 2 field is just XOR. |
| FieldElement z = {x.low^y.low, x.hi^y.hi}; |
| return z; |
| } |
| |
| // static |
| GaloisHash::FieldElement GaloisHash::Double(const FieldElement& x) { |
| const bool msb_set = x.hi & 1; |
| |
| FieldElement xx; |
| // Because of the bit-ordering, doubling is actually a right shift. |
| xx.hi = x.hi >> 1; |
| xx.hi |= x.low << 63; |
| xx.low = x.low >> 1; |
| |
| // If the most-significant bit was set before shifting then it, conceptually, |
| // becomes a term of x^128. This is greater than the irreducible polynomial |
| // so the result has to be reduced. The irreducible polynomial is |
| // 1+x+x^2+x^7+x^128. We can subtract that to eliminate the term at x^128 |
| // which also means subtracting the other four terms. In characteristic 2 |
| // fields, subtraction == addition == XOR. |
| if (msb_set) |
| xx.low ^= 0xe100000000000000ULL; |
| |
| return xx; |
| } |
| |
| void GaloisHash::MulAfterPrecomputation(const FieldElement* table, |
| FieldElement* x) { |
| FieldElement z = {0, 0}; |
| |
| // In order to efficiently multiply, we use the precomputed table of i*key, |
| // for i in 0..15, to handle four bits at a time. We could obviously use |
| // larger tables for greater speedups but the next convenient table size is |
| // 4K, which is a little large. |
| // |
| // In other fields one would use bit positions spread out across the field in |
| // order to reduce the number of doublings required. However, in |
| // characteristic 2 fields, repeated doublings are exceptionally cheap and |
| // it's not worth spending more precomputation time to eliminate them. |
| for (unsigned i = 0; i < 2; i++) { |
| uint64 word; |
| if (i == 0) { |
| word = x->hi; |
| } else { |
| word = x->low; |
| } |
| |
| for (unsigned j = 0; j < 64; j += 4) { |
| Mul16(&z); |
| // the values in |table| are ordered for little-endian bit positions. See |
| // the comment in the constructor. |
| const FieldElement& t = table[word & 0xf]; |
| z.low ^= t.low; |
| z.hi ^= t.hi; |
| word >>= 4; |
| } |
| } |
| |
| *x = z; |
| } |
| |
| // kReductionTable allows for rapid multiplications by 16. A multiplication by |
| // 16 is a right shift by four bits, which results in four bits at 2**128. |
| // These terms have to be eliminated by dividing by the irreducible polynomial. |
| // In GHASH, the polynomial is such that all the terms occur in the |
| // least-significant 8 bits, save for the term at x^128. Therefore we can |
| // precompute the value to be added to the field element for each of the 16 bit |
| // patterns at 2**128 and the values fit within 12 bits. |
| static const uint16 kReductionTable[16] = { |
| 0x0000, 0x1c20, 0x3840, 0x2460, 0x7080, 0x6ca0, 0x48c0, 0x54e0, |
| 0xe100, 0xfd20, 0xd940, 0xc560, 0x9180, 0x8da0, 0xa9c0, 0xb5e0, |
| }; |
| |
| // static |
| void GaloisHash::Mul16(FieldElement* x) { |
| const unsigned msw = x->hi & 0xf; |
| x->hi >>= 4; |
| x->hi |= x->low << 60; |
| x->low >>= 4; |
| x->low ^= static_cast<uint64>(kReductionTable[msw]) << 48; |
| } |
| |
| void GaloisHash::UpdateBlocks(const uint8* bytes, size_t num_blocks) { |
| for (size_t i = 0; i < num_blocks; i++) { |
| y_.low ^= Get64(bytes); |
| bytes += 8; |
| y_.hi ^= Get64(bytes); |
| bytes += 8; |
| MulAfterPrecomputation(product_table_, &y_); |
| } |
| } |
| |
| void GaloisHash::Update(const uint8* data, size_t length) { |
| if (buf_used_ > 0) { |
| const size_t n = std::min(length, buf_used_); |
| memcpy(&buf_[buf_used_], data, n); |
| buf_used_ += n; |
| length -= n; |
| data += n; |
| |
| if (buf_used_ == sizeof(buf_)) { |
| UpdateBlocks(buf_, 1); |
| buf_used_ = 0; |
| } |
| } |
| |
| if (length >= 16) { |
| const size_t n = length / 16; |
| UpdateBlocks(data, n); |
| length -= n*16; |
| data += n*16; |
| } |
| |
| if (length > 0) { |
| memcpy(buf_, data, length); |
| buf_used_ = length; |
| } |
| } |
| |
| } // namespace crypto |