| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "net/quic/congestion_control/cubic.h" |
| |
| #include "base/basictypes.h" |
| #include "base/logging.h" |
| #include "base/time.h" |
| |
| namespace net { |
| |
| // Constants based on TCP defaults. |
| // The following constants are in 2^10 fractions of a second instead of ms to |
| // allow a 10 shift right to divide. |
| const int kCubeScale = 40; // 1024*1024^3 (first 1024 is from 0.100^3) |
| // where 0.100 is 100 ms which is the scaling |
| // round trip time. |
| const int kCubeCongestionWindowScale = 410; |
| const uint64 kCubeFactor = (1ull << kCubeScale) / kCubeCongestionWindowScale; |
| const uint32 kBeta = 717; // Back off factor after loss. |
| const uint32 kBetaLastMax = 871; // Additional back off factor after loss for |
| // the stored max value. |
| |
| namespace { |
| // Find last bit in a 64-bit word. |
| int FindMostSignificantBit(uint64 x) { |
| if (!x) { |
| return 0; |
| } |
| int r = 0; |
| if (x & 0xffffffff00000000ull) { |
| x >>= 32; |
| r += 32; |
| } |
| if (x & 0xffff0000u) { |
| x >>= 16; |
| r += 16; |
| } |
| if (x & 0xff00u) { |
| x >>= 8; |
| r += 8; |
| } |
| if (x & 0xf0u) { |
| x >>= 4; |
| r += 4; |
| } |
| if (x & 0xcu) { |
| x >>= 2; |
| r += 2; |
| } |
| if (x & 0x02u) { |
| x >>= 1; |
| r++; |
| } |
| if (x & 0x01u) { |
| r++; |
| } |
| return r; |
| } |
| |
| // 6 bits table [0..63] |
| const uint32 cube_root_table[] = { |
| 0, 54, 54, 54, 118, 118, 118, 118, 123, 129, 134, 138, 143, 147, 151, |
| 156, 157, 161, 164, 168, 170, 173, 176, 179, 181, 185, 187, 190, 192, 194, |
| 197, 199, 200, 202, 204, 206, 209, 211, 213, 215, 217, 219, 221, 222, 224, |
| 225, 227, 229, 231, 232, 234, 236, 237, 239, 240, 242, 244, 245, 246, 248, |
| 250, 251, 252, 254 |
| }; |
| } // namespace |
| |
| Cubic::Cubic(const QuicClock* clock) |
| : clock_(clock) { |
| Reset(); |
| } |
| |
| // Calculate the cube root using a table lookup followed by one Newton-Raphson |
| // iteration. |
| uint32 Cubic::CubeRoot(uint64 a) { |
| uint32 msb = FindMostSignificantBit(a); |
| DCHECK_LE(msb, 64u); |
| |
| if (msb < 7) { |
| // MSB in our table. |
| return ((cube_root_table[static_cast<uint32>(a)]) + 31) >> 6; |
| } |
| // MSB 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, ... |
| // cubic_shift 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, ... |
| uint32 cubic_shift = (msb - 4); |
| cubic_shift = ((cubic_shift * 342) >> 10); // Div by 3, biased high. |
| |
| // 4 to 6 bits accuracy depending on MSB. |
| uint32 down_shifted_to_6bit = (a >> (cubic_shift * 3)); |
| uint64 root = ((cube_root_table[down_shifted_to_6bit] + 10) << cubic_shift) |
| >> 6; |
| |
| // Make one Newton-Raphson iteration. |
| // Since x has an error (inaccuracy due to the use of fix point) we get a |
| // more accurate result by doing x * (x - 1) instead of x * x. |
| root = 2 * root + (a / (root * (root - 1))); |
| root = ((root * 341) >> 10); // Div by 3, biased low. |
| return static_cast<uint32>(root); |
| } |
| |
| void Cubic::Reset() { |
| epoch_ = QuicTime(); // Reset time. |
| last_update_time_ = QuicTime(); // Reset time. |
| last_congestion_window_ = 0; |
| last_max_congestion_window_ = 0; |
| acked_packets_count_ = 0; |
| estimated_tcp_congestion_window_ = 0; |
| origin_point_congestion_window_ = 0; |
| time_to_origin_point_ = 0; |
| last_target_congestion_window_ = 0; |
| } |
| |
| QuicTcpCongestionWindow Cubic::CongestionWindowAfterPacketLoss( |
| QuicTcpCongestionWindow current_congestion_window) { |
| if (current_congestion_window < last_max_congestion_window_) { |
| // We never reached the old max, so assume we are competing with another |
| // flow. Use our extra back off factor to allow the other flow to go up. |
| last_max_congestion_window_ = |
| (kBetaLastMax * current_congestion_window) >> 10; |
| } else { |
| last_max_congestion_window_ = current_congestion_window; |
| } |
| epoch_ = QuicTime(); // Reset time. |
| return (current_congestion_window * kBeta) >> 10; |
| } |
| |
| QuicTcpCongestionWindow Cubic::CongestionWindowAfterAck( |
| QuicTcpCongestionWindow current_congestion_window, |
| QuicTime::Delta delay_min) { |
| acked_packets_count_ += 1; // Packets acked. |
| QuicTime current_time = clock_->Now(); |
| |
| // Cubic is "independent" of RTT, the update is limited by the time elapsed. |
| if (last_congestion_window_ == current_congestion_window && |
| (current_time.Subtract(last_update_time_) <= MaxCubicTimeInterval())) { |
| DCHECK(epoch_.IsInitialized()); |
| return std::max(last_target_congestion_window_, |
| estimated_tcp_congestion_window_); |
| } |
| last_congestion_window_ = current_congestion_window; |
| last_update_time_ = current_time; |
| |
| if (!epoch_.IsInitialized()) { |
| // First ACK after a loss event. |
| DLOG(INFO) << "Start of epoch"; |
| epoch_ = current_time; // Start of epoch. |
| acked_packets_count_ = 1; // Reset count. |
| // Reset estimated_tcp_congestion_window_ to be in sync with cubic. |
| estimated_tcp_congestion_window_ = current_congestion_window; |
| if (last_max_congestion_window_ <= current_congestion_window) { |
| time_to_origin_point_ = 0; |
| origin_point_congestion_window_ = current_congestion_window; |
| } else { |
| time_to_origin_point_ = CubeRoot(kCubeFactor * |
| (last_max_congestion_window_ - current_congestion_window)); |
| origin_point_congestion_window_ = |
| last_max_congestion_window_; |
| } |
| } |
| // Change the time unit from microseconds to 2^10 fractions per second. Take |
| // the round trip time in account. This is done to allow us to use shift as a |
| // divide operator. |
| int64 elapsed_time = |
| (current_time.Add(delay_min).Subtract(epoch_).ToMicroseconds() << 10) / |
| base::Time::kMicrosecondsPerSecond; |
| |
| int64 offset = time_to_origin_point_ - elapsed_time; |
| QuicTcpCongestionWindow delta_congestion_window = (kCubeCongestionWindowScale |
| * offset * offset * offset) >> kCubeScale; |
| |
| QuicTcpCongestionWindow target_congestion_window = |
| origin_point_congestion_window_ - delta_congestion_window; |
| |
| // We have a new cubic congestion window. |
| last_target_congestion_window_ = target_congestion_window; |
| |
| // Update estimated TCP congestion_window. |
| // Note: we do a normal Reno congestion avoidance calculation not the |
| // calculation described in section 3.3 TCP-friendly region of the document. |
| while (acked_packets_count_ >= estimated_tcp_congestion_window_) { |
| acked_packets_count_ -= estimated_tcp_congestion_window_; |
| estimated_tcp_congestion_window_++; |
| } |
| // Compute target congestion_window based on cubic target and estimated TCP |
| // congestion_window, use highest (fastest). |
| if (target_congestion_window < estimated_tcp_congestion_window_) { |
| target_congestion_window = estimated_tcp_congestion_window_; |
| } |
| DLOG(INFO) << "Target congestion_window:" << target_congestion_window; |
| return target_congestion_window; |
| } |
| |
| } // namespace net |