blob: 7b21bae8a988fb0069b730e6337695ca9ec9a7fc [file] [log] [blame]
# Copyright (c) 2012 Google Inc. All rights reserved.
# Use of this source code is governed by a BSD-style license that can be
# found in the LICENSE file.
import filecmp
import gyp.common
import gyp.xcodeproj_file
import errno
import os
import sys
import posixpath
import re
import shutil
import subprocess
import tempfile
# Project files generated by this module will use _intermediate_var as a
# custom Xcode setting whose value is a DerivedSources-like directory that's
# project-specific and configuration-specific. The normal choice,
# DERIVED_FILE_DIR, is target-specific, which is thought to be too restrictive
# as it is likely that multiple targets within a single project file will want
# to access the same set of generated files. The other option,
# PROJECT_DERIVED_FILE_DIR, is unsuitable because while it is project-specific,
# it is not configuration-specific. INTERMEDIATE_DIR is defined as
_intermediate_var = 'INTERMEDIATE_DIR'
# SHARED_INTERMEDIATE_DIR is the same, except that it is shared among all
# targets that share the same BUILT_PRODUCTS_DIR.
_shared_intermediate_var = 'SHARED_INTERMEDIATE_DIR'
_library_search_paths_var = 'LIBRARY_SEARCH_PATHS'
generator_default_variables = {
'SHARED_LIB_SUFFIX': '.dylib',
# INTERMEDIATE_DIR is a place for targets to build up intermediate products.
# It is specific to each build environment. It is only guaranteed to exist
# and be constant within the context of a project, corresponding to a single
# input file. Some build environments may allow their intermediate directory
# to be shared on a wider scale, but this is not guaranteed.
'INTERMEDIATE_DIR': '$(%s)' % _intermediate_var,
'OS': 'mac',
'SHARED_INTERMEDIATE_DIR': '$(%s)' % _shared_intermediate_var,
# The Xcode-specific sections that hold paths.
generator_additional_path_sections = [
# 'mac_framework_dirs', input already handles _dirs endings.
# The Xcode-specific keys that exist on targets and aren't moved down to
# configurations.
generator_additional_non_configuration_keys = [
# We want to let any rules apply to files that are resources also.
generator_extra_sources_for_rules = [
# Xcode's standard set of library directories, which don't need to be duplicated
# in LIBRARY_SEARCH_PATHS. This list is not exhaustive, but that's okay.
xcode_standard_library_dirs = frozenset([
def CreateXCConfigurationList(configuration_names):
xccl = gyp.xcodeproj_file.XCConfigurationList({'buildConfigurations': []})
if len(configuration_names) == 0:
configuration_names = ['Default']
for configuration_name in configuration_names:
xcbc = gyp.xcodeproj_file.XCBuildConfiguration({
'name': configuration_name})
xccl.AppendProperty('buildConfigurations', xcbc)
xccl.SetProperty('defaultConfigurationName', configuration_names[0])
return xccl
class XcodeProject(object):
def __init__(self, gyp_path, path, build_file_dict):
self.gyp_path = gyp_path
self.path = path
self.project = gyp.xcodeproj_file.PBXProject(path=path)
projectDirPath = gyp.common.RelativePath(
os.path.dirname(path) or '.')
self.project.SetProperty('projectDirPath', projectDirPath)
self.project_file = \
gyp.xcodeproj_file.XCProjectFile({'rootObject': self.project})
self.build_file_dict = build_file_dict
# TODO(mark): add destructor that cleans up self.path if created_dir is
# True and things didn't complete successfully. Or do something even
# better with "try"?
self.created_dir = False
self.created_dir = True
except OSError, e:
if e.errno != errno.EEXIST:
def Finalize1(self, xcode_targets, serialize_all_tests):
# Collect a list of all of the build configuration names used by the
# various targets in the file. It is very heavily advised to keep each
# target in an entire project (even across multiple project files) using
# the same set of configuration names.
configurations = []
for xct in self.project.GetProperty('targets'):
xccl = xct.GetProperty('buildConfigurationList')
xcbcs = xccl.GetProperty('buildConfigurations')
for xcbc in xcbcs:
name = xcbc.GetProperty('name')
if name not in configurations:
# Replace the XCConfigurationList attached to the PBXProject object with
# a new one specifying all of the configuration names used by the various
# targets.
xccl = CreateXCConfigurationList(configurations)
self.project.SetProperty('buildConfigurationList', xccl)
sys.stderr.write("Problem with gyp file %s\n" % self.gyp_path)
# The need for this setting is explained above where _intermediate_var is
# defined. The comments below about wanting to avoid project-wide build
# settings apply here too, but this needs to be set on a project-wide basis
# so that files relative to the _intermediate_var setting can be displayed
# properly in the Xcode UI.
# Note that for configuration-relative files such as anything relative to
# _intermediate_var, for the purposes of UI tree view display, Xcode will
# only resolve the configuration name once, when the project file is
# opened. If the active build configuration is changed, the project file
# must be closed and reopened if it is desired for the tree view to update.
# This is filed as Apple radar 6588391.
# Set user-specified project-wide build settings and config files. This
# is intended to be used very sparingly. Really, almost everything should
# go into target-specific build settings sections. The project-wide
# settings are only intended to be used in cases where Xcode attempts to
# resolve variable references in a project context as opposed to a target
# context, such as when resolving sourceTree references while building up
# the tree tree view for UI display.
# Any values set globally are applied to all configurations, then any
# per-configuration values are applied.
for xck, xcv in self.build_file_dict.get('xcode_settings', {}).iteritems():
xccl.SetBuildSetting(xck, xcv)
if 'xcode_config_file' in self.build_file_dict:
config_ref = self.project.AddOrGetFileInRootGroup(
build_file_configurations = self.build_file_dict.get('configurations', {})
if build_file_configurations:
for config_name in configurations:
build_file_configuration_named = \
build_file_configurations.get(config_name, {})
if build_file_configuration_named:
xcc = xccl.ConfigurationNamed(config_name)
for xck, xcv in build_file_configuration_named.get('xcode_settings',
xcc.SetBuildSetting(xck, xcv)
if 'xcode_config_file' in build_file_configuration_named:
config_ref = self.project.AddOrGetFileInRootGroup(
# Sort the targets based on how they appeared in the input.
# TODO(mark): Like a lot of other things here, this assumes internal
# knowledge of PBXProject - in this case, of its "targets" property.
# ordinary_targets are ordinary targets that are already in the project
# file. run_test_targets are the targets that run unittests and should be
# used for the Run All Tests target. support_targets are the action/rule
# targets used by GYP file targets, just kept for the assert check.
ordinary_targets = []
run_test_targets = []
support_targets = []
# targets is full list of targets in the project.
targets = []
# does the it define it's own "all"?
has_custom_all = False
# targets_for_all is the list of ordinary_targets that should be listed
# in this project's "All" target. It includes each non_runtest_target
# that does not have suppress_wildcard set.
targets_for_all = []
for target in self.build_file_dict['targets']:
target_name = target['target_name']
toolset = target['toolset']
qualified_target = gyp.common.QualifiedTarget(self.gyp_path, target_name,
xcode_target = xcode_targets[qualified_target]
# Make sure that the target being added to the sorted list is already in
# the unsorted list.
assert xcode_target in self.project._properties['targets']
if xcode_target.support_target:
if not int(target.get('suppress_wildcard', False)):
if target_name.lower() == 'all':
has_custom_all = True;
# If this target has a 'run_as' attribute, add its target to the
# targets, and add it to the test targets.
if target.get('run_as'):
# Make a target to run something. It should have one
# dependency, the parent xcode target.
xccl = CreateXCConfigurationList(configurations)
run_target = gyp.xcodeproj_file.PBXAggregateTarget({
'name': 'Run ' + target_name,
'productName': xcode_target.GetProperty('productName'),
'buildConfigurationList': xccl,
command = target['run_as']
script = ''
if command.get('working_directory'):
script = script + 'cd "%s"\n' % \
if command.get('environment'):
script = script + "\n".join(
['export %s="%s"' %
(key, gyp.xcodeproj_file.ConvertVariablesToShellSyntax(val))
for (key, val) in command.get('environment').iteritems()]) + "\n"
# Some test end up using sockets, files on disk, etc. and can get
# confused if more then one test runs at a time. The generator
# flag 'xcode_serialize_all_test_runs' controls the forcing of all
# tests serially. It defaults to True. To get serial runs this
# little bit of python does the same as the linux flock utility to
# make sure only one runs at a time.
command_prefix = ''
if serialize_all_tests:
command_prefix = \
"""python -c "import fcntl, subprocess, sys
file = open('$TMPDIR/GYP_serialize_test_runs', 'a')
fcntl.flock(file.fileno(), fcntl.LOCK_EX)
sys.exit([1:]))" """
# If we were unable to exec for some reason, we want to exit
# with an error, and fixup variable references to be shell
# syntax instead of xcode syntax.
script = script + 'exec ' + command_prefix + '%s\nexit 1\n' % \
ssbp = gyp.xcodeproj_file.PBXShellScriptBuildPhase({
'shellScript': script,
'showEnvVarsInLog': 0,
run_target.AppendProperty('buildPhases', ssbp)
# Add the run target to the project file.
xcode_target.test_runner = run_target
# Make sure that the list of targets being replaced is the same length as
# the one replacing it, but allow for the added test runner targets.
assert len(self.project._properties['targets']) == \
len(ordinary_targets) + len(support_targets)
self.project._properties['targets'] = targets
# Get rid of unnecessary levels of depth in groups like the Source group.
# Sort the groups nicely. Do this after sorting the targets, because the
# Products group is sorted based on the order of the targets.
# Create an "All" target if there's more than one target in this project
# file and the project didn't define its own "All" target. Put a generated
# "All" target first so that people opening up the project for the first
# time will build everything by default.
if len(targets_for_all) > 1 and not has_custom_all:
xccl = CreateXCConfigurationList(configurations)
all_target = gyp.xcodeproj_file.PBXAggregateTarget(
'buildConfigurationList': xccl,
'name': 'All',
for target in targets_for_all:
# TODO(mark): This is evil because it relies on internal knowledge of
# PBXProject._properties. It's important to get the "All" target first,
# though.
self.project._properties['targets'].insert(0, all_target)
# The same, but for run_test_targets.
if len(run_test_targets) > 1:
xccl = CreateXCConfigurationList(configurations)
run_all_tests_target = gyp.xcodeproj_file.PBXAggregateTarget(
'buildConfigurationList': xccl,
'name': 'Run All Tests',
for run_test_target in run_test_targets:
# Insert after the "All" target, which must exist if there is more than
# one run_test_target.
self.project._properties['targets'].insert(1, run_all_tests_target)
def Finalize2(self, xcode_targets, xcode_target_to_target_dict):
# Finalize2 needs to happen in a separate step because the process of
# updating references to other projects depends on the ordering of targets
# within remote project files. Finalize1 is responsible for sorting duty,
# and once all project files are sorted, Finalize2 can come in and update
# these references.
# To support making a "test runner" target that will run all the tests
# that are direct dependents of any given target, we look for
# xcode_create_dependents_test_runner being set on an Aggregate target,
# and generate a second target that will run the tests runners found under
# the marked target.
for bf_tgt in self.build_file_dict['targets']:
if int(bf_tgt.get('xcode_create_dependents_test_runner', 0)):
tgt_name = bf_tgt['target_name']
toolset = bf_tgt['toolset']
qualified_target = gyp.common.QualifiedTarget(self.gyp_path,
tgt_name, toolset)
xcode_target = xcode_targets[qualified_target]
if isinstance(xcode_target, gyp.xcodeproj_file.PBXAggregateTarget):
# Collect all the run test targets.
all_run_tests = []
pbxtds = xcode_target.GetProperty('dependencies')
for pbxtd in pbxtds:
pbxcip = pbxtd.GetProperty('targetProxy')
dependency_xct = pbxcip.GetProperty('remoteGlobalIDString')
if hasattr(dependency_xct, 'test_runner'):
# Directly depend on all the runners as they depend on the target
# that builds them.
if len(all_run_tests) > 0:
run_all_target = gyp.xcodeproj_file.PBXAggregateTarget({
'name': 'Run %s Tests' % tgt_name,
'productName': tgt_name,
for run_test_target in all_run_tests:
# Insert the test runner after the related target.
idx = self.project._properties['targets'].index(xcode_target)
self.project._properties['targets'].insert(idx + 1, run_all_target)
# Update all references to other projects, to make sure that the lists of
# remote products are complete. Otherwise, Xcode will fill them in when
# it opens the project file, which will result in unnecessary diffs.
# TODO(mark): This is evil because it relies on internal knowledge of
# PBXProject._other_pbxprojects.
for other_pbxproject in self.project._other_pbxprojects.keys():
# Give everything an ID.
# Make sure that no two objects in the project file have the same ID. If
# multiple objects wind up with the same ID, upon loading the file, Xcode
# will only recognize one object (the last one in the file?) and the
# results are unpredictable.
def Write(self):
# Write the project file to a temporary location first. Xcode watches for
# changes to the project file and presents a UI sheet offering to reload
# the project when it does change. However, in some cases, especially when
# multiple projects are open or when Xcode is busy, things don't work so
# seamlessly. Sometimes, Xcode is able to detect that a project file has
# changed but can't unload it because something else is referencing it.
# To mitigate this problem, and to avoid even having Xcode present the UI
# sheet when an open project is rewritten for inconsequential changes, the
# project file is written to a temporary file in the xcodeproj directory
# first. The new temporary file is then compared to the existing project
# file, if any. If they differ, the new file replaces the old; otherwise,
# the new project file is simply deleted. Xcode properly detects a file
# being renamed over an open project file as a change and so it remains
# able to present the "project file changed" sheet under this system.
# Writing to a temporary file first also avoids the possible problem of
# Xcode rereading an incomplete project file.
(output_fd, new_pbxproj_path) = \
tempfile.mkstemp(suffix='.tmp', prefix='project.pbxproj.gyp.',
output_file = os.fdopen(output_fd, 'wb')
pbxproj_path = os.path.join(self.path, 'project.pbxproj')
same = False
same = filecmp.cmp(pbxproj_path, new_pbxproj_path, False)
except OSError, e:
if e.errno != errno.ENOENT:
if same:
# The new file is identical to the old one, just get rid of the new
# one.
# The new file is different from the old one, or there is no old one.
# Rename the new file to the permanent name.
# tempfile.mkstemp uses an overly restrictive mode, resulting in a
# file that can only be read by the owner, regardless of the umask.
# There's no reason to not respect the umask here, which means that
# an extra hoop is required to fetch it and reset the new file's mode.
# No way to get the umask without setting a new one? Set a safe one
# and then set it back to the old value.
umask = os.umask(077)
os.chmod(new_pbxproj_path, 0666 & ~umask)
os.rename(new_pbxproj_path, pbxproj_path)
except Exception:
# Don't leave turds behind. In fact, if this code was responsible for
# creating the xcodeproj directory, get rid of that too.
if self.created_dir:
shutil.rmtree(self.path, True)
cached_xcode_version = None
def InstalledXcodeVersion():
"""Fetches the installed version of Xcode, returns empty string if it is
unable to figure it out."""
global cached_xcode_version
if not cached_xcode_version is None:
return cached_xcode_version
# Default to an empty string
cached_xcode_version = ''
# Collect the xcodebuild's version information.
import subprocess
cmd = ['/usr/bin/xcodebuild', '-version']
proc = subprocess.Popen(cmd, stdout=subprocess.PIPE)
xcodebuild_version_info = proc.communicate()[0]
# Any error, return empty string
if proc.returncode:
xcodebuild_version_info = ''
except OSError:
# We failed to launch the tool
xcodebuild_version_info = ''
# Pull out the Xcode version itself.
match_line ='^Xcode (.*)$', xcodebuild_version_info, re.MULTILINE)
if match_line:
cached_xcode_version =
# Done!
return cached_xcode_version
def AddSourceToTarget(source, type, pbxp, xct):
# TODO(mark): Perhaps source_extensions and library_extensions can be made a
# little bit fancier.
source_extensions = ['c', 'cc', 'cpp', 'cxx', 'm', 'mm', 's']
# .o is conceptually more of a "source" than a "library," but Xcode thinks
# of "sources" as things to compile and "libraries" (or "frameworks") as
# things to link with. Adding an object file to an Xcode target's frameworks
# phase works properly.
library_extensions = ['a', 'dylib', 'framework', 'o']
basename = posixpath.basename(source)
(root, ext) = posixpath.splitext(basename)
if ext:
ext = ext[1:].lower()
if ext in source_extensions and type != 'none':
elif ext in library_extensions and type != 'none':
# Files that aren't added to a sources or frameworks build phase can still
# go into the project file, just not as part of a build phase.
def AddResourceToTarget(resource, pbxp, xct):
# TODO(mark): Combine with AddSourceToTarget above? Or just inline this call
# where it's used.
def AddHeaderToTarget(header, pbxp, xct, is_public):
# TODO(mark): Combine with AddSourceToTarget above? Or just inline this call
# where it's used.
settings = '{ATTRIBUTES = (%s, ); }' % ('Private', 'Public')[is_public]
xct.HeadersPhase().AddFile(header, settings)
_xcode_variable_re = re.compile('(\$\((.*?)\))')
def ExpandXcodeVariables(string, expansions):
"""Expands Xcode-style $(VARIABLES) in string per the expansions dict.
In some rare cases, it is appropriate to expand Xcode variables when a
project file is generated. For any substring $(VAR) in string, if VAR is a
key in the expansions dict, $(VAR) will be replaced with expansions[VAR].
Any $(VAR) substring in string for which VAR is not a key in the expansions
dict will remain in the returned string.
matches = _xcode_variable_re.findall(string)
if matches == None:
return string
for match in matches:
(to_replace, variable) = match
if not variable in expansions:
replacement = expansions[variable]
string = re.sub(re.escape(to_replace), replacement, string)
return string
def EscapeXCodeArgument(s):
"""We must escape the arguments that we give to XCode so that it knows not to
split on spaces and to respect backslash and quote literals."""
s = s.replace('\\', '\\\\')
s = s.replace('"', '\\"')
return '"' + s + '"'
def PerformBuild(data, configurations, params):
options = params['options']
for build_file, build_file_dict in data.iteritems():
(build_file_root, build_file_ext) = os.path.splitext(build_file)
if build_file_ext != '.gyp':
xcodeproj_path = build_file_root + options.suffix + '.xcodeproj'
if options.generator_output:
xcodeproj_path = os.path.join(options.generator_output, xcodeproj_path)
for config in configurations:
arguments = ['xcodebuild', '-project', xcodeproj_path]
arguments += ['-configuration', config]
print "Building [%s]: %s" % (config, arguments)
def GenerateOutput(target_list, target_dicts, data, params):
options = params['options']
generator_flags = params.get('generator_flags', {})
parallel_builds = generator_flags.get('xcode_parallel_builds', True)
serialize_all_tests = \
generator_flags.get('xcode_serialize_all_test_runs', True)
project_version = generator_flags.get('xcode_project_version', None)
skip_excluded_files = \
not generator_flags.get('xcode_list_excluded_files', True)
xcode_projects = {}
for build_file, build_file_dict in data.iteritems():
(build_file_root, build_file_ext) = os.path.splitext(build_file)
if build_file_ext != '.gyp':
xcodeproj_path = build_file_root + options.suffix + '.xcodeproj'
if options.generator_output:
xcodeproj_path = os.path.join(options.generator_output, xcodeproj_path)
xcp = XcodeProject(build_file, xcodeproj_path, build_file_dict)
xcode_projects[build_file] = xcp
pbxp = xcp.project
if parallel_builds:
{'BuildIndependentTargetsInParallel': 'YES'})
if project_version:
# Add gyp/gypi files to project
if not generator_flags.get('standalone'):
main_group = pbxp.GetProperty('mainGroup')
build_group = gyp.xcodeproj_file.PBXGroup({'name': 'Build'})
for included_file in build_file_dict['included_files']:
build_group.AddOrGetFileByPath(included_file, False)
xcode_targets = {}
xcode_target_to_target_dict = {}
for qualified_target in target_list:
[build_file, target_name, toolset] = \
spec = target_dicts[qualified_target]
if spec['toolset'] != 'target':
raise Exception(
'Multiple toolsets not supported in xcode build (target %s)' %
configuration_names = [spec['default_configuration']]
for configuration_name in sorted(spec['configurations'].keys()):
if configuration_name not in configuration_names:
xcp = xcode_projects[build_file]
pbxp = xcp.project
# Set up the configurations for the target according to the list of names
# supplied.
xccl = CreateXCConfigurationList(configuration_names)
# Create an XCTarget subclass object for the target. The type with
# "+bundle" appended will be used if the target has "mac_bundle" set.
# loadable_modules not in a mac_bundle are mapped to
# com.googlecode.gyp.xcode.bundle, a pseudo-type that interprets
# to create a single-file mh_bundle.
_types = {
'executable': '',
'loadable_module': 'com.googlecode.gyp.xcode.bundle',
'shared_library': '',
'static_library': '',
'executable+bundle': '',
'loadable_module+bundle': '',
'shared_library+bundle': '',
target_properties = {
'buildConfigurationList': xccl,
'name': target_name,
type = spec['type']
is_bundle = int(spec.get('mac_bundle', 0))
if type != 'none':
type_bundle_key = type
if is_bundle:
type_bundle_key += '+bundle'
xctarget_type = gyp.xcodeproj_file.PBXNativeTarget
target_properties['productType'] = _types[type_bundle_key]
except KeyError, e:
gyp.common.ExceptionAppend(e, "-- unknown product type while "
"writing target %s" % target_name)
xctarget_type = gyp.xcodeproj_file.PBXAggregateTarget
assert not is_bundle, (
'mac_bundle targets cannot have type none (target "%s")' %
target_product_name = spec.get('product_name')
if target_product_name is not None:
target_properties['productName'] = target_product_name
xct = xctarget_type(target_properties, parent=pbxp,
pbxp.AppendProperty('targets', xct)
xcode_targets[qualified_target] = xct
xcode_target_to_target_dict[xct] = spec
spec_actions = spec.get('actions', [])
spec_rules = spec.get('rules', [])
# Xcode has some "issues" with checking dependencies for the "Compile
# sources" step with any source files/headers generated by actions/rules.
# To work around this, if a target is building anything directly (not
# type "none"), then a second target is used to run the GYP actions/rules
# and is made a dependency of this target. This way the work is done
# before the dependency checks for what should be recompiled.
support_xct = None
if type != 'none' and (spec_actions or spec_rules):
support_xccl = CreateXCConfigurationList(configuration_names);
support_target_properties = {
'buildConfigurationList': support_xccl,
'name': target_name + ' Support',
if target_product_name:
support_target_properties['productName'] = \
target_product_name + ' Support'
support_xct = \
pbxp.AppendProperty('targets', support_xct)
# Hang the support target off the main target so it can be tested/found
# by the generator during Finalize.
xct.support_target = support_xct
prebuild_index = 0
# Add custom shell script phases for "actions" sections.
for action in spec_actions:
# There's no need to write anything into the script to ensure that the
# output directories already exist, because Xcode will look at the
# declared outputs and automatically ensure that they exist for us.
# Do we have a message to print when this action runs?
message = action.get('message')
if message:
message = 'echo note: ' + gyp.common.EncodePOSIXShellArgument(message)
message = ''
# Turn the list into a string that can be passed to a shell.
action_string = gyp.common.EncodePOSIXShellList(action['action'])
# Convert Xcode-type variable references to sh-compatible environment
# variable references.
message_sh = gyp.xcodeproj_file.ConvertVariablesToShellSyntax(message)
action_string_sh = gyp.xcodeproj_file.ConvertVariablesToShellSyntax(
script = ''
# Include the optional message
if message_sh:
script += message_sh + '\n'
# Be sure the script runs in exec, and that if exec fails, the script
# exits signalling an error.
script += 'exec ' + action_string_sh + '\nexit 1\n'
ssbp = gyp.xcodeproj_file.PBXShellScriptBuildPhase({
'inputPaths': action['inputs'],
'name': 'Action "' + action['action_name'] + '"',
'outputPaths': action['outputs'],
'shellScript': script,
'showEnvVarsInLog': 0,
if support_xct:
support_xct.AppendProperty('buildPhases', ssbp)
# TODO(mark): this assumes too much knowledge of the internals of
# xcodeproj_file; some of these smarts should move into xcodeproj_file
# itself.
xct._properties['buildPhases'].insert(prebuild_index, ssbp)
prebuild_index = prebuild_index + 1
# TODO(mark): Should verify that at most one of these is specified.
if int(action.get('process_outputs_as_sources', False)):
for output in action['outputs']:
AddSourceToTarget(output, type, pbxp, xct)
if int(action.get('process_outputs_as_mac_bundle_resources', False)):
for output in action['outputs']:
AddResourceToTarget(output, pbxp, xct)
# tgt_mac_bundle_resources holds the list of bundle resources so
# the rule processing can check against it.
if is_bundle:
tgt_mac_bundle_resources = spec.get('mac_bundle_resources', [])
tgt_mac_bundle_resources = []
# Add custom shell script phases driving "make" for "rules" sections.
# Xcode's built-in rule support is almost powerful enough to use directly,
# but there are a few significant deficiencies that render them unusable.
# There are workarounds for some of its inadequacies, but in aggregate,
# the workarounds added complexity to the generator, and some workarounds
# actually require input files to be crafted more carefully than I'd like.
# Consequently, until Xcode rules are made more capable, "rules" input
# sections will be handled in Xcode output by shell script build phases
# performed prior to the compilation phase.
# The following problems with Xcode rules were found. The numbers are
# Apple radar IDs. I hope that these shortcomings are addressed, I really
# liked having the rules handled directly in Xcode during the period that
# I was prototyping this.
# 6588600 Xcode compiles custom script rule outputs too soon, compilation
# fails. This occurs when rule outputs from distinct inputs are
# interdependent. The only workaround is to put rules and their
# inputs in a separate target from the one that compiles the rule
# outputs. This requires input file cooperation and it means that
# process_outputs_as_sources is unusable.
# 6584932 Need to declare that custom rule outputs should be excluded from
# compilation. A possible workaround is to lie to Xcode about a
# rule's output, giving it a dummy file it doesn't know how to
# compile. The rule action script would need to touch the dummy.
# 6584839 I need a way to declare additional inputs to a custom rule.
# A possible workaround is a shell script phase prior to
# compilation that touches a rule's primary input files if any
# would-be additional inputs are newer than the output. Modifying
# the source tree - even just modification times - feels dirty.
# 6564240 Xcode "custom script" build rules always dump all environment
# variables. This is a low-prioroty problem and is not a
# show-stopper.
rules_by_ext = {}
for rule in spec_rules:
rules_by_ext[rule['extension']] = rule
# First, some definitions:
# A "rule source" is a file that was listed in a target's "sources"
# list and will have a rule applied to it on the basis of matching the
# rule's "extensions" attribute. Rule sources are direct inputs to
# rules.
# Rule definitions may specify additional inputs in their "inputs"
# attribute. These additional inputs are used for dependency tracking
# purposes.
# A "concrete output" is a rule output with input-dependent variables
# resolved. For example, given a rule with:
# 'extension': 'ext', 'outputs': ['$(INPUT_FILE_BASE).cc'],
# if the target's "sources" list contained "one.ext" and "two.ext",
# the "concrete output" for rule input "two.ext" would be "". If
# a rule specifies multiple outputs, each input file that the rule is
# applied to will have the same number of concrete outputs.
# If any concrete outputs are outdated or missing relative to their
# corresponding rule_source or to any specified additional input, the
# rule action must be performed to generate the concrete outputs.
# concrete_outputs_by_rule_source will have an item at the same index
# as the rule['rule_sources'] that it corresponds to. Each item is a
# list of all of the concrete outputs for the rule_source.
concrete_outputs_by_rule_source = []
# concrete_outputs_all is a flat list of all concrete outputs that this
# rule is able to produce, given the known set of input files
# (rule_sources) that apply to it.
concrete_outputs_all = []
# messages & actions are keyed by the same indices as rule['rule_sources']
# and concrete_outputs_by_rule_source. They contain the message and
# action to perform after resolving input-dependent variables. The
# message is optional, in which case None is stored for each rule source.
messages = []
actions = []
for rule_source in rule.get('rule_sources', []):
rule_source_dirname, rule_source_basename = \
(rule_source_root, rule_source_ext) = \
# These are the same variable names that Xcode uses for its own native
# rule support. Because Xcode's rule engine is not being used, they
# need to be expanded as they are written to the makefile.
rule_input_dict = {
'INPUT_FILE_BASE': rule_source_root,
'INPUT_FILE_SUFFIX': rule_source_ext,
'INPUT_FILE_NAME': rule_source_basename,
'INPUT_FILE_PATH': rule_source,
'INPUT_FILE_DIRNAME': rule_source_dirname,
concrete_outputs_for_this_rule_source = []
for output in rule.get('outputs', []):
# Fortunately, Xcode and make both use $(VAR) format for their
# variables, so the expansion is the only transformation necessary.
# Any remaning $(VAR)-type variables in the string can be given
# directly to make, which will pick up the correct settings from
# what Xcode puts into the environment.
concrete_output = ExpandXcodeVariables(output, rule_input_dict)
# Add all concrete outputs to the project.
concrete_outputs_by_rule_source.append( \
# TODO(mark): Should verify that at most one of these is specified.
if int(rule.get('process_outputs_as_sources', False)):
for output in concrete_outputs_for_this_rule_source:
AddSourceToTarget(output, type, pbxp, xct)
# If the file came from the mac_bundle_resources list or if the rule
# is marked to process outputs as bundle resource, do so.
was_mac_bundle_resource = rule_source in tgt_mac_bundle_resources
if was_mac_bundle_resource or \
int(rule.get('process_outputs_as_mac_bundle_resources', False)):
for output in concrete_outputs_for_this_rule_source:
AddResourceToTarget(output, pbxp, xct)
# Do we have a message to print when this rule runs?
message = rule.get('message')
if message:
message = gyp.common.EncodePOSIXShellArgument(message)
message = ExpandXcodeVariables(message, rule_input_dict)
# Turn the list into a string that can be passed to a shell.
action_string = gyp.common.EncodePOSIXShellList(rule['action'])
action = ExpandXcodeVariables(action_string, rule_input_dict)
if len(concrete_outputs_all) > 0:
# TODO(mark): There's a possibilty for collision here. Consider
# target "t" rule "A_r" and target "t_A" rule "r".
makefile_name = '%s.make' % re.sub(
'[^a-zA-Z0-9_]', '_' , '%s_%s' % (target_name, rule['rule_name']))
makefile_path = os.path.join(xcode_projects[build_file].path,
# TODO(mark): try/close? Write to a temporary file and swap it only
# if it's got changes?
makefile = open(makefile_path, 'wb')
# make will build the first target in the makefile by default. By
# convention, it's called "all". List all (or at least one)
# concrete output for each rule source as a prerequisite of the "all"
# target.
makefile.write('all: \\\n')
for concrete_output_index in \
xrange(0, len(concrete_outputs_by_rule_source)):
# Only list the first (index [0]) concrete output of each input
# in the "all" target. Otherwise, a parallel make (-j > 1) would
# attempt to process each input multiple times simultaneously.
# Otherwise, "all" could just contain the entire list of
# concrete_outputs_all.
concrete_output = \
if concrete_output_index == len(concrete_outputs_by_rule_source) - 1:
eol = ''
eol = ' \\'
makefile.write(' %s%s\n' % (concrete_output, eol))
for (rule_source, concrete_outputs, message, action) in \
zip(rule['rule_sources'], concrete_outputs_by_rule_source,
messages, actions):
# Add a rule that declares it can build each concrete output of a
# rule source. Collect the names of the directories that are
# required.
concrete_output_dirs = []
for concrete_output_index in xrange(0, len(concrete_outputs)):
concrete_output = concrete_outputs[concrete_output_index]
if concrete_output_index == 0:
bol = ''
bol = ' '
makefile.write('%s%s \\\n' % (bol, concrete_output))
concrete_output_dir = posixpath.dirname(concrete_output)
if (concrete_output_dir and
concrete_output_dir not in concrete_output_dirs):
makefile.write(' : \\\n')
# The prerequisites for this rule are the rule source itself and
# the set of additional rule inputs, if any.
prerequisites = [rule_source]
prerequisites.extend(rule.get('inputs', []))
for prerequisite_index in xrange(0, len(prerequisites)):
prerequisite = prerequisites[prerequisite_index]
if prerequisite_index == len(prerequisites) - 1:
eol = ''
eol = ' \\'
makefile.write(' %s%s\n' % (prerequisite, eol))
# Make sure that output directories exist before executing the rule
# action.
if len(concrete_output_dirs) > 0:
makefile.write('\t@mkdir -p "%s"\n' %
'" "'.join(concrete_output_dirs))
# The rule message and action have already had the necessary variable
# substitutions performed.
if message:
# Mark it with note: so Xcode picks it up in build output.
makefile.write('\t@echo note: %s\n' % message)
makefile.write('\t%s\n' % action)
# It might be nice to ensure that needed output directories exist
# here rather than in each target in the Makefile, but that wouldn't
# work if there ever was a concrete output that had an input-dependent
# variable anywhere other than in the leaf position.
# Don't declare any inputPaths or outputPaths. If they're present,
# Xcode will provide a slight optimization by only running the script
# phase if any output is missing or outdated relative to any input.
# Unfortunately, it will also assume that all outputs are touched by
# the script, and if the outputs serve as files in a compilation
# phase, they will be unconditionally rebuilt. Since make might not
# rebuild everything that could be declared here as an output, this
# extra compilation activity is unnecessary. With inputPaths and
# outputPaths not supplied, make will always be called, but it knows
# enough to not do anything when everything is up-to-date.
# To help speed things up, pass -j COUNT to make so it does some work
# in parallel. Don't use ncpus because Xcode will build ncpus targets
# in parallel and if each target happens to have a rules step, there
# would be ncpus^2 things going. With a machine that has 2 quad-core
# Xeons, a build can quickly run out of processes based on
# scheduling/other tasks, and randomly failing builds are no good.
script = \
"""JOB_COUNT="$(/usr/sbin/sysctl -n hw.ncpu)"
if [ "${JOB_COUNT}" -gt 4 ]; then
exec "${DEVELOPER_BIN_DIR}/make" -f "${PROJECT_FILE_PATH}/%s" -j "${JOB_COUNT}"
exit 1
""" % makefile_name
ssbp = gyp.xcodeproj_file.PBXShellScriptBuildPhase({
'name': 'Rule "' + rule['rule_name'] + '"',
'shellScript': script,
'showEnvVarsInLog': 0,
if support_xct:
support_xct.AppendProperty('buildPhases', ssbp)
# TODO(mark): this assumes too much knowledge of the internals of
# xcodeproj_file; some of these smarts should move into xcodeproj_file
# itself.
xct._properties['buildPhases'].insert(prebuild_index, ssbp)
prebuild_index = prebuild_index + 1
# Extra rule inputs also go into the project file. Concrete outputs were
# already added when they were computed.
groups = ['inputs', 'inputs_excluded']
if skip_excluded_files:
groups = [x for x in groups if not x.endswith('_excluded')]
for group in groups:
for item in rule.get(group, []):
# Add "sources".
for source in spec.get('sources', []):
(source_root, source_extension) = posixpath.splitext(source)
if source_extension[1:] not in rules_by_ext:
# AddSourceToTarget will add the file to a root group if it's not
# already there.
AddSourceToTarget(source, type, pbxp, xct)
# Add "mac_bundle_resources" and "mac_framework_private_headers" if
# it's a bundle of any type.
if is_bundle:
for resource in tgt_mac_bundle_resources:
(resource_root, resource_extension) = posixpath.splitext(resource)
if resource_extension[1:] not in rules_by_ext:
AddResourceToTarget(resource, pbxp, xct)
for header in spec.get('mac_framework_private_headers', []):
AddHeaderToTarget(header, pbxp, xct, False)
# Add "mac_framework_headers". These can be valid for both frameworks
# and static libraries.
if is_bundle or type == 'static_library':
for header in spec.get('mac_framework_headers', []):
AddHeaderToTarget(header, pbxp, xct, True)
# Add "copies".
for copy_group in spec.get('copies', []):
pbxcp = gyp.xcodeproj_file.PBXCopyFilesBuildPhase({
'name': 'Copy to ' + copy_group['destination']
dest = copy_group['destination']
if dest[0] not in ('/', '$'):
# Relative paths are relative to $(SRCROOT).
dest = '$(SRCROOT)/' + dest
# TODO(mark): The usual comment about this knowing too much about
# gyp.xcodeproj_file internals applies.
xct._properties['buildPhases'].insert(prebuild_index, pbxcp)
for file in copy_group['files']:
# Excluded files can also go into the project file.
if not skip_excluded_files:
for key in ['sources', 'mac_bundle_resources', 'mac_framework_headers',
excluded_key = key + '_excluded'
for item in spec.get(excluded_key, []):
# So can "inputs" and "outputs" sections of "actions" groups.
groups = ['inputs', 'inputs_excluded', 'outputs', 'outputs_excluded']
if skip_excluded_files:
groups = [x for x in groups if not x.endswith('_excluded')]
for action in spec.get('actions', []):
for group in groups:
for item in action.get(group, []):
# Exclude anything in BUILT_PRODUCTS_DIR. They're products, not
# sources.
if not item.startswith('$(BUILT_PRODUCTS_DIR)/'):
for postbuild in spec.get('postbuilds', []):
action_string_sh = gyp.common.EncodePOSIXShellList(postbuild['action'])
script = 'exec ' + action_string_sh + '\nexit 1\n'
# Make the postbuild step depend on the output of ld or ar from this
# target. Apparently putting the script step after the link step isn't
# sufficient to ensure proper ordering in all cases. With an input
# declared but no outputs, the script step should run every time, as
# desired.
ssbp = gyp.xcodeproj_file.PBXShellScriptBuildPhase({
'name': 'Postbuild "' + postbuild['postbuild_name'] + '"',
'shellScript': script,
'showEnvVarsInLog': 0,
xct.AppendProperty('buildPhases', ssbp)
# Add dependencies before libraries, because adding a dependency may imply
# adding a library. It's preferable to keep dependencies listed first
# during a link phase so that they can override symbols that would
# otherwise be provided by libraries, which will usually include system
# libraries. On some systems, ld is finicky and even requires the
# libraries to be ordered in such a way that unresolved symbols in
# earlier-listed libraries may only be resolved by later-listed libraries.
# The Mac linker doesn't work that way, but other platforms do, and so
# their linker invocations need to be constructed in this way. There's
# no compelling reason for Xcode's linker invocations to differ.
if 'dependencies' in spec:
for dependency in spec['dependencies']:
# The support project also gets the dependencies (in case they are
# needed for the actions/rules to work).
if support_xct:
if 'libraries' in spec:
for library in spec['libraries']:
# Add the library's directory to LIBRARY_SEARCH_PATHS if necessary.
# I wish Xcode handled this automatically.
library_dir = posixpath.dirname(library)
if library_dir not in xcode_standard_library_dirs and (
not xct.HasBuildSetting(_library_search_paths_var) or
library_dir not in xct.GetBuildSetting(_library_search_paths_var)):
xct.AppendBuildSetting(_library_search_paths_var, library_dir)
for configuration_name in configuration_names:
configuration = spec['configurations'][configuration_name]
xcbc = xct.ConfigurationNamed(configuration_name)
for include_dir in configuration.get('mac_framework_dirs', []):
xcbc.AppendBuildSetting('FRAMEWORK_SEARCH_PATHS', include_dir)
for include_dir in configuration.get('include_dirs', []):
xcbc.AppendBuildSetting('HEADER_SEARCH_PATHS', include_dir)
if 'defines' in configuration:
for define in configuration['defines']:
set_define = EscapeXCodeArgument(define)
xcbc.AppendBuildSetting('GCC_PREPROCESSOR_DEFINITIONS', set_define)
if 'xcode_settings' in configuration:
for xck, xcv in configuration['xcode_settings'].iteritems():
xcbc.SetBuildSetting(xck, xcv)
if 'xcode_config_file' in configuration:
config_ref = pbxp.AddOrGetFileInRootGroup(
build_files = []
for build_file, build_file_dict in data.iteritems():
if build_file.endswith('.gyp'):
for build_file in build_files:
xcode_projects[build_file].Finalize1(xcode_targets, serialize_all_tests)
for build_file in build_files:
for build_file in build_files: