blob: acb3efbc711d57b0a18ed0d37628c524f879c14c [file] [log] [blame] [edit]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
/** \mainpage V8 API Reference Guide
*
* V8 is Google's open source JavaScript engine.
*
* This set of documents provides reference material generated from the
* V8 header file, include/v8.h.
*
* For other documentation see http://code.google.com/apis/v8/
*/
#ifndef INCLUDE_V8_H_
#define INCLUDE_V8_H_
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <memory>
#include <utility>
#include <vector>
#include "v8-version.h" // NOLINT(build/include)
#include "v8config.h" // NOLINT(build/include)
// We reserve the V8_* prefix for macros defined in V8 public API and
// assume there are no name conflicts with the embedder's code.
#ifdef V8_OS_WIN
// Setup for Windows DLL export/import. When building the V8 DLL the
// BUILDING_V8_SHARED needs to be defined. When building a program which uses
// the V8 DLL USING_V8_SHARED needs to be defined. When either building the V8
// static library or building a program which uses the V8 static library neither
// BUILDING_V8_SHARED nor USING_V8_SHARED should be defined.
#ifdef BUILDING_V8_SHARED
# define V8_EXPORT __declspec(dllexport)
#elif USING_V8_SHARED
# define V8_EXPORT __declspec(dllimport)
#else
# define V8_EXPORT
#endif // BUILDING_V8_SHARED
#else // V8_OS_WIN
// Setup for Linux shared library export.
#if V8_HAS_ATTRIBUTE_VISIBILITY
# ifdef BUILDING_V8_SHARED
# define V8_EXPORT __attribute__ ((visibility("default")))
# else
# define V8_EXPORT
# endif
#else
# define V8_EXPORT
#endif
#endif // V8_OS_WIN
/**
* The v8 JavaScript engine.
*/
namespace v8 {
class AccessorSignature;
class Array;
class ArrayBuffer;
class Boolean;
class BooleanObject;
class Context;
class CpuProfiler;
class Data;
class Date;
class External;
class Function;
class FunctionTemplate;
class HeapProfiler;
class ImplementationUtilities;
class Int32;
class Integer;
class Isolate;
template <class T>
class Maybe;
class Name;
class Number;
class NumberObject;
class Object;
class ObjectOperationDescriptor;
class ObjectTemplate;
class Platform;
class Primitive;
class Promise;
class PropertyDescriptor;
class Proxy;
class RawOperationDescriptor;
class Script;
class SharedArrayBuffer;
class Signature;
class StartupData;
class StackFrame;
class StackTrace;
class String;
class StringObject;
class Symbol;
class SymbolObject;
class PrimitiveArray;
class Private;
class Uint32;
class Utils;
class Value;
class WasmCompiledModule;
template <class T> class Local;
template <class T>
class MaybeLocal;
template <class T> class Eternal;
template<class T> class NonCopyablePersistentTraits;
template<class T> class PersistentBase;
template <class T, class M = NonCopyablePersistentTraits<T> >
class Persistent;
template <class T>
class Global;
template<class K, class V, class T> class PersistentValueMap;
template <class K, class V, class T>
class PersistentValueMapBase;
template <class K, class V, class T>
class GlobalValueMap;
template<class V, class T> class PersistentValueVector;
template<class T, class P> class WeakCallbackObject;
class FunctionTemplate;
class ObjectTemplate;
template<typename T> class FunctionCallbackInfo;
template<typename T> class PropertyCallbackInfo;
class StackTrace;
class StackFrame;
class Isolate;
class CallHandlerHelper;
class EscapableHandleScope;
template<typename T> class ReturnValue;
namespace internal {
class Arguments;
class DeferredHandles;
class Heap;
class HeapObject;
class Isolate;
class Object;
struct StreamedSource;
template<typename T> class CustomArguments;
class PropertyCallbackArguments;
class FunctionCallbackArguments;
class GlobalHandles;
namespace wasm {
class StreamingDecoder;
} // namespace wasm
} // namespace internal
namespace debug {
class ConsoleCallArguments;
} // namespace debug
// --- Handles ---
#define TYPE_CHECK(T, S) \
while (false) { \
*(static_cast<T* volatile*>(0)) = static_cast<S*>(0); \
}
/**
* An object reference managed by the v8 garbage collector.
*
* All objects returned from v8 have to be tracked by the garbage
* collector so that it knows that the objects are still alive. Also,
* because the garbage collector may move objects, it is unsafe to
* point directly to an object. Instead, all objects are stored in
* handles which are known by the garbage collector and updated
* whenever an object moves. Handles should always be passed by value
* (except in cases like out-parameters) and they should never be
* allocated on the heap.
*
* There are two types of handles: local and persistent handles.
*
* Local handles are light-weight and transient and typically used in
* local operations. They are managed by HandleScopes. That means that a
* HandleScope must exist on the stack when they are created and that they are
* only valid inside of the HandleScope active during their creation.
* For passing a local handle to an outer HandleScope, an EscapableHandleScope
* and its Escape() method must be used.
*
* Persistent handles can be used when storing objects across several
* independent operations and have to be explicitly deallocated when they're no
* longer used.
*
* It is safe to extract the object stored in the handle by
* dereferencing the handle (for instance, to extract the Object* from
* a Local<Object>); the value will still be governed by a handle
* behind the scenes and the same rules apply to these values as to
* their handles.
*/
template <class T>
class Local {
public:
V8_INLINE Local() : val_(0) {}
template <class S>
V8_INLINE Local(Local<S> that)
: val_(reinterpret_cast<T*>(*that)) {
/**
* This check fails when trying to convert between incompatible
* handles. For example, converting from a Local<String> to a
* Local<Number>.
*/
TYPE_CHECK(T, S);
}
/**
* Returns true if the handle is empty.
*/
V8_INLINE bool IsEmpty() const { return val_ == 0; }
/**
* Sets the handle to be empty. IsEmpty() will then return true.
*/
V8_INLINE void Clear() { val_ = 0; }
V8_INLINE T* operator->() const { return val_; }
V8_INLINE T* operator*() const { return val_; }
/**
* Checks whether two handles are the same.
* Returns true if both are empty, or if the objects
* to which they refer are identical.
* The handles' references are not checked.
*/
template <class S>
V8_INLINE bool operator==(const Local<S>& that) const {
internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
if (a == 0) return b == 0;
if (b == 0) return false;
return *a == *b;
}
template <class S> V8_INLINE bool operator==(
const PersistentBase<S>& that) const {
internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
if (a == 0) return b == 0;
if (b == 0) return false;
return *a == *b;
}
/**
* Checks whether two handles are different.
* Returns true if only one of the handles is empty, or if
* the objects to which they refer are different.
* The handles' references are not checked.
*/
template <class S>
V8_INLINE bool operator!=(const Local<S>& that) const {
return !operator==(that);
}
template <class S> V8_INLINE bool operator!=(
const Persistent<S>& that) const {
return !operator==(that);
}
/**
* Cast a handle to a subclass, e.g. Local<Value> to Local<Object>.
* This is only valid if the handle actually refers to a value of the
* target type.
*/
template <class S> V8_INLINE static Local<T> Cast(Local<S> that) {
#ifdef V8_ENABLE_CHECKS
// If we're going to perform the type check then we have to check
// that the handle isn't empty before doing the checked cast.
if (that.IsEmpty()) return Local<T>();
#endif
return Local<T>(T::Cast(*that));
}
/**
* Calling this is equivalent to Local<S>::Cast().
* In particular, this is only valid if the handle actually refers to a value
* of the target type.
*/
template <class S>
V8_INLINE Local<S> As() const {
return Local<S>::Cast(*this);
}
/**
* Create a local handle for the content of another handle.
* The referee is kept alive by the local handle even when
* the original handle is destroyed/disposed.
*/
V8_INLINE static Local<T> New(Isolate* isolate, Local<T> that);
V8_INLINE static Local<T> New(Isolate* isolate,
const PersistentBase<T>& that);
private:
friend class Utils;
template<class F> friend class Eternal;
template<class F> friend class PersistentBase;
template<class F, class M> friend class Persistent;
template<class F> friend class Local;
template <class F>
friend class MaybeLocal;
template<class F> friend class FunctionCallbackInfo;
template<class F> friend class PropertyCallbackInfo;
friend class String;
friend class Object;
friend class Context;
friend class Isolate;
friend class Private;
template<class F> friend class internal::CustomArguments;
friend Local<Primitive> Undefined(Isolate* isolate);
friend Local<Primitive> Null(Isolate* isolate);
friend Local<Boolean> True(Isolate* isolate);
friend Local<Boolean> False(Isolate* isolate);
friend class HandleScope;
friend class EscapableHandleScope;
template <class F1, class F2, class F3>
friend class PersistentValueMapBase;
template<class F1, class F2> friend class PersistentValueVector;
template <class F>
friend class ReturnValue;
explicit V8_INLINE Local(T* that) : val_(that) {}
V8_INLINE static Local<T> New(Isolate* isolate, T* that);
T* val_;
};
#if !defined(V8_IMMINENT_DEPRECATION_WARNINGS)
// Handle is an alias for Local for historical reasons.
template <class T>
using Handle = Local<T>;
#endif
/**
* A MaybeLocal<> is a wrapper around Local<> that enforces a check whether
* the Local<> is empty before it can be used.
*
* If an API method returns a MaybeLocal<>, the API method can potentially fail
* either because an exception is thrown, or because an exception is pending,
* e.g. because a previous API call threw an exception that hasn't been caught
* yet, or because a TerminateExecution exception was thrown. In that case, an
* empty MaybeLocal is returned.
*/
template <class T>
class MaybeLocal {
public:
V8_INLINE MaybeLocal() : val_(nullptr) {}
template <class S>
V8_INLINE MaybeLocal(Local<S> that)
: val_(reinterpret_cast<T*>(*that)) {
TYPE_CHECK(T, S);
}
V8_INLINE bool IsEmpty() const { return val_ == nullptr; }
/**
* Converts this MaybeLocal<> to a Local<>. If this MaybeLocal<> is empty,
* |false| is returned and |out| is left untouched.
*/
template <class S>
V8_WARN_UNUSED_RESULT V8_INLINE bool ToLocal(Local<S>* out) const {
out->val_ = IsEmpty() ? nullptr : this->val_;
return !IsEmpty();
}
/**
* Converts this MaybeLocal<> to a Local<>. If this MaybeLocal<> is empty,
* V8 will crash the process.
*/
V8_INLINE Local<T> ToLocalChecked();
/**
* Converts this MaybeLocal<> to a Local<>, using a default value if this
* MaybeLocal<> is empty.
*/
template <class S>
V8_INLINE Local<S> FromMaybe(Local<S> default_value) const {
return IsEmpty() ? default_value : Local<S>(val_);
}
private:
T* val_;
};
/**
* Eternal handles are set-once handles that live for the lifetime of the
* isolate.
*/
template <class T> class Eternal {
public:
V8_INLINE Eternal() : val_(nullptr) {}
template <class S>
V8_INLINE Eternal(Isolate* isolate, Local<S> handle) : val_(nullptr) {
Set(isolate, handle);
}
// Can only be safely called if already set.
V8_INLINE Local<T> Get(Isolate* isolate) const;
V8_INLINE bool IsEmpty() const { return val_ == nullptr; }
template<class S> V8_INLINE void Set(Isolate* isolate, Local<S> handle);
private:
T* val_;
};
static const int kInternalFieldsInWeakCallback = 2;
static const int kEmbedderFieldsInWeakCallback = 2;
template <typename T>
class WeakCallbackInfo {
public:
typedef void (*Callback)(const WeakCallbackInfo<T>& data);
WeakCallbackInfo(Isolate* isolate, T* parameter,
void* embedder_fields[kEmbedderFieldsInWeakCallback],
Callback* callback)
: isolate_(isolate), parameter_(parameter), callback_(callback) {
for (int i = 0; i < kEmbedderFieldsInWeakCallback; ++i) {
embedder_fields_[i] = embedder_fields[i];
}
}
V8_INLINE Isolate* GetIsolate() const { return isolate_; }
V8_INLINE T* GetParameter() const { return parameter_; }
V8_INLINE void* GetInternalField(int index) const;
// When first called, the embedder MUST Reset() the Global which triggered the
// callback. The Global itself is unusable for anything else. No v8 other api
// calls may be called in the first callback. Should additional work be
// required, the embedder must set a second pass callback, which will be
// called after all the initial callbacks are processed.
// Calling SetSecondPassCallback on the second pass will immediately crash.
void SetSecondPassCallback(Callback callback) const { *callback_ = callback; }
private:
Isolate* isolate_;
T* parameter_;
Callback* callback_;
void* embedder_fields_[kEmbedderFieldsInWeakCallback];
};
// kParameter will pass a void* parameter back to the callback, kInternalFields
// will pass the first two internal fields back to the callback, kFinalizer
// will pass a void* parameter back, but is invoked before the object is
// actually collected, so it can be resurrected. In the last case, it is not
// possible to request a second pass callback.
enum class WeakCallbackType { kParameter, kInternalFields, kFinalizer };
/**
* An object reference that is independent of any handle scope. Where
* a Local handle only lives as long as the HandleScope in which it was
* allocated, a PersistentBase handle remains valid until it is explicitly
* disposed using Reset().
*
* A persistent handle contains a reference to a storage cell within
* the V8 engine which holds an object value and which is updated by
* the garbage collector whenever the object is moved. A new storage
* cell can be created using the constructor or PersistentBase::Reset and
* existing handles can be disposed using PersistentBase::Reset.
*
*/
template <class T> class PersistentBase {
public:
/**
* If non-empty, destroy the underlying storage cell
* IsEmpty() will return true after this call.
*/
V8_INLINE void Reset();
/**
* If non-empty, destroy the underlying storage cell
* and create a new one with the contents of other if other is non empty
*/
template <class S>
V8_INLINE void Reset(Isolate* isolate, const Local<S>& other);
/**
* If non-empty, destroy the underlying storage cell
* and create a new one with the contents of other if other is non empty
*/
template <class S>
V8_INLINE void Reset(Isolate* isolate, const PersistentBase<S>& other);
V8_INLINE bool IsEmpty() const { return val_ == NULL; }
V8_INLINE void Empty() { val_ = 0; }
V8_INLINE Local<T> Get(Isolate* isolate) const {
return Local<T>::New(isolate, *this);
}
template <class S>
V8_INLINE bool operator==(const PersistentBase<S>& that) const {
internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
if (a == NULL) return b == NULL;
if (b == NULL) return false;
return *a == *b;
}
template <class S>
V8_INLINE bool operator==(const Local<S>& that) const {
internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
if (a == NULL) return b == NULL;
if (b == NULL) return false;
return *a == *b;
}
template <class S>
V8_INLINE bool operator!=(const PersistentBase<S>& that) const {
return !operator==(that);
}
template <class S>
V8_INLINE bool operator!=(const Local<S>& that) const {
return !operator==(that);
}
/**
* Install a finalization callback on this object.
* NOTE: There is no guarantee as to *when* or even *if* the callback is
* invoked. The invocation is performed solely on a best effort basis.
* As always, GC-based finalization should *not* be relied upon for any
* critical form of resource management!
*/
template <typename P>
V8_INLINE void SetWeak(P* parameter,
typename WeakCallbackInfo<P>::Callback callback,
WeakCallbackType type);
/**
* Turns this handle into a weak phantom handle without finalization callback.
* The handle will be reset automatically when the garbage collector detects
* that the object is no longer reachable.
* A related function Isolate::NumberOfPhantomHandleResetsSinceLastCall
* returns how many phantom handles were reset by the garbage collector.
*/
V8_INLINE void SetWeak();
template<typename P>
V8_INLINE P* ClearWeak();
// TODO(dcarney): remove this.
V8_INLINE void ClearWeak() { ClearWeak<void>(); }
/**
* Allows the embedder to tell the v8 garbage collector that a certain object
* is alive. Only allowed when the embedder is asked to trace its heap by
* EmbedderHeapTracer.
*/
V8_INLINE void RegisterExternalReference(Isolate* isolate) const;
/**
* Marks the reference to this object independent. Garbage collector is free
* to ignore any object groups containing this object. Weak callback for an
* independent handle should not assume that it will be preceded by a global
* GC prologue callback or followed by a global GC epilogue callback.
*/
V8_DEPRECATE_SOON(
"Objects are always considered independent. "
"Use MarkActive to avoid collecting otherwise dead weak handles.",
V8_INLINE void MarkIndependent());
/**
* Marks the reference to this object as active. The scavenge garbage
* collection should not reclaim the objects marked as active, even if the
* object held by the handle is otherwise unreachable.
*
* This bit is cleared after the each garbage collection pass.
*/
V8_INLINE void MarkActive();
V8_DEPRECATE_SOON("See MarkIndependent.",
V8_INLINE bool IsIndependent() const);
/** Checks if the handle holds the only reference to an object. */
V8_INLINE bool IsNearDeath() const;
/** Returns true if the handle's reference is weak. */
V8_INLINE bool IsWeak() const;
/**
* Assigns a wrapper class ID to the handle. See RetainedObjectInfo interface
* description in v8-profiler.h for details.
*/
V8_INLINE void SetWrapperClassId(uint16_t class_id);
/**
* Returns the class ID previously assigned to this handle or 0 if no class ID
* was previously assigned.
*/
V8_INLINE uint16_t WrapperClassId() const;
PersistentBase(const PersistentBase& other) = delete; // NOLINT
void operator=(const PersistentBase&) = delete;
private:
friend class Isolate;
friend class Utils;
template<class F> friend class Local;
template<class F1, class F2> friend class Persistent;
template <class F>
friend class Global;
template<class F> friend class PersistentBase;
template<class F> friend class ReturnValue;
template <class F1, class F2, class F3>
friend class PersistentValueMapBase;
template<class F1, class F2> friend class PersistentValueVector;
friend class Object;
explicit V8_INLINE PersistentBase(T* val) : val_(val) {}
V8_INLINE static T* New(Isolate* isolate, T* that);
T* val_;
};
/**
* Default traits for Persistent. This class does not allow
* use of the copy constructor or assignment operator.
* At present kResetInDestructor is not set, but that will change in a future
* version.
*/
template<class T>
class NonCopyablePersistentTraits {
public:
typedef Persistent<T, NonCopyablePersistentTraits<T> > NonCopyablePersistent;
static const bool kResetInDestructor = false;
template<class S, class M>
V8_INLINE static void Copy(const Persistent<S, M>& source,
NonCopyablePersistent* dest) {
Uncompilable<Object>();
}
// TODO(dcarney): come up with a good compile error here.
template<class O> V8_INLINE static void Uncompilable() {
TYPE_CHECK(O, Primitive);
}
};
/**
* Helper class traits to allow copying and assignment of Persistent.
* This will clone the contents of storage cell, but not any of the flags, etc.
*/
template<class T>
struct CopyablePersistentTraits {
typedef Persistent<T, CopyablePersistentTraits<T> > CopyablePersistent;
static const bool kResetInDestructor = true;
template<class S, class M>
static V8_INLINE void Copy(const Persistent<S, M>& source,
CopyablePersistent* dest) {
// do nothing, just allow copy
}
};
/**
* A PersistentBase which allows copy and assignment.
*
* Copy, assignment and destructor behavior is controlled by the traits
* class M.
*
* Note: Persistent class hierarchy is subject to future changes.
*/
template <class T, class M> class Persistent : public PersistentBase<T> {
public:
/**
* A Persistent with no storage cell.
*/
V8_INLINE Persistent() : PersistentBase<T>(0) { }
/**
* Construct a Persistent from a Local.
* When the Local is non-empty, a new storage cell is created
* pointing to the same object, and no flags are set.
*/
template <class S>
V8_INLINE Persistent(Isolate* isolate, Local<S> that)
: PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) {
TYPE_CHECK(T, S);
}
/**
* Construct a Persistent from a Persistent.
* When the Persistent is non-empty, a new storage cell is created
* pointing to the same object, and no flags are set.
*/
template <class S, class M2>
V8_INLINE Persistent(Isolate* isolate, const Persistent<S, M2>& that)
: PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) {
TYPE_CHECK(T, S);
}
/**
* The copy constructors and assignment operator create a Persistent
* exactly as the Persistent constructor, but the Copy function from the
* traits class is called, allowing the setting of flags based on the
* copied Persistent.
*/
V8_INLINE Persistent(const Persistent& that) : PersistentBase<T>(0) {
Copy(that);
}
template <class S, class M2>
V8_INLINE Persistent(const Persistent<S, M2>& that) : PersistentBase<T>(0) {
Copy(that);
}
V8_INLINE Persistent& operator=(const Persistent& that) { // NOLINT
Copy(that);
return *this;
}
template <class S, class M2>
V8_INLINE Persistent& operator=(const Persistent<S, M2>& that) { // NOLINT
Copy(that);
return *this;
}
/**
* The destructor will dispose the Persistent based on the
* kResetInDestructor flags in the traits class. Since not calling dispose
* can result in a memory leak, it is recommended to always set this flag.
*/
V8_INLINE ~Persistent() {
if (M::kResetInDestructor) this->Reset();
}
// TODO(dcarney): this is pretty useless, fix or remove
template <class S>
V8_INLINE static Persistent<T>& Cast(const Persistent<S>& that) { // NOLINT
#ifdef V8_ENABLE_CHECKS
// If we're going to perform the type check then we have to check
// that the handle isn't empty before doing the checked cast.
if (!that.IsEmpty()) T::Cast(*that);
#endif
return reinterpret_cast<Persistent<T>&>(const_cast<Persistent<S>&>(that));
}
// TODO(dcarney): this is pretty useless, fix or remove
template <class S>
V8_INLINE Persistent<S>& As() const { // NOLINT
return Persistent<S>::Cast(*this);
}
private:
friend class Isolate;
friend class Utils;
template<class F> friend class Local;
template<class F1, class F2> friend class Persistent;
template<class F> friend class ReturnValue;
explicit V8_INLINE Persistent(T* that) : PersistentBase<T>(that) {}
V8_INLINE T* operator*() const { return this->val_; }
template<class S, class M2>
V8_INLINE void Copy(const Persistent<S, M2>& that);
};
/**
* A PersistentBase which has move semantics.
*
* Note: Persistent class hierarchy is subject to future changes.
*/
template <class T>
class Global : public PersistentBase<T> {
public:
/**
* A Global with no storage cell.
*/
V8_INLINE Global() : PersistentBase<T>(nullptr) {}
/**
* Construct a Global from a Local.
* When the Local is non-empty, a new storage cell is created
* pointing to the same object, and no flags are set.
*/
template <class S>
V8_INLINE Global(Isolate* isolate, Local<S> that)
: PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) {
TYPE_CHECK(T, S);
}
/**
* Construct a Global from a PersistentBase.
* When the Persistent is non-empty, a new storage cell is created
* pointing to the same object, and no flags are set.
*/
template <class S>
V8_INLINE Global(Isolate* isolate, const PersistentBase<S>& that)
: PersistentBase<T>(PersistentBase<T>::New(isolate, that.val_)) {
TYPE_CHECK(T, S);
}
/**
* Move constructor.
*/
V8_INLINE Global(Global&& other) : PersistentBase<T>(other.val_) { // NOLINT
other.val_ = nullptr;
}
V8_INLINE ~Global() { this->Reset(); }
/**
* Move via assignment.
*/
template <class S>
V8_INLINE Global& operator=(Global<S>&& rhs) { // NOLINT
TYPE_CHECK(T, S);
if (this != &rhs) {
this->Reset();
this->val_ = rhs.val_;
rhs.val_ = nullptr;
}
return *this;
}
/**
* Pass allows returning uniques from functions, etc.
*/
Global Pass() { return static_cast<Global&&>(*this); } // NOLINT
/*
* For compatibility with Chromium's base::Bind (base::Passed).
*/
typedef void MoveOnlyTypeForCPP03;
Global(const Global&) = delete;
void operator=(const Global&) = delete;
private:
template <class F>
friend class ReturnValue;
V8_INLINE T* operator*() const { return this->val_; }
};
// UniquePersistent is an alias for Global for historical reason.
template <class T>
using UniquePersistent = Global<T>;
/**
* A stack-allocated class that governs a number of local handles.
* After a handle scope has been created, all local handles will be
* allocated within that handle scope until either the handle scope is
* deleted or another handle scope is created. If there is already a
* handle scope and a new one is created, all allocations will take
* place in the new handle scope until it is deleted. After that,
* new handles will again be allocated in the original handle scope.
*
* After the handle scope of a local handle has been deleted the
* garbage collector will no longer track the object stored in the
* handle and may deallocate it. The behavior of accessing a handle
* for which the handle scope has been deleted is undefined.
*/
class V8_EXPORT HandleScope {
public:
explicit HandleScope(Isolate* isolate);
~HandleScope();
/**
* Counts the number of allocated handles.
*/
static int NumberOfHandles(Isolate* isolate);
V8_INLINE Isolate* GetIsolate() const {
return reinterpret_cast<Isolate*>(isolate_);
}
HandleScope(const HandleScope&) = delete;
void operator=(const HandleScope&) = delete;
protected:
V8_INLINE HandleScope() {}
void Initialize(Isolate* isolate);
static internal::Object** CreateHandle(internal::Isolate* isolate,
internal::Object* value);
private:
// Declaring operator new and delete as deleted is not spec compliant.
// Therefore declare them private instead to disable dynamic alloc
void* operator new(size_t size);
void* operator new[](size_t size);
void operator delete(void*, size_t);
void operator delete[](void*, size_t);
// Uses heap_object to obtain the current Isolate.
static internal::Object** CreateHandle(internal::HeapObject* heap_object,
internal::Object* value);
internal::Isolate* isolate_;
internal::Object** prev_next_;
internal::Object** prev_limit_;
// Local::New uses CreateHandle with an Isolate* parameter.
template<class F> friend class Local;
// Object::GetInternalField and Context::GetEmbedderData use CreateHandle with
// a HeapObject* in their shortcuts.
friend class Object;
friend class Context;
};
/**
* A HandleScope which first allocates a handle in the current scope
* which will be later filled with the escape value.
*/
class V8_EXPORT EscapableHandleScope : public HandleScope {
public:
explicit EscapableHandleScope(Isolate* isolate);
V8_INLINE ~EscapableHandleScope() {}
/**
* Pushes the value into the previous scope and returns a handle to it.
* Cannot be called twice.
*/
template <class T>
V8_INLINE Local<T> Escape(Local<T> value) {
internal::Object** slot =
Escape(reinterpret_cast<internal::Object**>(*value));
return Local<T>(reinterpret_cast<T*>(slot));
}
EscapableHandleScope(const EscapableHandleScope&) = delete;
void operator=(const EscapableHandleScope&) = delete;
private:
// Declaring operator new and delete as deleted is not spec compliant.
// Therefore declare them private instead to disable dynamic alloc
void* operator new(size_t size);
void* operator new[](size_t size);
void operator delete(void*, size_t);
void operator delete[](void*, size_t);
internal::Object** Escape(internal::Object** escape_value);
internal::Object** escape_slot_;
};
/**
* A SealHandleScope acts like a handle scope in which no handle allocations
* are allowed. It can be useful for debugging handle leaks.
* Handles can be allocated within inner normal HandleScopes.
*/
class V8_EXPORT SealHandleScope {
public:
SealHandleScope(Isolate* isolate);
~SealHandleScope();
SealHandleScope(const SealHandleScope&) = delete;
void operator=(const SealHandleScope&) = delete;
private:
// Declaring operator new and delete as deleted is not spec compliant.
// Therefore declare them private instead to disable dynamic alloc
void* operator new(size_t size);
void* operator new[](size_t size);
void operator delete(void*, size_t);
void operator delete[](void*, size_t);
internal::Isolate* const isolate_;
internal::Object** prev_limit_;
int prev_sealed_level_;
};
// --- Special objects ---
/**
* The superclass of values and API object templates.
*/
class V8_EXPORT Data {
private:
Data();
};
/**
* A container type that holds relevant metadata for module loading.
*
* This is passed back to the embedder as part of
* HostImportModuleDynamicallyCallback for module loading.
*/
class V8_EXPORT ScriptOrModule {
public:
/**
* The name that was passed by the embedder as ResourceName to the
* ScriptOrigin. This can be either a v8::String or v8::Undefined.
*/
Local<Value> GetResourceName();
/**
* The options that were passed by the embedder as HostDefinedOptions to
* the ScriptOrigin.
*/
Local<PrimitiveArray> GetHostDefinedOptions();
};
/**
* An array to hold Primitive values. This is used by the embedder to
* pass host defined options to the ScriptOptions during compilation.
*
* This is passed back to the embedder as part of
* HostImportModuleDynamicallyCallback for module loading.
*
*/
class V8_EXPORT PrimitiveArray {
public:
static Local<PrimitiveArray> New(Isolate* isolate, int length);
int Length() const;
void Set(int index, Local<Primitive> item);
Local<Primitive> Get(int index);
};
/**
* The optional attributes of ScriptOrigin.
*/
class ScriptOriginOptions {
public:
V8_INLINE ScriptOriginOptions(bool is_shared_cross_origin = false,
bool is_opaque = false, bool is_wasm = false,
bool is_module = false)
: flags_((is_shared_cross_origin ? kIsSharedCrossOrigin : 0) |
(is_wasm ? kIsWasm : 0) | (is_opaque ? kIsOpaque : 0) |
(is_module ? kIsModule : 0)) {}
V8_INLINE ScriptOriginOptions(int flags)
: flags_(flags &
(kIsSharedCrossOrigin | kIsOpaque | kIsWasm | kIsModule)) {}
bool IsSharedCrossOrigin() const {
return (flags_ & kIsSharedCrossOrigin) != 0;
}
bool IsOpaque() const { return (flags_ & kIsOpaque) != 0; }
bool IsWasm() const { return (flags_ & kIsWasm) != 0; }
bool IsModule() const { return (flags_ & kIsModule) != 0; }
int Flags() const { return flags_; }
private:
enum {
kIsSharedCrossOrigin = 1,
kIsOpaque = 1 << 1,
kIsWasm = 1 << 2,
kIsModule = 1 << 3
};
const int flags_;
};
/**
* The origin, within a file, of a script.
*/
class ScriptOrigin {
public:
V8_INLINE ScriptOrigin(
Local<Value> resource_name,
Local<Integer> resource_line_offset = Local<Integer>(),
Local<Integer> resource_column_offset = Local<Integer>(),
Local<Boolean> resource_is_shared_cross_origin = Local<Boolean>(),
Local<Integer> script_id = Local<Integer>(),
Local<Value> source_map_url = Local<Value>(),
Local<Boolean> resource_is_opaque = Local<Boolean>(),
Local<Boolean> is_wasm = Local<Boolean>(),
Local<Boolean> is_module = Local<Boolean>(),
Local<PrimitiveArray> host_defined_options = Local<PrimitiveArray>());
V8_INLINE Local<Value> ResourceName() const;
V8_INLINE Local<Integer> ResourceLineOffset() const;
V8_INLINE Local<Integer> ResourceColumnOffset() const;
V8_INLINE Local<Integer> ScriptID() const;
V8_INLINE Local<Value> SourceMapUrl() const;
V8_INLINE Local<PrimitiveArray> HostDefinedOptions() const;
V8_INLINE ScriptOriginOptions Options() const { return options_; }
private:
Local<Value> resource_name_;
Local<Integer> resource_line_offset_;
Local<Integer> resource_column_offset_;
ScriptOriginOptions options_;
Local<Integer> script_id_;
Local<Value> source_map_url_;
Local<PrimitiveArray> host_defined_options_;
};
/**
* A compiled JavaScript script, not yet tied to a Context.
*/
class V8_EXPORT UnboundScript {
public:
/**
* Binds the script to the currently entered context.
*/
Local<Script> BindToCurrentContext();
int GetId();
Local<Value> GetScriptName();
/**
* Data read from magic sourceURL comments.
*/
Local<Value> GetSourceURL();
/**
* Data read from magic sourceMappingURL comments.
*/
Local<Value> GetSourceMappingURL();
/**
* Returns zero based line number of the code_pos location in the script.
* -1 will be returned if no information available.
*/
int GetLineNumber(int code_pos);
static const int kNoScriptId = 0;
};
/**
* A location in JavaScript source.
*/
class V8_EXPORT Location {
public:
int GetLineNumber() { return line_number_; }
int GetColumnNumber() { return column_number_; }
Location(int line_number, int column_number)
: line_number_(line_number), column_number_(column_number) {}
private:
int line_number_;
int column_number_;
};
/**
* A compiled JavaScript module.
*/
class V8_EXPORT Module {
public:
/**
* The different states a module can be in.
* This corresponds to the states used in ECMAScript except that "evaluated"
* is split into kEvaluated and kErrored, indicating success and failure,
* respectively.
*/
enum Status {
kUninstantiated,
kInstantiating,
kInstantiated,
kEvaluating,
kEvaluated,
kErrored
};
/**
* Returns the module's current status.
*/
Status GetStatus() const;
/**
* For a module in kErrored status, this returns the corresponding exception.
*/
Local<Value> GetException() const;
/**
* Returns the number of modules requested by this module.
*/
int GetModuleRequestsLength() const;
/**
* Returns the ith module specifier in this module.
* i must be < GetModuleRequestsLength() and >= 0.
*/
Local<String> GetModuleRequest(int i) const;
/**
* Returns the source location (line number and column number) of the ith
* module specifier's first occurrence in this module.
*/
Location GetModuleRequestLocation(int i) const;
/**
* Returns the identity hash for this object.
*/
int GetIdentityHash() const;
typedef MaybeLocal<Module> (*ResolveCallback)(Local<Context> context,
Local<String> specifier,
Local<Module> referrer);
/**
* ModuleDeclarationInstantiation
*
* Returns an empty Maybe<bool> if an exception occurred during
* instantiation. (In the case where the callback throws an exception, that
* exception is propagated.)
*/
V8_WARN_UNUSED_RESULT Maybe<bool> InstantiateModule(Local<Context> context,
ResolveCallback callback);
/**
* ModuleEvaluation
*
* Returns the completion value.
* TODO(neis): Be more precise or say nothing.
*/
V8_WARN_UNUSED_RESULT MaybeLocal<Value> Evaluate(Local<Context> context);
/**
* Returns the namespace object of this module.
* The module's status must be kEvaluated.
*/
Local<Value> GetModuleNamespace();
};
/**
* A compiled JavaScript script, tied to a Context which was active when the
* script was compiled.
*/
class V8_EXPORT Script {
public:
/**
* A shorthand for ScriptCompiler::Compile().
*/
static V8_DEPRECATE_SOON(
"Use maybe version",
Local<Script> Compile(Local<String> source,
ScriptOrigin* origin = nullptr));
static V8_WARN_UNUSED_RESULT MaybeLocal<Script> Compile(
Local<Context> context, Local<String> source,
ScriptOrigin* origin = nullptr);
static Local<Script> V8_DEPRECATE_SOON("Use maybe version",
Compile(Local<String> source,
Local<String> file_name));
/**
* Runs the script returning the resulting value. It will be run in the
* context in which it was created (ScriptCompiler::CompileBound or
* UnboundScript::BindToCurrentContext()).
*/
V8_DEPRECATE_SOON("Use maybe version", Local<Value> Run());
V8_WARN_UNUSED_RESULT MaybeLocal<Value> Run(Local<Context> context);
/**
* Returns the corresponding context-unbound script.
*/
Local<UnboundScript> GetUnboundScript();
};
/**
* For compiling scripts.
*/
class V8_EXPORT ScriptCompiler {
public:
/**
* Compilation data that the embedder can cache and pass back to speed up
* future compilations. The data is produced if the CompilerOptions passed to
* the compilation functions in ScriptCompiler contains produce_data_to_cache
* = true. The data to cache can then can be retrieved from
* UnboundScript.
*/
struct V8_EXPORT CachedData {
enum BufferPolicy {
BufferNotOwned,
BufferOwned
};
CachedData()
: data(NULL),
length(0),
rejected(false),
buffer_policy(BufferNotOwned) {}
// If buffer_policy is BufferNotOwned, the caller keeps the ownership of
// data and guarantees that it stays alive until the CachedData object is
// destroyed. If the policy is BufferOwned, the given data will be deleted
// (with delete[]) when the CachedData object is destroyed.
CachedData(const uint8_t* data, int length,
BufferPolicy buffer_policy = BufferNotOwned);
~CachedData();
// TODO(marja): Async compilation; add constructors which take a callback
// which will be called when V8 no longer needs the data.
const uint8_t* data;
int length;
bool rejected;
BufferPolicy buffer_policy;
// Prevent copying.
CachedData(const CachedData&) = delete;
CachedData& operator=(const CachedData&) = delete;
};
/**
* Source code which can be then compiled to a UnboundScript or Script.
*/
class Source {
public:
// Source takes ownership of CachedData.
V8_INLINE Source(Local<String> source_string, const ScriptOrigin& origin,
CachedData* cached_data = NULL);
V8_INLINE Source(Local<String> source_string,
CachedData* cached_data = NULL);
V8_INLINE ~Source();
// Ownership of the CachedData or its buffers is *not* transferred to the
// caller. The CachedData object is alive as long as the Source object is
// alive.
V8_INLINE const CachedData* GetCachedData() const;
V8_INLINE const ScriptOriginOptions& GetResourceOptions() const;
// Prevent copying.
Source(const Source&) = delete;
Source& operator=(const Source&) = delete;
private:
friend class ScriptCompiler;
Local<String> source_string;
// Origin information
Local<Value> resource_name;
Local<Integer> resource_line_offset;
Local<Integer> resource_column_offset;
ScriptOriginOptions resource_options;
Local<Value> source_map_url;
Local<PrimitiveArray> host_defined_options;
// Cached data from previous compilation (if a kConsume*Cache flag is
// set), or hold newly generated cache data (kProduce*Cache flags) are
// set when calling a compile method.
CachedData* cached_data;
};
/**
* For streaming incomplete script data to V8. The embedder should implement a
* subclass of this class.
*/
class V8_EXPORT ExternalSourceStream {
public:
virtual ~ExternalSourceStream() {}
/**
* V8 calls this to request the next chunk of data from the embedder. This
* function will be called on a background thread, so it's OK to block and
* wait for the data, if the embedder doesn't have data yet. Returns the
* length of the data returned. When the data ends, GetMoreData should
* return 0. Caller takes ownership of the data.
*
* When streaming UTF-8 data, V8 handles multi-byte characters split between
* two data chunks, but doesn't handle multi-byte characters split between
* more than two data chunks. The embedder can avoid this problem by always
* returning at least 2 bytes of data.
*
* If the embedder wants to cancel the streaming, they should make the next
* GetMoreData call return 0. V8 will interpret it as end of data (and most
* probably, parsing will fail). The streaming task will return as soon as
* V8 has parsed the data it received so far.
*/
virtual size_t GetMoreData(const uint8_t** src) = 0;
/**
* V8 calls this method to set a 'bookmark' at the current position in
* the source stream, for the purpose of (maybe) later calling
* ResetToBookmark. If ResetToBookmark is called later, then subsequent
* calls to GetMoreData should return the same data as they did when
* SetBookmark was called earlier.
*
* The embedder may return 'false' to indicate it cannot provide this
* functionality.
*/
virtual bool SetBookmark();
/**
* V8 calls this to return to a previously set bookmark.
*/
virtual void ResetToBookmark();
};
/**
* Source code which can be streamed into V8 in pieces. It will be parsed
* while streaming. It can be compiled after the streaming is complete.
* StreamedSource must be kept alive while the streaming task is ran (see
* ScriptStreamingTask below).
*/
class V8_EXPORT StreamedSource {
public:
enum Encoding { ONE_BYTE, TWO_BYTE, UTF8 };
StreamedSource(ExternalSourceStream* source_stream, Encoding encoding);
~StreamedSource();
// Ownership of the CachedData or its buffers is *not* transferred to the
// caller. The CachedData object is alive as long as the StreamedSource
// object is alive.
const CachedData* GetCachedData() const;
internal::StreamedSource* impl() const { return impl_; }
// Prevent copying.
StreamedSource(const StreamedSource&) = delete;
StreamedSource& operator=(const StreamedSource&) = delete;
private:
internal::StreamedSource* impl_;
};
/**
* A streaming task which the embedder must run on a background thread to
* stream scripts into V8. Returned by ScriptCompiler::StartStreamingScript.
*/
class ScriptStreamingTask {
public:
virtual ~ScriptStreamingTask() {}
virtual void Run() = 0;
};
enum CompileOptions {
kNoCompileOptions = 0,
kProduceParserCache,
kConsumeParserCache,
kProduceCodeCache,
kProduceFullCodeCache,
kConsumeCodeCache,
kEagerCompile
};
/**
* The reason for which we are not requesting or providing a code cache.
*/
enum NoCacheReason {
kNoCacheNoReason = 0,
kNoCacheBecauseCachingDisabled,
kNoCacheBecauseNoResource,
kNoCacheBecauseInlineScript,
kNoCacheBecauseModule,
kNoCacheBecauseStreamingSource,
kNoCacheBecauseInspector,
kNoCacheBecauseScriptTooSmall,
kNoCacheBecauseCacheTooCold,
kNoCacheBecauseV8Extension,
kNoCacheBecauseExtensionModule,
kNoCacheBecausePacScript,
kNoCacheBecauseInDocumentWrite,
kNoCacheBecauseResourceWithNoCacheHandler,
kNoCacheBecauseDeferredProduceCodeCache
};
/**
* Compiles the specified script (context-independent).
* Cached data as part of the source object can be optionally produced to be
* consumed later to speed up compilation of identical source scripts.
*
* Note that when producing cached data, the source must point to NULL for
* cached data. When consuming cached data, the cached data must have been
* produced by the same version of V8.
*
* \param source Script source code.
* \return Compiled script object (context independent; for running it must be
* bound to a context).
*/
static V8_WARN_UNUSED_RESULT MaybeLocal<UnboundScript> CompileUnboundScript(
Isolate* isolate, Source* source,
CompileOptions options = kNoCompileOptions,
NoCacheReason no_cache_reason = kNoCacheNoReason);
/**
* Compiles the specified script (bound to current context).
*
* \param source Script source code.
* \param pre_data Pre-parsing data, as obtained by ScriptData::PreCompile()
* using pre_data speeds compilation if it's done multiple times.
* Owned by caller, no references are kept when this function returns.
* \return Compiled script object, bound to the context that was active
* when this function was called. When run it will always use this
* context.
*/
static V8_WARN_UNUSED_RESULT MaybeLocal<Script> Compile(
Local<Context> context, Source* source,
CompileOptions options = kNoCompileOptions,
NoCacheReason no_cache_reason = kNoCacheNoReason);
/**
* Returns a task which streams script data into V8, or NULL if the script
* cannot be streamed. The user is responsible for running the task on a
* background thread and deleting it. When ran, the task starts parsing the
* script, and it will request data from the StreamedSource as needed. When
* ScriptStreamingTask::Run exits, all data has been streamed and the script
* can be compiled (see Compile below).
*
* This API allows to start the streaming with as little data as possible, and
* the remaining data (for example, the ScriptOrigin) is passed to Compile.
*/
static ScriptStreamingTask* StartStreamingScript(
Isolate* isolate, StreamedSource* source,
CompileOptions options = kNoCompileOptions);
/**
* Compiles a streamed script (bound to current context).
*
* This can only be called after the streaming has finished
* (ScriptStreamingTask has been run). V8 doesn't construct the source string
* during streaming, so the embedder needs to pass the full source here.
*/
static V8_WARN_UNUSED_RESULT MaybeLocal<Script> Compile(
Local<Context> context, StreamedSource* source,
Local<String> full_source_string, const ScriptOrigin& origin);
/**
* Return a version tag for CachedData for the current V8 version & flags.
*
* This value is meant only for determining whether a previously generated
* CachedData instance is still valid; the tag has no other meaing.
*
* Background: The data carried by CachedData may depend on the exact
* V8 version number or current compiler flags. This means that when
* persisting CachedData, the embedder must take care to not pass in
* data from another V8 version, or the same version with different
* features enabled.
*
* The easiest way to do so is to clear the embedder's cache on any
* such change.
*
* Alternatively, this tag can be stored alongside the cached data and
* compared when it is being used.
*/
static uint32_t CachedDataVersionTag();
/**
* Compile an ES module, returning a Module that encapsulates
* the compiled code.
*
* Corresponds to the ParseModule abstract operation in the
* ECMAScript specification.
*/
static V8_WARN_UNUSED_RESULT MaybeLocal<Module> CompileModule(
Isolate* isolate, Source* source);
/**
* Compile a function for a given context. This is equivalent to running
*
* with (obj) {
* return function(args) { ... }
* }
*
* It is possible to specify multiple context extensions (obj in the above
* example).
*/
static V8_DEPRECATE_SOON("Use maybe version",
Local<Function> CompileFunctionInContext(
Isolate* isolate, Source* source,
Local<Context> context, size_t arguments_count,
Local<String> arguments[],
size_t context_extension_count,
Local<Object> context_extensions[]));
static V8_WARN_UNUSED_RESULT MaybeLocal<Function> CompileFunctionInContext(
Local<Context> context, Source* source, size_t arguments_count,
Local<String> arguments[], size_t context_extension_count,
Local<Object> context_extensions[]);
/**
* Creates and returns code cache for the specified unbound_script.
* This will return nullptr if the script cannot be serialized. The
* CachedData returned by this function should be owned by the caller.
*/
static CachedData* CreateCodeCache(Local<UnboundScript> unbound_script,
Local<String> source);
private:
static V8_WARN_UNUSED_RESULT MaybeLocal<UnboundScript> CompileUnboundInternal(
Isolate* isolate, Source* source, CompileOptions options,
NoCacheReason no_cache_reason);
};
/**
* An error message.
*/
class V8_EXPORT Message {
public:
Local<String> Get() const;
V8_DEPRECATE_SOON("Use maybe version", Local<String> GetSourceLine() const);
V8_WARN_UNUSED_RESULT MaybeLocal<String> GetSourceLine(
Local<Context> context) const;
/**
* Returns the origin for the script from where the function causing the
* error originates.
*/
ScriptOrigin GetScriptOrigin() const;
/**
* Returns the resource name for the script from where the function causing
* the error originates.
*/
Local<Value> GetScriptResourceName() const;
/**
* Exception stack trace. By default stack traces are not captured for
* uncaught exceptions. SetCaptureStackTraceForUncaughtExceptions allows
* to change this option.
*/
Local<StackTrace> GetStackTrace() const;
/**
* Returns the number, 1-based, of the line where the error occurred.
*/
V8_DEPRECATE_SOON("Use maybe version", int GetLineNumber() const);
V8_WARN_UNUSED_RESULT Maybe<int> GetLineNumber(Local<Context> context) const;
/**
* Returns the index within the script of the first character where
* the error occurred.
*/
int GetStartPosition() const;
/**
* Returns the index within the script of the last character where
* the error occurred.
*/
int GetEndPosition() const;
/**
* Returns the error level of the message.
*/
int ErrorLevel() const;
/**
* Returns the index within the line of the first character where
* the error occurred.
*/
V8_DEPRECATE_SOON("Use maybe version", int GetStartColumn() const);
V8_WARN_UNUSED_RESULT Maybe<int> GetStartColumn(Local<Context> context) const;
/**
* Returns the index within the line of the last character where
* the error occurred.
*/
V8_WARN_UNUSED_RESULT Maybe<int> GetEndColumn(Local<Context> context) const;
/**
* Passes on the value set by the embedder when it fed the script from which
* this Message was generated to V8.
*/
bool IsSharedCrossOrigin() const;
bool IsOpaque() const;
// TODO(1245381): Print to a string instead of on a FILE.
static void PrintCurrentStackTrace(Isolate* isolate, FILE* out);
static const int kNoLineNumberInfo = 0;
static const int kNoColumnInfo = 0;
static const int kNoScriptIdInfo = 0;
};
/**
* Representation of a JavaScript stack trace. The information collected is a
* snapshot of the execution stack and the information remains valid after
* execution continues.
*/
class V8_EXPORT StackTrace {
public:
/**
* Flags that determine what information is placed captured for each
* StackFrame when grabbing the current stack trace.
* Note: these options are deprecated and we always collect all available
* information (kDetailed).
*/
enum StackTraceOptions {
kLineNumber = 1,
kColumnOffset = 1 << 1 | kLineNumber,
kScriptName = 1 << 2,
kFunctionName = 1 << 3,
kIsEval = 1 << 4,
kIsConstructor = 1 << 5,
kScriptNameOrSourceURL = 1 << 6,
kScriptId = 1 << 7,
kExposeFramesAcrossSecurityOrigins = 1 << 8,
kOverview = kLineNumber | kColumnOffset | kScriptName | kFunctionName,
kDetailed = kOverview | kIsEval | kIsConstructor | kScriptNameOrSourceURL
};
/**
* Returns a StackFrame at a particular index.
*/
Local<StackFrame> GetFrame(uint32_t index) const;
/**
* Returns the number of StackFrames.
*/
int GetFrameCount() const;
/**
* Grab a snapshot of the current JavaScript execution stack.
*
* \param frame_limit The maximum number of stack frames we want to capture.
* \param options Enumerates the set of things we will capture for each
* StackFrame.
*/
static Local<StackTrace> CurrentStackTrace(
Isolate* isolate, int frame_limit, StackTraceOptions options = kDetailed);
};
/**
* A single JavaScript stack frame.
*/
class V8_EXPORT StackFrame {
public:
/**
* Returns the number, 1-based, of the line for the associate function call.
* This method will return Message::kNoLineNumberInfo if it is unable to
* retrieve the line number, or if kLineNumber was not passed as an option
* when capturing the StackTrace.
*/
int GetLineNumber() const;
/**
* Returns the 1-based column offset on the line for the associated function
* call.
* This method will return Message::kNoColumnInfo if it is unable to retrieve
* the column number, or if kColumnOffset was not passed as an option when
* capturing the StackTrace.
*/
int GetColumn() const;
/**
* Returns the id of the script for the function for this StackFrame.
* This method will return Message::kNoScriptIdInfo if it is unable to
* retrieve the script id, or if kScriptId was not passed as an option when
* capturing the StackTrace.
*/
int GetScriptId() const;
/**
* Returns the name of the resource that contains the script for the
* function for this StackFrame.
*/
Local<String> GetScriptName() const;
/**
* Returns the name of the resource that contains the script for the
* function for this StackFrame or sourceURL value if the script name
* is undefined and its source ends with //# sourceURL=... string or
* deprecated //@ sourceURL=... string.
*/
Local<String> GetScriptNameOrSourceURL() const;
/**
* Returns the name of the function associated with this stack frame.
*/
Local<String> GetFunctionName() const;
/**
* Returns whether or not the associated function is compiled via a call to
* eval().
*/
bool IsEval() const;
/**
* Returns whether or not the associated function is called as a
* constructor via "new".
*/
bool IsConstructor() const;
/**
* Returns whether or not the associated functions is defined in wasm.
*/
bool IsWasm() const;
};
// A StateTag represents a possible state of the VM.
enum StateTag {
JS,
GC,
PARSER,
BYTECODE_COMPILER,
COMPILER,
OTHER,
EXTERNAL,
IDLE
};
// A RegisterState represents the current state of registers used
// by the sampling profiler API.
struct RegisterState {
RegisterState() : pc(nullptr), sp(nullptr), fp(nullptr) {}
void* pc; // Instruction pointer.
void* sp; // Stack pointer.
void* fp; // Frame pointer.
};
// The output structure filled up by GetStackSample API function.
struct SampleInfo {
size_t frames_count; // Number of frames collected.
StateTag vm_state; // Current VM state.
void* external_callback_entry; // External callback address if VM is
// executing an external callback.
};
/**
* A JSON Parser and Stringifier.
*/
class V8_EXPORT JSON {
public:
/**
* Tries to parse the string |json_string| and returns it as value if
* successful.
*
* \param json_string The string to parse.
* \return The corresponding value if successfully parsed.
*/
static V8_DEPRECATE_SOON("Use the maybe version taking context",
MaybeLocal<Value> Parse(Isolate* isolate,
Local<String> json_string));
static V8_WARN_UNUSED_RESULT MaybeLocal<Value> Parse(
Local<Context> context, Local<String> json_string);
/**
* Tries to stringify the JSON-serializable object |json_object| and returns
* it as string if successful.
*
* \param json_object The JSON-serializable object to stringify.
* \return The corresponding string if successfully stringified.
*/
static V8_WARN_UNUSED_RESULT MaybeLocal<String> Stringify(
Local<Context> context, Local<Value> json_object,
Local<String> gap = Local<String>());
};
/**
* Value serialization compatible with the HTML structured clone algorithm.
* The format is backward-compatible (i.e. safe to store to disk).
*
* WARNING: This API is under development, and changes (including incompatible
* changes to the API or wire format) may occur without notice until this
* warning is removed.
*/
class V8_EXPORT ValueSerializer {
public:
class V8_EXPORT Delegate {
public:
virtual ~Delegate() {}
/**
* Handles the case where a DataCloneError would be thrown in the structured
* clone spec. Other V8 embedders may throw some other appropriate exception
* type.
*/
virtual void ThrowDataCloneError(Local<String> message) = 0;
/**
* The embedder overrides this method to write some kind of host object, if
* possible. If not, a suitable exception should be thrown and
* Nothing<bool>() returned.
*/
virtual Maybe<bool> WriteHostObject(Isolate* isolate, Local<Object> object);
/**
* Called when the ValueSerializer is going to serialize a
* SharedArrayBuffer object. The embedder must return an ID for the
* object, using the same ID if this SharedArrayBuffer has already been
* serialized in this buffer. When deserializing, this ID will be passed to
* ValueDeserializer::TransferSharedArrayBuffer as |transfer_id|.
*
* If the object cannot be serialized, an
* exception should be thrown and Nothing<uint32_t>() returned.
*/
virtual Maybe<uint32_t> GetSharedArrayBufferId(
Isolate* isolate, Local<SharedArrayBuffer> shared_array_buffer);
virtual Maybe<uint32_t> GetWasmModuleTransferId(
Isolate* isolate, Local<WasmCompiledModule> module);
/**
* Allocates memory for the buffer of at least the size provided. The actual
* size (which may be greater or equal) is written to |actual_size|. If no
* buffer has been allocated yet, nullptr will be provided.
*
* If the memory cannot be allocated, nullptr should be returned.
* |actual_size| will be ignored. It is assumed that |old_buffer| is still
* valid in this case and has not been modified.
*/
virtual void* ReallocateBufferMemory(void* old_buffer, size_t size,
size_t* actual_size);
/**
* Frees a buffer allocated with |ReallocateBufferMemory|.
*/
virtual void FreeBufferMemory(void* buffer);
};
explicit ValueSerializer(Isolate* isolate);
ValueSerializer(Isolate* isolate, Delegate* delegate);
~ValueSerializer();
/**
* Writes out a header, which includes the format version.
*/
void WriteHeader();
/**
* Serializes a JavaScript value into the buffer.
*/
V8_WARN_UNUSED_RESULT Maybe<bool> WriteValue(Local<Context> context,
Local<Value> value);
/**
* Returns the stored data. This serializer should not be used once the buffer
* is released. The contents are undefined if a previous write has failed.
*/
V8_DEPRECATE_SOON("Use Release()", std::vector<uint8_t> ReleaseBuffer());
/**
* Returns the stored data (allocated using the delegate's
* AllocateBufferMemory) and its size. This serializer should not be used once
* the buffer is released. The contents are undefined if a previous write has
* failed.
*/
V8_WARN_UNUSED_RESULT std::pair<uint8_t*, size_t> Release();
/**
* Marks an ArrayBuffer as havings its contents transferred out of band.
* Pass the corresponding ArrayBuffer in the deserializing context to
* ValueDeserializer::TransferArrayBuffer.
*/
void TransferArrayBuffer(uint32_t transfer_id,
Local<ArrayBuffer> array_buffer);
/**
* Similar to TransferArrayBuffer, but for SharedArrayBuffer.
*/
V8_DEPRECATE_SOON("Use Delegate::GetSharedArrayBufferId",
void TransferSharedArrayBuffer(
uint32_t transfer_id,
Local<SharedArrayBuffer> shared_array_buffer));
/**
* Indicate whether to treat ArrayBufferView objects as host objects,
* i.e. pass them to Delegate::WriteHostObject. This should not be
* called when no Delegate was passed.
*
* The default is not to treat ArrayBufferViews as host objects.
*/
void SetTreatArrayBufferViewsAsHostObjects(bool mode);
/**
* Write raw data in various common formats to the buffer.
* Note that integer types are written in base-128 varint format, not with a
* binary copy. For use during an override of Delegate::WriteHostObject.
*/
void WriteUint32(uint32_t value);
void WriteUint64(uint64_t value);
void WriteDouble(double value);
void WriteRawBytes(const void* source, size_t length);
private:
ValueSerializer(const ValueSerializer&) = delete;
void operator=(const ValueSerializer&) = delete;
struct PrivateData;
PrivateData* private_;
};
/**
* Deserializes values from data written with ValueSerializer, or a compatible
* implementation.
*
* WARNING: This API is under development, and changes (including incompatible
* changes to the API or wire format) may occur without notice until this
* warning is removed.
*/
class V8_EXPORT ValueDeserializer {
public:
class V8_EXPORT Delegate {
public:
virtual ~Delegate() {}
/**
* The embedder overrides this method to read some kind of host object, if
* possible. If not, a suitable exception should be thrown and
* MaybeLocal<Object>() returned.
*/
virtual MaybeLocal<Object> ReadHostObject(Isolate* isolate);
/**
* Get a WasmCompiledModule given a transfer_id previously provided
* by ValueSerializer::GetWasmModuleTransferId
*/
virtual MaybeLocal<WasmCompiledModule> GetWasmModuleFromId(
Isolate* isolate, uint32_t transfer_id);
};
ValueDeserializer(Isolate* isolate, const uint8_t* data, size_t size);
ValueDeserializer(Isolate* isolate, const uint8_t* data, size_t size,
Delegate* delegate);
~ValueDeserializer();
/**
* Reads and validates a header (including the format version).
* May, for example, reject an invalid or unsupported wire format.
*/
V8_WARN_UNUSED_RESULT Maybe<bool> ReadHeader(Local<Context> context);
/**
* Deserializes a JavaScript value from the buffer.
*/
V8_WARN_UNUSED_RESULT MaybeLocal<Value> ReadValue(Local<Context> context);
/**
* Accepts the array buffer corresponding to the one passed previously to
* ValueSerializer::TransferArrayBuffer.
*/
void TransferArrayBuffer(uint32_t transfer_id,
Local<ArrayBuffer> array_buffer);
/**
* Similar to TransferArrayBuffer, but for SharedArrayBuffer.
* The id is not necessarily in the same namespace as unshared ArrayBuffer
* objects.
*/
void TransferSharedArrayBuffer(uint32_t id,
Local<SharedArrayBuffer> shared_array_buffer);
/**
* Must be called before ReadHeader to enable support for reading the legacy
* wire format (i.e., which predates this being shipped).
*
* Don't use this unless you need to read data written by previous versions of
* blink::ScriptValueSerializer.
*/
void SetSupportsLegacyWireFormat(bool supports_legacy_wire_format);
/**
* Expect inline wasm in the data stream (rather than in-memory transfer)
*/
void SetExpectInlineWasm(bool allow_inline_wasm);
/**
* Reads the underlying wire format version. Likely mostly to be useful to
* legacy code reading old wire format versions. Must be called after
* ReadHeader.
*/
uint32_t GetWireFormatVersion() const;
/**
* Reads raw data in various common formats to the buffer.
* Note that integer types are read in base-128 varint format, not with a
* binary copy. For use during an override of Delegate::ReadHostObject.
*/
V8_WARN_UNUSED_RESULT bool ReadUint32(uint32_t* value);
V8_WARN_UNUSED_RESULT bool ReadUint64(uint64_t* value);
V8_WARN_UNUSED_RESULT bool ReadDouble(double* value);
V8_WARN_UNUSED_RESULT bool ReadRawBytes(size_t length, const void** data);
private:
ValueDeserializer(const ValueDeserializer&) = delete;
void operator=(const ValueDeserializer&) = delete;
struct PrivateData;
PrivateData* private_;
};
// --- Value ---
/**
* The superclass of all JavaScript values and objects.
*/
class V8_EXPORT Value : public Data {
public:
/**
* Returns true if this value is the undefined value. See ECMA-262
* 4.3.10.
*/
V8_INLINE bool IsUndefined() const;
/**
* Returns true if this value is the null value. See ECMA-262
* 4.3.11.
*/
V8_INLINE bool IsNull() const;
/**
* Returns true if this value is either the null or the undefined value.
* See ECMA-262
* 4.3.11. and 4.3.12
*/
V8_INLINE bool IsNullOrUndefined() const;
/**
* Returns true if this value is true.
*/
bool IsTrue() const;
/**
* Returns true if this value is false.
*/
bool IsFalse() const;
/**
* Returns true if this value is a symbol or a string.
*/
bool IsName() const;
/**
* Returns true if this value is an instance of the String type.
* See ECMA-262 8.4.
*/
V8_INLINE bool IsString() const;
/**
* Returns true if this value is a symbol.
*/
bool IsSymbol() const;
/**
* Returns true if this value is a function.
*/
bool IsFunction() const;
/**
* Returns true if this value is an array. Note that it will return false for
* an Proxy for an array.
*/
bool IsArray() const;
/**
* Returns true if this value is an object.
*/
bool IsObject() const;
/**
* Returns true if this value is boolean.
*/
bool IsBoolean() const;
/**
* Returns true if this value is a number.
*/
bool IsNumber() const;
/**
* Returns true if this value is external.
*/
bool IsExternal() const;
/**
* Returns true if this value is a 32-bit signed integer.
*/
bool IsInt32() const;
/**
* Returns true if this value is a 32-bit unsigned integer.
*/
bool IsUint32() const;
/**
* Returns true if this value is a Date.
*/
bool IsDate() const;
/**
* Returns true if this value is an Arguments object.
*/
bool IsArgumentsObject() const;
/**
* Returns true if this value is a Boolean object.
*/
bool IsBooleanObject() const;
/**
* Returns true if this value is a Number object.
*/
bool IsNumberObject() const;
/**
* Returns true if this value is a String object.
*/
bool IsStringObject() const;
/**
* Returns true if this value is a Symbol object.
*/
bool IsSymbolObject() const;
/**
* Returns true if this value is a NativeError.
*/
bool IsNativeError() const;
/**
* Returns true if this value is a RegExp.
*/
bool IsRegExp() const;
/**
* Returns true if this value is an async function.
*/
bool IsAsyncFunction() const;
/**
* Returns true if this value is a Generator function.
*/
bool IsGeneratorFunction() const;
/**
* Returns true if this value is a Generator object (iterator).
*/
bool IsGeneratorObject() const;
/**
* Returns true if this value is a Promise.
*/
bool IsPromise() const;
/**
* Returns true if this value is a Map.
*/
bool IsMap() const;
/**
* Returns true if this value is a Set.
*/
bool IsSet() const;
/**
* Returns true if this value is a Map Iterator.
*/
bool IsMapIterator() const;
/**
* Returns true if this value is a Set Iterator.
*/
bool IsSetIterator() const;
/**
* Returns true if this value is a WeakMap.
*/
bool IsWeakMap() const;
/**
* Returns true if this value is a WeakSet.
*/
bool IsWeakSet() const;
/**
* Returns true if this value is an ArrayBuffer.
*/
bool IsArrayBuffer() const;
/**
* Returns true if this value is an ArrayBufferView.
*/
bool IsArrayBufferView() const;
/**
* Returns true if this value is one of TypedArrays.
*/
bool IsTypedArray() const;
/**
* Returns true if this value is an Uint8Array.
*/
bool IsUint8Array() const;
/**
* Returns true if this value is an Uint8ClampedArray.
*/
bool IsUint8ClampedArray() const;
/**
* Returns true if this value is an Int8Array.
*/
bool IsInt8Array() const;
/**
* Returns true if this value is an Uint16Array.
*/
bool IsUint16Array() const;
/**
* Returns true if this value is an Int16Array.
*/
bool IsInt16Array() const;
/**
* Returns true if this value is an Uint32Array.
*/
bool IsUint32Array() const;
/**
* Returns true if this value is an Int32Array.
*/
bool IsInt32Array() const;
/**
* Returns true if this value is a Float32Array.
*/
bool IsFloat32Array() const;
/**
* Returns true if this value is a Float64Array.
*/
bool IsFloat64Array() const;
/**
* Returns true if this value is a DataView.
*/
bool IsDataView() const;
/**
* Returns true if this value is a SharedArrayBuffer.
* This is an experimental feature.
*/
bool IsSharedArrayBuffer() const;
/**
* Returns true if this value is a JavaScript Proxy.
*/
bool IsProxy() const;
bool IsWebAssemblyCompiledModule() const;
V8_WARN_UNUSED_RESULT MaybeLocal<Boolean> ToBoolean(
Local<Context> context) const;
V8_WARN_UNUSED_RESULT MaybeLocal<Number> ToNumber(
Local<Context> context) const;
V8_WARN_UNUSED_RESULT MaybeLocal<String> ToString(
Local<Context> context) const;
V8_WARN_UNUSED_RESULT MaybeLocal<String> ToDetailString(
Local<Context> context) const;
V8_WARN_UNUSED_RESULT MaybeLocal<Object> ToObject(
Local<Context> context) const;
V8_WARN_UNUSED_RESULT MaybeLocal<Integer> ToInteger(
Local<Context> context) const;
V8_WARN_UNUSED_RESULT MaybeLocal<Uint32> ToUint32(
Local<Context> context) const;
V8_WARN_UNUSED_RESULT MaybeLocal<Int32> ToInt32(Local<Context> context) const;
V8_DEPRECATE_SOON("Use maybe version",
Local<Boolean> ToBoolean(Isolate* isolate) const);
V8_DEPRECATE_SOON("Use maybe version",
Local<Number> ToNumber(Isolate* isolate) const);
V8_DEPRECATE_SOON("Use maybe version",
Local<String> ToString(Isolate* isolate) const);
V8_DEPRECATE_SOON("Use maybe version",
Local<Object> ToObject(Isolate* isolate) const);
V8_DEPRECATE_SOON("Use maybe version",
Local<Integer> ToInteger(Isolate* isolate) const);
V8_DEPRECATE_SOON("Use maybe version",
Local<Int32> ToInt32(Isolate* isolate) const);
inline V8_DEPRECATE_SOON("Use maybe version",
Local<Boolean> ToBoolean() const);
inline V8_DEPRECATE_SOON("Use maybe version", Local<String> ToString() const);
inline V8_DEPRECATE_SOON("Use maybe version", Local<Object> ToObject() const);
inline V8_DEPRECATE_SOON("Use maybe version",
Local<Integer> ToInteger() const);
/**
* Attempts to convert a string to an array index.
* Returns an empty handle if the conversion fails.
*/
V8_WARN_UNUSED_RESULT MaybeLocal<Uint32> ToArrayIndex(
Local<Context> context) const;
V8_WARN_UNUSED_RESULT Maybe<bool> BooleanValue(Local<Context> context) const;
V8_WARN_UNUSED_RESULT Maybe<double> NumberValue(Local<Context> context) const;
V8_WARN_UNUSED_RESULT Maybe<int64_t> IntegerValue(
Local<Context> context) const;
V8_WARN_UNUSED_RESULT Maybe<uint32_t> Uint32Value(
Local<Context> context) const;
V8_WARN_UNUSED_RESULT Maybe<int32_t> Int32Value(Local<Context> context) const;
V8_DEPRECATE_SOON("Use maybe version", bool BooleanValue() const);
V8_DEPRECATE_SOON("Use maybe version", double NumberValue() const);
V8_DEPRECATE_SOON("Use maybe version", int64_t IntegerValue() const);
V8_DEPRECATE_SOON("Use maybe version", uint32_t Uint32Value() const);
V8_DEPRECATE_SOON("Use maybe version", int32_t Int32Value() const);
/** JS == */
V8_DEPRECATE_SOON("Use maybe version", bool Equals(Local<Value> that) const);
V8_WARN_UNUSED_RESULT Maybe<bool> Equals(Local<Context> context,
Local<Value> that) const;
bool StrictEquals(Local<Value> that) const;
bool SameValue(Local<Value> that) const;
template <class T> V8_INLINE static Value* Cast(T* value);
Local<String> TypeOf(Isolate*);
Maybe<bool> InstanceOf(Local<Context> context, Local<Object> object);
private:
V8_INLINE bool QuickIsUndefined() const;
V8_INLINE bool QuickIsNull() const;
V8_INLINE bool QuickIsNullOrUndefined() const;
V8_INLINE bool QuickIsString() const;
bool FullIsUndefined() const;
bool FullIsNull() const;
bool FullIsString() const;
};
/**
* The superclass of primitive values. See ECMA-262 4.3.2.
*/
class V8_EXPORT Primitive : public Value { };
/**
* A primitive boolean value (ECMA-262, 4.3.14). Either the true
* or false value.
*/
class V8_EXPORT Boolean : public Primitive {
public:
bool Value() const;
V8_INLINE static Boolean* Cast(v8::Value* obj);
V8_INLINE static Local<Boolean> New(Isolate* isolate, bool value);
private:
static void CheckCast(v8::Value* obj);
};
/**
* A superclass for symbols and strings.
*/
class V8_EXPORT Name : public Primitive {
public:
/**
* Returns the identity hash for this object. The current implementation
* uses an inline property on the object to store the identity hash.
*
* The return value will never be 0. Also, it is not guaranteed to be
* unique.
*/
int GetIdentityHash();
V8_INLINE static Name* Cast(Value* obj);
private:
static void CheckCast(Value* obj);
};
/**
* A flag describing different modes of string creation.
*
* Aside from performance implications there are no differences between the two
* creation modes.
*/
enum class NewStringType {
/**
* Create a new string, always allocating new storage memory.
*/
kNormal,
/**
* Acts as a hint that the string should be created in the
* old generation heap space and be deduplicated if an identical string
* already exists.
*/
kInternalized
};
/**
* A JavaScript string value (ECMA-262, 4.3.17).
*/
class V8_EXPORT String : public Name {
public:
static constexpr int kMaxLength =
sizeof(void*) == 4 ? (1 << 28) - 16 : (1 << 30) - 1 - 24;
enum Encoding {
UNKNOWN_ENCODING = 0x1,
TWO_BYTE_ENCODING = 0x0,
ONE_BYTE_ENCODING = 0x8
};
/**
* Returns the number of characters (UTF-16 code units) in this string.
*/
int Length() const;
/**
* Returns the number of bytes in the UTF-8 encoded
* representation of this string.
*/
int Utf8Length() const;
/**
* Returns whether this string is known to contain only one byte data,
* i.e. ISO-8859-1 code points.
* Does not read the string.
* False negatives are possible.
*/
bool IsOneByte() const;
/**
* Returns whether this string contain only one byte data,
* i.e. ISO-8859-1 code points.
* Will read the entire string in some cases.
*/
bool ContainsOnlyOneByte() const;
/**
* Write the contents of the string to an external buffer.
* If no arguments are given, expects the buffer to be large
* enough to hold the entire string and NULL terminator. Copies
* the contents of the string and the NULL terminator into the
* buffer.
*
* WriteUtf8 will not write partial UTF-8 sequences, preferring to stop
* before the end of the buffer.
*
* Copies up to length characters into the output buffer.
* Only null-terminates if there is enough space in the buffer.
*
* \param buffer The buffer into which the string will be copied.
* \param start The starting position within the string at which
* copying begins.
* \param length The number of characters to copy from the string. For
* WriteUtf8 the number of bytes in the buffer.
* \param nchars_ref The number of characters written, can be NULL.
* \param options Various options that might affect performance of this or
* subsequent operations.
* \return The number of characters copied to the buffer excluding the null
* terminator. For WriteUtf8: The number of bytes copied to the buffer
* including the null terminator (if written).
*/
enum WriteOptions {
NO_OPTIONS = 0,
HINT_MANY_WRITES_EXPECTED = 1,
NO_NULL_TERMINATION = 2,
PRESERVE_ONE_BYTE_NULL = 4,
// Used by WriteUtf8 to replace orphan surrogate code units with the
// unicode replacement character. Needs to be set to guarantee valid UTF-8
// output.
REPLACE_INVALID_UTF8 = 8
};
// 16-bit character codes.
int Write(uint16_t* buffer,
int start = 0,
int length = -1,
int options = NO_OPTIONS) const;
// One byte characters.
int WriteOneByte(uint8_t* buffer,
int start = 0,
int length = -1,
int options = NO_OPTIONS) const;
// UTF-8 encoded characters.
int WriteUtf8(char* buffer,
int length = -1,
int* nchars_ref = NULL,
int options = NO_OPTIONS) const;
/**
* A zero length string.
*/
V8_INLINE static Local<String> Empty(Isolate* isolate);
/**
* Returns true if the string is external
*/
bool IsExternal() const;
/**
* Returns true if the string is both external and one-byte.
*/
bool IsExternalOneByte() const;
class V8_EXPORT ExternalStringResourceBase { // NOLINT
public:
virtual ~ExternalStringResourceBase() {}
virtual bool IsCompressible() const { return false; }
protected:
ExternalStringResourceBase() {}
/**
* Internally V8 will call this Dispose method when the external string
* resource is no longer needed. The default implementation will use the
* delete operator. This method can be overridden in subclasses to
* control how allocated external string resources are disposed.
*/
virtual void Dispose() { delete this; }
// Disallow copying and assigning.
ExternalStringResourceBase(const ExternalStringResourceBase&) = delete;
void operator=(const ExternalStringResourceBase&) = delete;
private:
friend class internal::Heap;
friend class v8::String;
};
/**
* An ExternalStringResource is a wrapper around a two-byte string
* buffer that resides outside V8's heap. Implement an
* ExternalStringResource to manage the life cycle of the underlying
* buffer. Note that the string data must be immutable.
*/
class V8_EXPORT ExternalStringResource
: public ExternalStringResourceBase {
public:
/**
* Override the destructor to manage the life cycle of the underlying
* buffer.
*/
virtual ~ExternalStringResource() {}
/**
* The string data from the underlying buffer.
*/
virtual const uint16_t* data() const = 0;
/**
* The length of the string. That is, the number of two-byte characters.
*/
virtual size_t length() const = 0;
protected:
ExternalStringResource() {}
};
/**
* An ExternalOneByteStringResource is a wrapper around an one-byte
* string buffer that resides outside V8's heap. Implement an
* ExternalOneByteStringResource to manage the life cycle of the
* underlying buffer. Note that the string data must be immutable
* and that the data must be Latin-1 and not UTF-8, which would require
* special treatment internally in the engine and do not allow efficient
* indexing. Use String::New or convert to 16 bit data for non-Latin1.
*/
class V8_EXPORT ExternalOneByteStringResource
: public ExternalStringResourceBase {
public:
/**
* Override the destructor to manage the life cycle of the underlying
* buffer.
*/
virtual ~ExternalOneByteStringResource() {}
/** The string data from the underlying buffer.*/
virtual const char* data() const = 0;
/** The number of Latin-1 characters in the string.*/
virtual size_t length() const = 0;
protected:
ExternalOneByteStringResource() {}
};
/**
* If the string is an external string, return the ExternalStringResourceBase
* regardless of the encoding, otherwise return NULL. The encoding of the
* string is returned in encoding_out.
*/
V8_INLINE ExternalStringResourceBase* GetExternalStringResourceBase(
Encoding* encoding_out) const;
/**
* Get the ExternalStringResource for an external string. Returns
* NULL if IsExternal() doesn't return true.
*/
V8_INLINE ExternalStringResource* GetExternalStringResource() const;
/**
* Get the ExternalOneByteStringResource for an external one-byte string.
* Returns NULL if IsExternalOneByte() doesn't return true.
*/
const ExternalOneByteStringResource* GetExternalOneByteStringResource() const;
V8_INLINE static String* Cast(v8::Value* obj);
// TODO(dcarney): remove with deprecation of New functions.
enum NewStringType {
kNormalString = static_cast<int>(v8::NewStringType::kNormal),
kInternalizedString = static_cast<int>(v8::NewStringType::kInternalized)
};
/** Allocates a new string from UTF-8 data.*/
static V8_DEPRECATE_SOON(
"Use maybe version",
Local<String> NewFromUtf8(Isolate* isolate, const char* data,
NewStringType type = kNormalString,
int length = -1));
/** Allocates a new string from UTF-8 data. Only returns an empty value when
* length > kMaxLength. **/
static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewFromUtf8(
Isolate* isolate, const char* data, v8::NewStringType type,
int length = -1);
/** Allocates a new string from Latin-1 data. Only returns an empty value
* when length > kMaxLength. **/
static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewFromOneByte(
Isolate* isolate, const uint8_t* data, v8::NewStringType type,
int length = -1);
/** Allocates a new string from UTF-16 data.*/
static V8_DEPRECATE_SOON(
"Use maybe version",
Local<String> NewFromTwoByte(Isolate* isolate, const uint16_t* data,
NewStringType type = kNormalString,
int length = -1));
/** Allocates a new string from UTF-16 data. Only returns an empty value when
* length > kMaxLength. **/
static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewFromTwoByte(
Isolate* isolate, const uint16_t* data, v8::NewStringType type,
int length = -1);
/**
* Creates a new string by concatenating the left and the right strings
* passed in as parameters.
*/
static Local<String> Concat(Local<String> left, Local<String> right);
/**
* Creates a new external string using the data defined in the given
* resource. When the external string is no longer live on V8's heap the
* resource will be disposed by calling its Dispose method. The caller of
* this function should not otherwise delete or modify the resource. Neither
* should the underlying buffer be deallocated or modified except through the
* destructor of the external string resource.
*/
static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewExternalTwoByte(
Isolate* isolate, ExternalStringResource* resource);
/**
* Associate an external string resource with this string by transforming it
* in place so that existing references to this string in the JavaScript heap
* will use the external string resource. The external string resource's
* character contents need to be equivalent to this string.
* Returns true if the string has been changed to be an external string.
* The string is not modified if the operation fails. See NewExternal for
* information on the lifetime of the resource.
*/
bool MakeExternal(ExternalStringResource* resource);
/**
* Creates a new external string using the one-byte data defined in the given
* resource. When the external string is no longer live on V8's heap the
* resource will be disposed by calling its Dispose method. The caller of
* this function should not otherwise delete or modify the resource. Neither
* should the underlying buffer be deallocated or modified except through the
* destructor of the external string resource.
*/
static V8_DEPRECATE_SOON(
"Use maybe version",
Local<String> NewExternal(Isolate* isolate,
ExternalOneByteStringResource* resource));
static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewExternalOneByte(
Isolate* isolate, ExternalOneByteStringResource* resource);
/**
* Associate an external string resource with this string by transforming it
* in place so that existing references to this string in the JavaScript heap
* will use the external string resource. The external string resource's
* character contents need to be equivalent to this string.
* Returns true if the string has been changed to be an external string.
* The string is not modified if the operation fails. See NewExternal for
* information on the lifetime of the resource.
*/
bool MakeExternal(ExternalOneByteStringResource* resource);
/**
* Returns true if this string can be made external.
*/
bool CanMakeExternal();
/**
* Converts an object to a UTF-8-encoded character array. Useful if
* you want to print the object. If conversion to a string fails
* (e.g. due to an exception in the toString() method of the object)
* then the length() method returns 0 and the * operator returns
* NULL.
*/
class V8_EXPORT Utf8Value {
public:
V8_DEPRECATE_SOON("Use Isolate version",
explicit Utf8Value(Local<v8::Value> obj));
Utf8Value(Isolate* isolate, Local<v8::Value> obj);
~Utf8Value();
char* operator*() { return str_; }
const char* operator*() const { return str_; }
int length() const { return length_; }
// Disallow copying and assigning.
Utf8Value(const Utf8Value&) = delete;
void operator=(const Utf8Value&) = delete;
private:
char* str_;
int length_;
};
/**
* Converts an object to a two-byte (UTF-16-encoded) string.
* If conversion to a string fails (eg. due to an exception in the toString()
* method of the object) then the length() method returns 0 and the * operator
* returns NULL.
*/
class V8_EXPORT Value {
public:
V8_DEPRECATE_SOON("Use Isolate version",
explicit Value(Local<v8::Value> obj));
Value(Isolate* isolate, Local<v8::Value> obj);
~Value();
uint16_t* operator*() { return str_; }
const uint16_t* operator*() const { return str_; }
int length() const { return length_; }
// Disallow copying and assigning.
Value(const Value&) = delete;
void operator=(const Value&) = delete;
private:
uint16_t* str_;
int length_;
};
private:
void VerifyExternalStringResourceBase(ExternalStringResourceBase* v,
Encoding encoding) const;
void VerifyExternalStringResource(ExternalStringResource* val) const;
static void CheckCast(v8::Value* obj);
};
/**
* A JavaScript symbol (ECMA-262 edition 6)
*/
class V8_EXPORT Symbol : public Name {
public:
/**
* Returns the print name string of the symbol, or undefined if none.
*/
Local<Value> Name() const;
/**
* Create a symbol. If name is not empty, it will be used as the description.
*/
static Local<Symbol> New(Isolate* isolate,
Local<String> name = Local<String>());
/**
* Access global symbol registry.
* Note that symbols created this way are never collected, so
* they should only be used for statically fixed properties.
* Also, there is only one global name space for the names used as keys.
* To minimize the potential for clashes, use qualified names as keys.
*/
static Local<Symbol> For(Isolate *isolate, Local<String> name);
/**
* Retrieve a global symbol. Similar to |For|, but using a separate
* registry that is not accessible by (and cannot clash with) JavaScript code.
*/
static Local<Symbol> ForApi(Isolate *isolate, Local<String> name);
// Well-known symbols
static Local<Symbol> GetHasInstance(Isolate* isolate);
static Local<Symbol> GetIsConcatSpreadable(Isolate* isolate);
static Local<Symbol> GetIterator(Isolate* isolate);
static Local<Symbol> GetMatch(Isolate* isolate);
static Local<Symbol> GetReplace(Isolate* isolate);
static Local<Symbol> GetSearch(Isolate* isolate);
static Local<Symbol> GetSplit(Isolate* isolate);
static Local<Symbol> GetToPrimitive(Isolate* isolate);
static Local<Symbol> GetToStringTag(Isolate* isolate);
static Local<Symbol> GetUnscopables(Isolate* isolate);
V8_INLINE static Symbol* Cast(Value* obj);
private:
Symbol();
static void CheckCast(Value* obj);
};
/**
* A private symbol
*
* This is an experimental feature. Use at your own risk.
*/
class V8_EXPORT Private : public Data {
public:
/**
* Returns the print name string of the private symbol, or undefined if none.
*/
Local<Value> Name() const;
/**
* Create a private symbol. If name is not empty, it will be the description.
*/
static Local<Private> New(Isolate* isolate,
Local<String> name = Local<String>());
/**
* Retrieve a global private symbol. If a symbol with this name has not
* been retrieved in the same isolate before, it is created.
* Note that private symbols created this way are never collected, so
* they should only be used for statically fixed properties.
* Also, there is only one global name space for the names used as keys.
* To minimize the potential for clashes, use qualified names as keys,
* e.g., "Class#property".
*/
static Local<Private> ForApi(Isolate* isolate, Local<String> name);
V8_INLINE static Private* Cast(Data* data);
private:
Private();
static void CheckCast(Data* that);
};
/**
* A JavaScript number value (ECMA-262, 4.3.20)
*/
class V8_EXPORT Number : public Primitive {
public:
double Value() const;
static Local<Number> New(Isolate* isolate, double value);
V8_INLINE static Number* Cast(v8::Value* obj);
private:
Number();
static void CheckCast(v8::Value* obj);
};
/**
* A JavaScript value representing a signed integer.
*/
class V8_EXPORT Integer : public Number {
public:
static Local<Integer> New(Isolate* isolate, int32_t value);
static Local<Integer> NewFromUnsigned(Isolate* isolate, uint32_t value);
int64_t Value() const;
V8_INLINE static Integer* Cast(v8::Value* obj);
private:
Integer();
static void CheckCast(v8::Value* obj);
};
/**
* A JavaScript value representing a 32-bit signed integer.
*/
class V8_EXPORT Int32 : public Integer {
public:
int32_t Value() const;
V8_INLINE static Int32* Cast(v8::Value* obj);
private:
Int32();
static void CheckCast(v8::Value* obj);
};
/**
* A JavaScript value representing a 32-bit unsigned integer.
*/
class V8_EXPORT Uint32 : public Integer {
public:
uint32_t Value() const;
V8_INLINE static Uint32* Cast(v8::Value* obj);
private:
Uint32();
static void CheckCast(v8::Value* obj);
};
/**
* PropertyAttribute.
*/
enum PropertyAttribute {
/** None. **/
None = 0,
/** ReadOnly, i.e., not writable. **/
ReadOnly = 1 << 0,
/** DontEnum, i.e., not enumerable. **/
DontEnum = 1 << 1,
/** DontDelete, i.e., not configurable. **/
DontDelete = 1 << 2
};
/**
* Accessor[Getter|Setter] are used as callback functions when
* setting|getting a particular property. See Object and ObjectTemplate's
* method SetAccessor.
*/
typedef void (*AccessorGetterCallback)(
Local<String> property,
const PropertyCallbackInfo<Value>& info);
typedef void (*AccessorNameGetterCallback)(
Local<Name> property,
const PropertyCallbackInfo<Value>& info);
typedef void (*AccessorSetterCallback)(
Local<String> property,
Local<Value> value,
const PropertyCallbackInfo<void>& info);
typedef void (*AccessorNameSetterCallback)(
Local<Name> property,
Local<Value> value,
const PropertyCallbackInfo<void>& info);
/**
* Access control specifications.
*
* Some accessors should be accessible across contexts. These
* accessors have an explicit access control parameter which specifies
* the kind of cross-context access that should be allowed.
*
* TODO(dcarney): Remove PROHIBITS_OVERWRITING as it is now unused.
*/
enum AccessControl {
DEFAULT = 0,
ALL_CAN_READ = 1,
ALL_CAN_WRITE = 1 << 1,
PROHIBITS_OVERWRITING = 1 << 2
};
/**
* Property filter bits. They can be or'ed to build a composite filter.
*/
enum PropertyFilter {
ALL_PROPERTIES = 0,
ONLY_WRITABLE = 1,
ONLY_ENUMERABLE = 2,
ONLY_CONFIGURABLE = 4,
SKIP_STRINGS = 8,
SKIP_SYMBOLS = 16
};
/**
* Keys/Properties filter enums:
*
* KeyCollectionMode limits the range of collected properties. kOwnOnly limits
* the collected properties to the given Object only. kIncludesPrototypes will
* include all keys of the objects's prototype chain as well.
*/
enum class KeyCollectionMode { kOwnOnly, kIncludePrototypes };
/**
* kIncludesIndices allows for integer indices to be collected, while
* kSkipIndices will exclude integer indicies from being collected.
*/
enum class IndexFilter { kIncludeIndices, kSkipIndices };
/**
* Integrity level for objects.
*/
enum class IntegrityLevel { kFrozen, kSealed };
/**
* A JavaScript object (ECMA-262, 4.3.3)
*/
class V8_EXPORT Object : public Value {
public:
V8_DEPRECATE_SOON("Use maybe version",
bool Set(Local<Value> key, Local<Value> value));
V8_WARN_UNUSED_RESULT Maybe<bool> Set(Local<Context> context,
Local<Value> key, Local<Value> value);
V8_DEPRECATE_SOON("Use maybe version",
bool Set(uint32_t index, Local<Value> value));
V8_WARN_UNUSED_RESULT Maybe<bool> Set(Local<Context> context, uint32_t index,
Local<Value> value);
// Implements CreateDataProperty (ECMA-262, 7.3.4).
//
// Defines a configurable, writable, enumerable property with the given value
// on the object unless the property already exists and is not configurable
// or the object is not extensible.
//
// Returns true on success.
V8_WARN_UNUSED_RESULT Maybe<bool> CreateDataProperty(Local<Context> context,
Local<Name> key,
Local<Value> value);
V8_WARN_UNUSED_RESULT Maybe<bool> CreateDataProperty(Local<Context> context,
uint32_t index,
Local<Value> value);
// Implements DefineOwnProperty.
//
// In general, CreateDataProperty will be faster, however, does not allow
// for specifying attributes.
//
// Returns true on success.
V8_WARN_UNUSED_RESULT Maybe<bool> DefineOwnProperty(
Local<Context> context, Local<Name> key, Local<Value> value,
PropertyAttribute attributes = None);
// Implements Object.DefineProperty(O, P, Attributes), see Ecma-262 19.1.2.4.
//
// The defineProperty function is used to add an own property or
// update the attributes of an existing own property of an object.
//
// Both data and accessor descriptors can be used.
//
// In general, CreateDataProperty is faster, however, does not allow
// for specifying attributes or an accessor descriptor.
//
// The PropertyDescriptor can change when redefining a property.
//
// Returns true on success.
V8_WARN_UNUSED_RESULT Maybe<bool> DefineProperty(
Local<Context> context, Local<Name> key, PropertyDescriptor& descriptor);
V8_DEPRECATE_SOON("Use maybe version", Local<Value> Get(Local<Value> key));
V8_WARN_UNUSED_RESULT MaybeLocal<Value> Get(Local<Context> context,
Local<Value> key);
V8_DEPRECATE_SOON("Use maybe version", Local<Value> Get(uint32_t index));
V8_WARN_UNUSED_RESULT MaybeLocal<Value> Get(Local<Context> context,
uint32_t index);
/**
* Gets the property attributes of a property which can be None or
* any combination of ReadOnly, DontEnum and DontDelete. Returns
* None when the property doesn't exist.
*/
V8_WARN_UNUSED_RESULT Maybe<PropertyAttribute> GetPropertyAttributes(
Local<Context> context, Local<Value> key);
/**
* Returns Object.getOwnPropertyDescriptor as per ES2016 section 19.1.2.6.
*/
V8_WARN_UNUSED_RESULT MaybeLocal<Value> GetOwnPropertyDescriptor(
Local<Context> context, Local<Name> key);
V8_DEPRECATE_SOON("Use maybe version", bool Has(Local<Value> key));
/**
* Object::Has() calls the abstract operation HasProperty(O, P) described
* in ECMA-262, 7.3.10. Has() returns
* true, if the object has the property, either own or on the prototype chain.
* Interceptors, i.e., PropertyQueryCallbacks, are called if present.
*
* Has() has the same side effects as JavaScript's `variable in object`.
* For example, calling Has() on a revoked proxy will throw an exception.
*
* \note Has() converts the key to a name, which possibly calls back into
* JavaScript.
*
* See also v8::Object::HasOwnProperty() and
* v8::Object::HasRealNamedProperty().
*/
V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context,
Local<Value> key);
V8_DEPRECATE_SOON("Use maybe version", bool Delete(Local<Value> key));
V8_WARN_UNUSED_RESULT Maybe<bool> Delete(Local<Context> context,
Local<Value> key);
V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context,
uint32_t index);
V8_WARN_UNUSED_RESULT Maybe<bool> Delete(Local<Context> context,
uint32_t index);
V8_WARN_UNUSED_RESULT Maybe<bool> SetAccessor(Local<Context> context,
Local<Name> name,
AccessorNameGetterCallback getter,
AccessorNameSetterCallback setter = 0,
MaybeLocal<Value> data = MaybeLocal<Value>(),
AccessControl settings = DEFAULT,
PropertyAttribute attribute = None);
void SetAccessorProperty(Local<Name> name, Local<Function> getter,
Local<Function> setter = Local<Function>(),
PropertyAttribute attribute = None,
AccessControl settings = DEFAULT);
/**
* Sets a native data property like Template::SetNativeDataProperty, but
* this method sets on this object directly.
*/
V8_WARN_UNUSED_RESULT Maybe<bool> SetNativeDataProperty(
Local<Context> context, Local<Name> name,
AccessorNameGetterCallback getter,
AccessorNameSetterCallback setter = nullptr,
Local<Value> data = Local<Value>(), PropertyAttribute attributes = None);
/**
* Functionality for private properties.
* This is an experimental feature, use at your own risk.
* Note: Private properties are not inherited. Do not rely on this, since it
* may change.
*/
Maybe<bool> HasPrivate(Local<Context> context, Local<Private> key);
Maybe<bool> SetPrivate(Local<Context> context, Local<Private> key,
Local<Value> value);
Maybe<bool> DeletePrivate(Local<Context> context, Local<Private> key);
MaybeLocal<Value> GetPrivate(Local<Context> context, Local<Private> key);
/**
* Returns an array containing the names of the enumerable properties
* of this object, including properties from prototype objects. The
* array returned by this method contains the same values as would
* be enumerated by a for-in statement over this object.
*/
V8_DEPRECATE_SOON("Use maybe version", Local<Array> GetPropertyNames());
V8_WARN_UNUSED_RESULT MaybeLocal<Array> GetPropertyNames(
Local<Context> context);
V8_WARN_UNUSED_RESULT MaybeLocal<Array> GetPropertyNames(
Local<Context> context, KeyCollectionMode mode,
PropertyFilter property_filter, IndexFilter index_filter);
/**
* This function has the same functionality as GetPropertyNames but
* the returned array doesn't contain the names of properties from
* prototype objects.
*/
V8_DEPRECATE_SOON("Use maybe version", Local<Array> GetOwnPropertyNames());
V8_WARN_UNUSED_RESULT MaybeLocal<Array> GetOwnPropertyNames(
Local<Context> context);
/**
* Returns an array containing the names of the filtered properties
* of this object, including properties from prototype objects. The
* array returned by this method contains the same values as would
* be enumerated by a for-in statement over this object.
*/
V8_WARN_UNUSED_RESULT MaybeLocal<Array> GetOwnPropertyNames(
Local<Context> context, PropertyFilter filter);
/**
* Get the prototype object. This does not skip objects marked to
* be skipped by __proto__ and it does not consult the security
* handler.
*/
Local<Value> GetPrototype();
/**
* Set the prototype object. This does not skip objects marked to
* be skipped by __proto__ and it does not consult the security
* handler.
*/
V8_WARN_UNUSED_RESULT Maybe<bool> SetPrototype(Local<Context> context,
Local<Value> prototype);
/**
* Finds an instance of the given function template in the prototype
* chain.
*/
Local<Object> FindInstanceInPrototypeChain(Local<FunctionTemplate> tmpl);
/**
* Call builtin Object.prototype.toString on this object.
* This is different from Value::ToString() that may call
* user-defined toString function. This one does not.
*/
V8_WARN_UNUSED_RESULT MaybeLocal<String> ObjectProtoToString(
Local<Context> context);
/**
* Returns the name of the function invoked as a constructor for this object.
*/
Local<String> GetConstructorName();
/**
* Sets the integrity level of the object.
*/
Maybe<bool> SetIntegrityLevel(Local<Context> context, IntegrityLevel level);
/** Gets the number of internal fields for this Object. */
int InternalFieldCount();
/** Same as above, but works for Persistents */
V8_INLINE static int InternalFieldCount(
const PersistentBase<Object>& object) {
return object.val_->InternalFieldCount();
}
/** Gets the value from an internal field. */
V8_INLINE Local<Value> GetInternalField(int index);
/** Sets the value in an internal field. */
void SetInternalField(int index, Local<Value> value);
/**
* Gets a 2-byte-aligned native pointer from an internal field. This field
* must have been set by SetAlignedPointerInInternalField, everything else
* leads to undefined behavior.
*/
V8_INLINE void* GetAlignedPointerFromInternalField(int index);
/** Same as above, but works for Persistents */
V8_INLINE static void* GetAlignedPointerFromInternalField(
const PersistentBase<Object>& object, int index) {
return object.val_->GetAlignedPointerFromInternalField(index);
}
/**
* Sets a 2-byte-aligned native pointer in an internal field. To retrieve such
* a field, GetAlignedPointerFromInternalField must be used, everything else
* leads to undefined behavior.
*/
void SetAlignedPointerInInternalField(int index, void* value);
void SetAlignedPointerInInternalFields(int argc, int indices[],
void* values[]);
/**
* HasOwnProperty() is like JavaScript's Object.prototype.hasOwnProperty().
*
* See also v8::Object::Has() and v8::Object::HasRealNamedProperty().
*/
V8_WARN_UNUSED_RESULT Maybe<bool> HasOwnProperty(Local<Context> context,
Local<Name> key);
V8_WARN_UNUSED_RESULT Maybe<bool> HasOwnProperty(Local<Context> context,
uint32_t index);
V8_DEPRECATE_SOON("Use maybe version",
bool HasRealNamedProperty(Local<String> key));
/**
* Use HasRealNamedProperty() if you want to check if an object has an own
* property without causing side effects, i.e., without calling interceptors.
*
* This function is similar to v8::Object::HasOwnProperty(), but it does not
* call interceptors.
*
* \note Consider using non-masking interceptors, i.e., the interceptors are
* not called if the receiver has the real named property. See
* `v8::PropertyHandlerFlags::kNonMasking`.
*
* See also v8::Object::Has().
*/
V8_WARN_UNUSED_RESULT Maybe<bool> HasRealNamedProperty(Local<Context> context,
Local<Name> key);
V8_DEPRECATE_SOON("Use maybe version",
bool HasRealIndexedProperty(uint32_t index));
V8_WARN_UNUSED_RESULT Maybe<bool> HasRealIndexedProperty(
Local<Context> context, uint32_t index);
V8_DEPRECATE_SOON("Use maybe version",
bool HasRealNamedCallbackProperty(Local<String> key));
V8_WARN_UNUSED_RESULT Maybe<bool> HasRealNamedCallbackProperty(
Local<Context> context, Local<Name> key);
/**
* If result.IsEmpty() no real property was located in the prototype chain.
* This means interceptors in the prototype chain are not called.
*/
V8_WARN_UNUSED_RESULT MaybeLocal<Value> GetRealNamedPropertyInPrototypeChain(
Local<Context> context, Local<Name> key);
/**
* Gets the property attributes of a real property in the prototype chain,
* which can be None or any combination of ReadOnly, DontEnum and DontDelete.
* Interceptors in the prototype chain are not called.
*/
V8_WARN_UNUSED_RESULT Maybe<PropertyAttribute>
GetRealNamedPropertyAttributesInPrototypeChain(Local<Context> context,
Local<Name> key);
/**
* If result.IsEmpty() no real property was located on the object or
* in the prototype chain.
* This means interceptors in the prototype chain are not called.
*/
V8_WARN_UNUSED_RESULT MaybeLocal<Value> GetRealNamedProperty(
Local<Context> context, Local<Name> key);
/**
* Gets the property attributes of a real property which can be
* None or any combination of ReadOnly, DontEnum and DontDelete.
* Interceptors in the prototype chain are not called.
*/
V8_WARN_UNUSED_RESULT Maybe<PropertyAttribute> GetRealNamedPropertyAttributes(
Local<Context> context, Local<Name> key);
/** Tests for a named lookup interceptor.*/
bool HasNamedLookupInterceptor();
/** Tests for an index lookup interceptor.*/
bool HasIndexedLookupInterceptor();
/**
* Returns the identity hash for this object. The current implementation
* uses a hidden property on the object to store the identity hash.
*
* The return value will never be 0. Also, it is not guaranteed to be
* unique.
*/
int GetIdentityHash();
/**
* Clone this object with a fast but shallow copy. Values will point
* to the same values as the original object.
*/
// TODO(dcarney): take an isolate and optionally bail out?
Local<Object> Clone();
/**
* Returns the context in which the object was created.
*/
Local<Context> CreationContext();
/** Same as above, but works for Persistents */
V8_INLINE static Local<Context> CreationContext(
const PersistentBase<Object>& object) {
return object.val_->CreationContext();
}
/**
* Checks whether a callback is set by the
* ObjectTemplate::SetCallAsFunctionHandler method.
* When an Object is callable this method returns true.
*/
bool IsCallable();
/**
* True if this object is a constructor.
*/
bool IsConstructor();
/**
* Call an Object as a function if a callback is set by the
* ObjectTemplate::SetCallAsFunctionHandler method.
*/
V8_WARN_UNUSED_RESULT MaybeLocal<Value> CallAsFunction(Local<Context> context,
Local<Value> recv,
int argc,
Local<Value> argv[]);
/**
* Call an Object as a constructor if a callback is set by the
* ObjectTemplate::SetCallAsFunctionHandler method.
* Note: This method behaves like the Function::NewInstance method.
*/
V8_WARN_UNUSED_RESULT MaybeLocal<Value> CallAsConstructor(
Local<Context> context, int argc, Local<Value> argv[]);
/**
* Return the isolate to which the Object belongs to.
*/
V8_DEPRECATE_SOON("Keep track of isolate correctly", Isolate* GetIsolate());
static Local<Object> New(Isolate* isolate);
V8_INLINE static Object* Cast(Value* obj);
private:
Object();
static void CheckCast(Value* obj);
Local<Value> SlowGetInternalField(int index);
void* SlowGetAlignedPointerFromInternalField(int index);
};
/**
* An instance of the built-in array constructor (ECMA-262, 15.4.2).
*/
class V8_EXPORT Array : public Object {
public:
uint32_t Length() const;
/**
* Creates a JavaScript array with the given length. If the length
* is negative the returned array will have length 0.
*/
static Local<Array> New(Isolate* isolate, int length = 0);
V8_INLINE static Array* Cast(Value* obj);
private:
Array();
static void CheckCast(Value* obj);
};
/**
* An instance of the built-in Map constructor (ECMA-262, 6th Edition, 23.1.1).
*/
class V8_EXPORT Map : public Object {
public:
size_t Size() const;
void Clear();
V8_WARN_UNUSED_RESULT MaybeLocal<Value> Get(Local<Context> context,
Local<Value> key);
V8_WARN_UNUSED_RESULT MaybeLocal<Map> Set(Local<Context> context,
Local<Value> key,
Local<Value> value);
V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context,
Local<Value> key);
V8_WARN_UNUSED_RESULT Maybe<bool> Delete(Local<Context> context,
Local<Value> key);
/**
* Returns an array of length Size() * 2, where index N is the Nth key and
* index N + 1 is the Nth value.
*/
Local<Array> AsArray() const;
/**
* Creates a new empty Map.
*/
static Local<Map> New(Isolate* isolate);
V8_INLINE static Map* Cast(Value* obj);
private:
Map();
static void CheckCast(Value* obj);
};
/**
* An instance of the built-in Set constructor (ECMA-262, 6th Edition, 23.2.1).
*/
class V8_EXPORT Set : public Object {
public:
size_t Size() const;
void Clear();
V8_WARN_UNUSED_RESULT MaybeLocal<Set> Add(Local<Context> context,
Local<Value> key);
V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context,
Local<Value> key);
V8_WARN_UNUSED_RESULT Maybe<bool> Delete(Local<Context> context,
Local<Value> key);
/**
* Returns an array of the keys in this Set.
*/
Local<Array> AsArray() const;
/**
* Creates a new empty Set.
*/
static Local<Set> New(Isolate* isolate);
V8_INLINE static Set* Cast(Value* obj);
private:
Set();
static void CheckCast(Value* obj);
};
template<typename T>
class ReturnValue {
public:
template <class S> V8_INLINE ReturnValue(const ReturnValue<S>& that)
: value_(that.value_) {
TYPE_CHECK(T, S);
}
// Local setters
template <typename S>
V8_INLINE V8_DEPRECATE_SOON("Use Global<> instead",
void Set(const Persistent<S>& handle));
template <typename S>
V8_INLINE void Set(const Global<S>& handle);
template <typename S>
V8_INLINE void Set(const Local<S> handle);
// Fast primitive setters
V8_INLINE void Set(bool value);
V8_INLINE void Set(double i);
V8_INLINE void Set(int32_t i);
V8_INLINE void Set(uint32_t i);
// Fast JS primitive setters
V8_INLINE void SetNull();
V8_INLINE void SetUndefined();
V8_INLINE void SetEmptyString();
// Convenience getter for Isolate
V8_INLINE Isolate* GetIsolate() const;
// Pointer setter: Uncompilable to prevent inadvertent misuse.
template <typename S>
V8_INLINE void Set(S* whatever);
// Getter. Creates a new Local<> so it comes with a certain performance
// hit. If the ReturnValue was not yet set, this will return the undefined
// value.
V8_INLINE Local<Value> Get() const;
private:
template<class F> friend class ReturnValue;
template<class F> friend class FunctionCallbackInfo;
template<class F> friend class PropertyCallbackInfo;
template <class F, class G, class H>
friend class PersistentValueMapBase;
V8_INLINE void SetInternal(internal::Object* value) { *value_ = value; }
V8_INLINE internal::Object* GetDefaultValue();
V8_INLINE explicit ReturnValue(internal::Object** slot);
internal::Object** value_;
};
/**
* The argument information given to function call callbacks. This
* class provides access to information about the context of the call,
* including the receiver, the number and values of arguments, and
* the holder of the function.
*/
template<typename T>
class FunctionCallbackInfo {
public:
/** The number of available arguments. */
V8_INLINE int Length() const;
/** Accessor for the available arguments. */
V8_INLINE Local<Value> operator[](int i) const;
/** Returns the receiver. This corresponds to the "this" value. */
V8_INLINE Local<Object> This() const;
/**
* If the callback was created without a Signature, this is the same
* value as This(). If there is a signature, and the signature didn't match
* This() but one of its hidden prototypes, this will be the respective
* hidden prototype.
*
* Note that this is not the prototype of This() on which the accessor
* referencing this callback was found (which in V8 internally is often
* referred to as holder [sic]).
*/
V8_INLINE Local<Object> Holder() const;
/** For construct calls, this returns the "new.target" value. */
V8_INLINE Local<Value> NewTarget() const;
/** Indicates whether this is a regular call or a construct call. */
V8_INLINE bool IsConstructCall() const;
/** The data argument specified when creating the callback. */
V8_INLINE Local<Value> Data() const;
/** The current Isolate. */
V8_INLINE Isolate* GetIsolate() const;
/** The ReturnValue for the call. */
V8_INLINE ReturnValue<T> GetReturnValue() const;
// This shouldn't be public, but the arm compiler needs it.
static const int kArgsLength = 6;
protected:
friend class internal::FunctionCallbackArguments;
friend class internal::CustomArguments<FunctionCallbackInfo>;
friend class debug::ConsoleCallArguments;
static const int kHolderIndex = 0;
static const int kIsolateIndex = 1;
static const int kReturnValueDefaultValueIndex = 2;
static const int kReturnValueIndex = 3;
static const int kDataIndex = 4;
static const int kNewTargetIndex = 5;
V8_INLINE FunctionCallbackInfo(internal::Object** implicit_args,
internal::Object** values, int length);
internal::Object** implicit_args_;
internal::Object** values_;
int length_;
};
/**
* The information passed to a property callback about the context
* of the property access.
*/
template<typename T>
class PropertyCallbackInfo {
public:
/**
* \return The isolate of the property access.
*/
V8_INLINE Isolate* GetIsolate() const;
/**
* \return The data set in the configuration, i.e., in
* `NamedPropertyHandlerConfiguration` or
* `IndexedPropertyHandlerConfiguration.`
*/
V8_INLINE Local<Value> Data() const;
/**
* \return The receiver. In many cases, this is the object on which the
* property access was intercepted. When using
* `Reflect.get`, `Function.prototype.call`, or similar functions, it is the
* object passed in as receiver or thisArg.
*
* \code
* void GetterCallback(Local<Name> name,
* const v8::PropertyCallbackInfo<v8::Value>& info) {
* auto context = info.GetIsolate()->GetCurrentContext();
*
* v8::Local<v8::Value> a_this =
* info.This()
* ->GetRealNamedProperty(context, v8_str("a"))
* .ToLocalChecked();
* v8::Local<v8::Value> a_holder =
* info.Holder()
* ->GetRealNamedProperty(context, v8_str("a"))
* .ToLocalChecked();
*
* CHECK(v8_str("r")->Equals(context, a_this).FromJust());
* CHECK(v8_str("obj")->Equals(context, a_holder).FromJust());
*
* info.GetReturnValue().Set(name);
* }
*
* v8::Local<v8::FunctionTemplate> templ =
* v8::FunctionTemplate::New(isolate);
* templ->InstanceTemplate()->SetHandler(
* v8::NamedPropertyHandlerConfiguration(GetterCallback));
* LocalContext env;
* env->Global()
* ->Set(env.local(), v8_str("obj"), templ->GetFunction(env.local())
* .ToLocalChecked()
* ->NewInstance(env.local())
* .ToLocalChecked())
* .FromJust();
*
* CompileRun("obj.a = 'obj'; var r = {a: 'r'}; Reflect.get(obj, 'x', r)");
* \endcode
*/
V8_INLINE Local<Object> This() const;
/**
* \return The object in the prototype chain of the receiver that has the
* interceptor. Suppose you have `x` and its prototype is `y`, and `y`
* has an interceptor. Then `info.This()` is `x` and `info.Holder()` is `y`.
* The Holder() could be a hidden object (the global object, rather
* than the global proxy).
*
* \note For security reasons, do not pass the object back into the runtime.
*/
V8_INLINE Local<Object> Holder() const;
/**
* \return The return value of the callback.
* Can be changed by calling Set().
* \code
* info.GetReturnValue().Set(...)
* \endcode
*
*/
V8_INLINE ReturnValue<T> GetReturnValue() const;
/**
* \return True if the intercepted function should throw if an error occurs.
* Usually, `true` corresponds to `'use strict'`.
*
* \note Always `false` when intercepting `Reflect.set()`
* independent of the language mode.
*/
V8_INLINE bool ShouldThrowOnError() const;
// This shouldn't be public, but the arm compiler needs it.
static const int kArgsLength = 7;
protected:
friend class MacroAssembler;
friend class internal::PropertyCallbackArguments;
friend class internal::CustomArguments<PropertyCallbackInfo>;
static const int kShouldThrowOnErrorIndex = 0;
static const int kHolderIndex = 1;
static const int kIsolateIndex = 2;
static const int kReturnValueDefaultValueIndex = 3;
static const int kReturnValueIndex = 4;
static const int kDataIndex = 5;
static const int kThisIndex = 6;
V8_INLINE PropertyCallbackInfo(internal::Object** args) : args_(args) {}
internal::Object** args_;
};
typedef void (*FunctionCallback)(const FunctionCallbackInfo<Value>& info);
enum class ConstructorBehavior { kThrow, kAllow };
/**
* A JavaScript function object (ECMA-262, 15.3).
*/
class V8_EXPORT Function : public Object {
public:
/**
* Create a function in the current execution context
* for a given FunctionCallback.
*/
static MaybeLocal<Function> New(
Local<Context> context, FunctionCallback callback,
Local<Value> data = Local<Value>(), int length = 0,
ConstructorBehavior behavior = ConstructorBehavior::kAllow);
static V8_DEPRECATE_SOON(
"Use maybe version",
Local<Function> New(Isolate* isolate, FunctionCallback callback,
Local<Value> data = Local<Value>(), int length = 0));
V8_WARN_UNUSED_RESULT MaybeLocal<Object> NewInstance(
Local<Context> context, int argc, Local<Value> argv[]) const;
V8_WARN_UNUSED_RESULT MaybeLocal<Object> NewInstance(
Local<Context> context) const {
return NewInstance(context, 0, nullptr);
}
V8_DEPRECATE_SOON("Use maybe version",
Local<Value> Call(Local<Value> recv, int argc,
Local<Value> argv[]));
V8_WARN_UNUSED_RESULT MaybeLocal<Value> Call(Local<Context> context,
Local<Value> recv, int argc,
Local<Value> argv[]);
void SetName(Local<String> name);
Local<Value> GetName() const;
/**
* Name inferred from variable or property assignment of this function.
* Used to facilitate debugging and profiling of JavaScript code written
* in an OO style, where many functions are anonymous but are assigned
* to object properties.
*/
Local<Value> GetInferredName() const;
/**
* displayName if it is set, otherwise name if it is configured, otherwise
* function name, otherwise inferred name.
*/
Local<Value> GetDebugName() const;
/**
* User-defined name assigned to the "displayName" property of this function.
* Used to facilitate debugging and profiling of JavaScript code.
*/
Local<Value> GetDisplayName() const;
/**
* Returns zero based line number of function body and
* kLineOffsetNotFound if no information available.
*/
int GetScriptLineNumber() const;
/**
* Returns zero based column number of function body and
* kLineOffsetNotFound if no information available.
*/
int GetScriptColumnNumber() const;
/**
* Returns scriptId.
*/
int ScriptId() const;
/**
* Returns the original function if this function is bound, else returns
* v8::Undefined.
*/
Local<Value> GetBoundFunction() const;
ScriptOrigin GetScriptOrigin() const;
V8_INLINE static Function* Cast(Value* obj);
static const int kLineOffsetNotFound;
private:
Function();
static void CheckCast(Value* obj);
};
#ifndef V8_PROMISE_INTERNAL_FIELD_COUNT
// The number of required internal fields can be defined by embedder.
#define V8_PROMISE_INTERNAL_FIELD_COUNT 0
#endif
/**
* An instance of the built-in Promise constructor (ES6 draft).
*/
class V8_EXPORT Promise : public Object {
public:
/**
* State of the promise. Each value corresponds to one of the possible values
* of the [[PromiseState]] field.
*/
enum PromiseState { kPending, kFulfilled, kRejected };
class V8_EXPORT Resolver : public Object {
public:
/**
* Create a new resolver, along with an associated promise in pending state.
*/
static V8_DEPRECATED("Use maybe version",
Local<Resolver> New(Isolate* isolate));
static V8_WARN_UNUSED_RESULT MaybeLocal<Resolver> New(
Local<Context> context);
/**
* Extract the associated promise.
*/
Local<Promise> GetPromise();
/**
* Resolve/reject the associated promise with a given value.
* Ignored if the promise is no longer pending.
*/
V8_DEPRECATED("Use maybe version", void Resolve(Local<Value> value));
V8_WARN_UNUSED_RESULT Maybe<bool> Resolve(Local<Context> context,
Local<Value> value);
V8_DEPRECATED("Use maybe version", void Reject(Local<Value> value));
V8_WARN_UNUSED_RESULT Maybe<bool> Reject(Local<Context> context,
Local<Value> value);
V8_INLINE static Resolver* Cast(Value* obj);
private:
Resolver();
static void CheckCast(Value* obj);
};
/**
* Register a resolution/rejection handler with a promise.
* The handler is given the respective resolution/rejection value as
* an argument. If the promise is already resolved/rejected, the handler is
* invoked at the end of turn.
*/
V8_WARN_UNUSED_RESULT MaybeLocal<Promise> Catch(Local<Context> context,
Local<Function> handler);
V8_WARN_UNUSED_RESULT MaybeLocal<Promise> Then(Local<Context> context,
Local<Function> handler);
/**
* Returns true if the promise has at least one derived promise, and
* therefore resolve/reject handlers (including default handler).
*/
bool HasHandler();
/**
* Returns the content of the [[PromiseResult]] field. The Promise must not
* be pending.
*/
Local<Value> Result();
/**
* Returns the value of the [[PromiseState]] field.
*/
PromiseState State();
V8_INLINE static Promise* Cast(Value* obj);
static const int kEmbedderFieldCount = V8_PROMISE_INTERNAL_FIELD_COUNT;
private:
Promise();
static void CheckCast(Value* obj);
};
/**
* An instance of a Property Descriptor, see Ecma-262 6.2.4.
*
* Properties in a descriptor are present or absent. If you do not set
* `enumerable`, `configurable`, and `writable`, they are absent. If `value`,
* `get`, or `set` are absent, but you must specify them in the constructor, use
* empty handles.
*
* Accessors `get` and `set` must be callable or undefined if they are present.
*
* \note Only query properties if they are present, i.e., call `x()` only if
* `has_x()` returns true.
*
* \code
* // var desc = {writable: false}
* v8::PropertyDescriptor d(Local<Value>()), false);
* d.value(); // error, value not set
* if (d.has_writable()) {
* d.writable(); // false
* }
*
* // var desc = {value: undefined}
* v8::PropertyDescriptor d(v8::Undefined(isolate));
*
* // var desc = {get: undefined}
* v8::PropertyDescriptor d(v8::Undefined(isolate), Local<Value>()));
* \endcode
*/
class V8_EXPORT PropertyDescriptor {
public:
// GenericDescriptor
PropertyDescriptor();
// DataDescriptor
PropertyDescriptor(Local<Value> value);
// DataDescriptor with writable property
PropertyDescriptor(Local<Value> value, bool writable);
// AccessorDescriptor
PropertyDescriptor(Local<Value> get, Local<Value> set);
~PropertyDescriptor();
Local<Value> value() const;
bool has_value() const;
Local<Value> get() const;
bool has_get() const;
Local<Value> set() const;
bool has_set() const;
void set_enumerable(bool enumerable);
bool enumerable() const;
bool has_enumerable() const;
void set_configurable(bool configurable);
bool configurable() const;
bool has_configurable() const;
bool writable() const;
bool has_writable() const;
struct PrivateData;
PrivateData* get_private() const { return private_; }
PropertyDescriptor(const PropertyDescriptor&) = delete;
void operator=(const PropertyDescriptor&) = delete;
private:
PrivateData* private_;
};
/**
* An instance of the built-in Proxy constructor (ECMA-262, 6th Edition,
* 26.2.1).
*/
class V8_EXPORT Proxy : public Object {
public:
Local<Value> GetTarget();
Local<Value> GetHandler();
bool IsRevoked();
void Revoke();
/**
* Creates a new Proxy for the target object.
*/
static MaybeLocal<Proxy> New(Local<Context> context,
Local<Object> local_target,
Local<Object> local_handler);
V8_INLINE static Proxy* Cast(Value* obj);
private:
Proxy();
static void CheckCast(Value* obj);
};
// TODO(mtrofin): rename WasmCompiledModule to WasmModuleObject, for
// consistency with internal APIs.
class V8_EXPORT WasmCompiledModule : public Object {
public:
typedef std::pair<std::unique_ptr<const uint8_t[]>, size_t> SerializedModule;
// A buffer that is owned by the caller.
typedef std::pair<const uint8_t*, size_t> CallerOwnedBuffer;
// An opaque, native heap object for transferring wasm modules. It
// supports move semantics, and does not support copy semantics.
class TransferrableModule final {
public:
TransferrableModule(TransferrableModule&& src) = default;
TransferrableModule(const TransferrableModule& src) = delete;
TransferrableModule& operator=(TransferrableModule&& src) = default;
TransferrableModule& operator=(const TransferrableModule& src) = delete;
private:
typedef std::pair<std::unique_ptr<const uint8_t[]>, size_t> OwnedBuffer;
friend class WasmCompiledModule;
TransferrableModule(OwnedBuffer&& code, OwnedBuffer&& bytes)
: compiled_code(std::move(code)), wire_bytes(std::move(bytes)) {}
OwnedBuffer compiled_code = {nullptr, 0};
OwnedBuffer wire_bytes = {nullptr, 0};
};
// Get an in-memory, non-persistable, and context-independent (meaning,
// suitable for transfer to another Isolate and Context) representation
// of this wasm compiled module.
TransferrableModule GetTransferrableModule();
// Efficiently re-create a WasmCompiledModule, without recompiling, from
// a TransferrableModule.
static MaybeLocal<WasmCompiledModule> FromTransferrableModule(
Isolate* isolate, const TransferrableModule&);
// Get the wasm-encoded bytes that were used to compile this module.
Local<String> GetWasmWireBytes();
// Serialize the compiled module. The serialized data does not include the
// uncompiled bytes.
SerializedModule Serialize();
// If possible, deserialize the module, otherwise compile it from the provided
// uncompiled bytes.
static MaybeLocal<WasmCompiledModule> DeserializeOrCompile(
Isolate* isolate, const CallerOwnedBuffer& serialized_module,
const CallerOwnedBuffer& wire_bytes);
V8_INLINE static WasmCompiledModule* Cast(Value* obj);
private:
// TODO(ahaas): please remove the friend once streamed compilation is
// implemented
friend class WasmModuleObjectBuilder;
static MaybeLocal<WasmCompiledModule> Deserialize(
Isolate* isolate, const CallerOwnedBuffer& serialized_module,
const CallerOwnedBuffer& wire_bytes);
static MaybeLocal<WasmCompiledModule> Compile(Isolate* isolate,
const uint8_t* start,
size_t length);
static CallerOwnedBuffer AsCallerOwned(
const TransferrableModule::OwnedBuffer& buff) {
return {buff.first.get(), buff.second};
}
WasmCompiledModule();
static void CheckCast(Value* obj);
};
// TODO(mtrofin): when streaming compilation is done, we can rename this
// to simply WasmModuleObjectBuilder
class V8_EXPORT WasmModuleObjectBuilderStreaming final {
public:
WasmModuleObjectBuilderStreaming(Isolate* isolate);
// The buffer passed into OnBytesReceived is owned by the caller.
void OnBytesReceived(const uint8_t*, size_t size);
void Finish();
void Abort(Local<Value> exception);
Local<Promise> GetPromise();
~WasmModuleObjectBuilderStreaming();
private:
typedef std::pair<std::unique_ptr<const uint8_t[]>, size_t> Buffer;
WasmModuleObjectBuilderStreaming(const WasmModuleObjectBuilderStreaming&) =
delete;
WasmModuleObjectBuilderStreaming(WasmModuleObjectBuilderStreaming&&) =
default;
WasmModuleObjectBuilderStreaming& operator=(
const WasmModuleObjectBuilderStreaming&) = delete;
WasmModuleObjectBuilderStreaming& operator=(
WasmModuleObjectBuilderStreaming&&) = default;
Isolate* isolate_ = nullptr;
#if V8_CC_MSVC
// We don't need the static Copy API, so the default
// NonCopyablePersistentTraits would be sufficient, however,
// MSVC eagerly instantiates the Copy.
// We ensure we don't use Copy, however, by compiling with the
// defaults everywhere else.
Persistent<Promise, CopyablePersistentTraits<Promise>> promise_;
#else
Persistent<Promise> promise_;
#endif
std::vector<Buffer> received_buffers_;
size_t total_size_ = 0;
std::shared_ptr<internal::wasm::StreamingDecoder> streaming_decoder_;
};
class V8_EXPORT WasmModuleObjectBuilder final {
public:
WasmModuleObjectBuilder(Isolate* isolate) : isolate_(isolate) {}
// The buffer passed into OnBytesReceived is owned by the caller.
void OnBytesReceived(const uint8_t*, size_t size);
MaybeLocal<WasmCompiledModule> Finish();
private:
Isolate* isolate_ = nullptr;
// TODO(ahaas): We probably need none of this below here once streamed
// compilation is implemented.
typedef std::pair<std::unique_ptr<const uint8_t[]>, size_t> Buffer;
// Disable copy semantics *in this implementation*. We can choose to
// relax this, albeit it's not clear why.
WasmModuleObjectBuilder(const WasmModuleObjectBuilder&) = delete;
WasmModuleObjectBuilder(WasmModuleObjectBuilder&&) = default;
WasmModuleObjectBuilder& operator=(const WasmModuleObjectBuilder&) = delete;
WasmModuleObjectBuilder& operator=(WasmModuleObjectBuilder&&) = default;
std::vector<Buffer> received_buffers_;
size_t total_size_ = 0;
};
#ifndef V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT
// The number of required internal fields can be defined by embedder.
#define V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT 2
#endif
enum class ArrayBufferCreationMode { kInternalized, kExternalized };
/**
* An instance of the built-in ArrayBuffer constructor (ES6 draft 15.13.5).
*/
class V8_EXPORT ArrayBuffer : public Object {
public:
/**
* A thread-safe allocator that V8 uses to allocate |ArrayBuffer|'s memory.
* The allocator is a global V8 setting. It has to be set via
* Isolate::CreateParams.
*
* Memory allocated through this allocator by V8 is accounted for as external
* memory by V8. Note that V8 keeps track of the memory for all internalized
* |ArrayBuffer|s. Responsibility for tracking external memory (using
* Isolate::AdjustAmountOfExternalAllocatedMemory) is handed over to the
* embedder upon externalization and taken over upon internalization (creating
* an internalized buffer from an existing buffer).
*
* Note that it is unsafe to call back into V8 from any of the allocator
* functions.
*/
class V8_EXPORT Allocator { // NOLINT
public:
virtual ~Allocator() {}
/**
* Allocate |length| bytes. Return NULL if allocation is not successful.
* Memory should be initialized to zeroes.
*/
virtual void* Allocate(size_t length) = 0;
/**
* Allocate |length| bytes. Return NULL if allocation is not successful.
* Memory does not have to be initialized.
*/
virtual void* AllocateUninitialized(size_t length) = 0;
/**
* Reserved |length| bytes, but do not commit the memory. Must call
* |SetProtection| to make memory accessible.
*/
// TODO(eholk): make this pure virtual once blink implements this.
virtual void* Reserve(size_t length);
/**
* Free the memory block of size |length|, pointed to by |data|.
* That memory is guaranteed to be previously allocated by |Allocate|.
*/
virtual void Free(void* data, size_t length) = 0;
enum class AllocationMode { kNormal, kReservation };
/**
* Free the memory block of size |length|, pointed to by |data|.
* That memory is guaranteed to be previously allocated by |Allocate| or
* |Reserve|, depending on |mode|.
*/
// TODO(eholk): make this pure virtual once blink implements this.
virtual void Free(void* data, size_t length, AllocationMode mode);
enum class Protection { kNoAccess, kReadWrite };
/**
* Change the protection on a region of memory.
*
* On platforms that make a distinction between reserving and committing
* memory, changing the protection to kReadWrite must also ensure the memory
* is committed.
*/
// TODO(eholk): make this pure virtual once blink implements this.
virtual void SetProtection(void* data, size_t length,
Protection protection);
/**
* malloc/free based convenience allocator.
*
* Caller takes ownership, i.e. the returned object needs to be freed using
* |delete allocator| once it is no longer in use.
*/
static Allocator* NewDefaultAllocator();
};
/**
* The contents of an |ArrayBuffer|. Externalization of |ArrayBuffer|
* returns an instance of this class, populated, with a pointer to data
* and byte length.
*
* The Data pointer of ArrayBuffer::Contents is always allocated with
* Allocator::Allocate that is set via Isolate::CreateParams.
*/
class V8_EXPORT Contents { // NOLINT
public:
Contents()
: data_(nullptr),
byte_length_(0),
allocation_base_(nullptr),
allocation_length_(0),
allocation_mode_(Allocator::AllocationMode::kNormal) {}
void* AllocationBase() const { return allocation_base_; }
size_t AllocationLength() const { return allocation_length_; }
Allocator::AllocationMode AllocationMode() const {
return allocation_mode_;
}
void* Data() const { return data_; }
size_t ByteLength() const { return byte_length_; }
private:
void* data_;
size_t byte_length_;
void* allocation_base_;
size_t allocation_length_;
Allocator::AllocationMode allocation_mode_;
friend class ArrayBuffer;
};
/**
* Data length in bytes.
*/
size_t ByteLength() const;
/**
* Create a new ArrayBuffer. Allocate |byte_length| bytes.
* Allocated memory will be owned by a created ArrayBuffer and
* will be deallocated when it is garbage-collected,
* unless the object is externalized.
*/
static Local<ArrayBuffer> New(Isolate* isolate, size_t byte_length);
/**
* Create a new ArrayBuffer over an existing memory block.
* The created array buffer is by default immediately in externalized state.
* In externalized state, the memory block will not be reclaimed when a
* created ArrayBuffer is garbage-collected.
* In internalized state, the memory block will be released using
* |Allocator::Free| once all ArrayBuffers referencing it are collected by
* the garbage collector.
*/
static Local<ArrayBuffer> New(
Isolate* isolate, void* data, size_t byte_length,
ArrayBufferCreationMode mode = ArrayBufferCreationMode::kExternalized);
/**
* Returns true if ArrayBuffer is externalized, that is, does not
* own its memory block.
*/
bool IsExternal() const;
/**
* Returns true if this ArrayBuffer may be neutered.
*/
bool IsNeuterable() const;
/**
* Neuters this ArrayBuffer and all its views (typed arrays).
* Neutering sets the byte length of the buffer and all typed arrays to zero,
* preventing JavaScript from ever accessing underlying backing store.
* ArrayBuffer should have been externalized and must be neuterable.
*/
void Neuter();
/**
* Make this ArrayBuffer external. The pointer to underlying memory block
* and byte length are returned as |Contents| structure. After ArrayBuffer
* had been externalized, it does no longer own the memory block. The caller
* should take steps to free memory when it is no longer needed.
*
* The memory block is guaranteed to be allocated with |Allocator::Allocate|
* that has been set via Isolate::CreateParams.
*/
Contents Externalize();
/**
* Get a pointer to the ArrayBuffer's underlying memory block without
* externalizing it. If the ArrayBuffer is not externalized, this pointer
* will become invalid as soon as the ArrayBuffer gets garbage collected.
*
* The embedder should make sure to hold a strong reference to the
* ArrayBuffer while accessing this pointer.
*
* The memory block is guaranteed to be allocated with |Allocator::Allocate|.
*/
Contents GetContents();
V8_INLINE static ArrayBuffer* Cast(Value* obj);
static const int kInternalFieldCount = V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT;
static const int kEmbedderFieldCount = V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT;
private:
ArrayBuffer();
static void CheckCast(Value* obj);
};
#ifndef V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT
// The number of required internal fields can be defined by embedder.
#define V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT 2
#endif
/**
* A base class for an instance of one of "views" over ArrayBuffer,
* including TypedArrays and DataView (ES6 draft 15.13).
*/
class V8_EXPORT ArrayBufferView : public Object {
public:
/**
* Returns underlying ArrayBuffer.
*/
Local<ArrayBuffer> Buffer();
/**
* Byte offset in |Buffer|.
*/
size_t ByteOffset();
/**
* Size of a view in bytes.
*/
size_t ByteLength();
/**
* Copy the contents of the ArrayBufferView's buffer to an embedder defined
* memory without additional overhead that calling ArrayBufferView::Buffer
* might incur.
*
* Will write at most min(|byte_length|, ByteLength) bytes starting at
* ByteOffset of the underlying buffer to the memory starting at |dest|.
* Returns the number of bytes actually written.
*/
size_t CopyContents(void* dest, size_t byte_length);
/**
* Returns true if ArrayBufferView's backing ArrayBuffer has already been
* allocated.
*/
bool HasBuffer() const;
V8_INLINE static ArrayBufferView* Cast(Value* obj);
static const int kInternalFieldCount =
V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT;
static const int kEmbedderFieldCount =
V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT;
private:
ArrayBufferView();
static void CheckCast(Value* obj);
};
/**
* A base class for an instance of TypedArray series of constructors
* (ES6 draft 15.13.6).
*/
class V8_EXPORT TypedArray : public ArrayBufferView {
public:
/*
* The largest typed array size that can be constructed using New.
*/
static constexpr size_t kMaxLength =
sizeof(void*) == 4 ? (1u << 30) - 1 : (1u << 31) - 1;
/**
* Number of elements in this typed array
* (e.g. for Int16Array, |ByteLength|/2).
*/
size_t Length();
V8_INLINE static TypedArray* Cast(Value* obj);
private:
TypedArray();
static void CheckCast(Value* obj);
};
/**
* An instance of Uint8Array constructor (ES6 draft 15.13.6).
*/
class V8_EXPORT Uint8Array : public TypedArray {
public:
static Local<Uint8Array> New(Local<ArrayBuffer> array_buffer,
size_t byte_offset, size_t length);
static Local<Uint8Array> New(Local<SharedArrayBuffer> shared_array_buffer,
size_t byte_offset, size_t length);
V8_INLINE static Uint8Array* Cast(Value* obj);
private:
Uint8Array();
static void CheckCast(Value* obj);
};
/**
* An instance of Uint8ClampedArray constructor (ES6 draft 15.13.6).
*/
class V8_EXPORT Uint8ClampedArray : public TypedArray {
public:
static Local<Uint8ClampedArray> New(Local<ArrayBuffer> array_buffer,
size_t byte_offset, size_t length);
static Local<Uint8ClampedArray> New(
Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset,
size_t length);
V8_INLINE static Uint8ClampedArray* Cast(Value* obj);
private:
Uint8ClampedArray();
static void CheckCast(Value* obj);
};
/**
* An instance of Int8Array constructor (ES6 draft 15.13.6).
*/
class V8_EXPORT Int8Array : public TypedArray {
public:
static Local<Int8Array> New(Local<ArrayBuffer> array_buffer,
size_t byte_offset, size_t length);
static Local<Int8Array> New(Local<SharedArrayBuffer> shared_array_buffer,
size_t byte_offset, size_t length);
V8_INLINE static Int8Array* Cast(Value* obj);
private:
Int8Array();
static void CheckCast(Value* obj);
};
/**
* An instance of Uint16Array constructor (ES6 draft 15.13.6).
*/
class V8_EXPORT Uint16Array : public TypedArray {
public:
static Local<Uint16Array> New(Local<ArrayBuffer> array_buffer,
size_t byte_offset, size_t length);
static Local<Uint16Array> New(Local<SharedArrayBuffer> shared_array_buffer,
size_t byte_offset, size_t length);
V8_INLINE static Uint16Array* Cast(Value* obj);
private:
Uint16Array();
static void CheckCast(Value* obj);
};
/**
* An instance of Int16Array constructor (ES6 draft 15.13.6).
*/
class V8_EXPORT Int16Array : public TypedArray {
public:
static Local<Int16Array> New(Local<ArrayBuffer> array_buffer,
size_t byte_offset, size_t length);
static Local<Int16Array> New(Local<SharedArrayBuffer> shared_array_buffer,
size_t byte_offset, size_t length);
V8_INLINE static Int16Array* Cast(Value* obj);
private:
Int16Array();
static void CheckCast(Value* obj);
};
/**
* An instance of Uint32Array constructor (ES6 draft 15.13.6).
*/
class V8_EXPORT Uint32Array : public TypedArray {
public:
static Local<Uint32Array> New(Local<ArrayBuffer> array_buffer,
size_t byte_offset, size_t length);
static Local<Uint32Array> New(Local<SharedArrayBuffer> shared_array_buffer,
size_t byte_offset, size_t length);
V8_INLINE static Uint32Array* Cast(Value* obj);
private:
Uint32Array();
static void CheckCast(Value* obj);
};
/**
* An instance of Int32Array constructor (ES6 draft 15.13.6).
*/
class V8_EXPORT Int32Array : public TypedArray {
public:
static Local<Int32Array> New(Local<ArrayBuffer> array_buffer,
size_t byte_offset, size_t length);
static Local<Int32Array> New(Local<SharedArrayBuffer> shared_array_buffer,
size_t byte_offset, size_t length);
V8_INLINE static Int32Array* Cast(Value* obj);
private:
Int32Array();
static void CheckCast(Value* obj);
};
/**
* An instance of Float32Array constructor (ES6 draft 15.13.6).
*/
class V8_EXPORT Float32Array : public TypedArray {
public:
static Local<Float32Array> New(Local<ArrayBuffer> array_buffer,
size_t byte_offset, size_t length);
static Local<Float32Array> New(Local<SharedArrayBuffer> shared_array_buffer,
size_t byte_offset, size_t length);
V8_INLINE static Float32Array* Cast(Value* obj);
private:
Float32Array();
static void CheckCast(Value* obj);
};
/**
* An instance of Float64Array constructor (ES6 draft 15.13.6).
*/
class V8_EXPORT Float64Array : public TypedArray {
public:
static Local<Float64Array> New(Local<ArrayBuffer> array_buffer,
size_t byte_offset, size_t length);
static Local<Float64Array> New(Local<SharedArrayBuffer> shared_array_buffer,
size_t byte_offset, size_t length);
V8_INLINE static Float64Array* Cast(Value* obj);
private:
Float64Array();
static void CheckCast(Value* obj);
};
/**
* An instance of DataView constructor (ES6 draft 15.13.7).
*/
class V8_EXPORT DataView : public ArrayBufferView {
public:
static Local<DataView> New(Local<ArrayBuffer> array_buffer,
size_t byte_offset, size_t length);
static Local<DataView> New(Local<SharedArrayBuffer> shared_array_buffer,
size_t byte_offset, size_t length);
V8_INLINE static DataView* Cast(Value* obj);
private:
DataView();
static void CheckCast(Value* obj);
};
/**
* An instance of the built-in SharedArrayBuffer constructor.
* This API is experimental and may change significantly.
*/
class V8_EXPORT SharedArrayBuffer : public Object {
public:
/**
* The contents of an |SharedArrayBuffer|. Externalization of
* |SharedArrayBuffer| returns an instance of this class, populated, with a
* pointer to data and byte length.
*
* The Data pointer of SharedArrayBuffer::Contents is always allocated with
* |ArrayBuffer::Allocator::Allocate| by the allocator specified in
* v8::Isolate::CreateParams::array_buffer_allocator.
*
* This API is experimental and may change significantly.
*/
class V8_EXPORT Contents { // NOLINT
public:
Contents()
: data_(nullptr),
byte_length_(0),
allocation_base_(nullptr),
allocation_length_(0),
allocation_mode_(ArrayBuffer::Allocator::AllocationMode::kNormal) {}
void* AllocationBase() const { return allocation_base_; }
size_t AllocationLength() const { return allocation_length_; }
ArrayBuffer::Allocator::AllocationMode AllocationMode() const {
return allocation_mode_;
}
void* Data() const { return data_; }
size_t ByteLength() const { return byte_length_; }
private:
void* data_;
size_t byte_length_;
void* allocation_base_;
size_t allocation_length_;
ArrayBuffer::Allocator::AllocationMode allocation_mode_;
friend class SharedArrayBuffer;
};
/**
* Data length in bytes.
*/
size_t ByteLength() const;
/**
* Create a new SharedArrayBuffer. Allocate |byte_length| bytes.
* Allocated memory will be owned by a created SharedArrayBuffer and
* will be deallocated when it is garbage-collected,
* unless the object is externalized.
*/
static Local<SharedArrayBuffer> New(Isolate* isolate, size_t byte_length);
/**
* Create a new SharedArrayBuffer over an existing memory block. The created
* array buffer is immediately in externalized state unless otherwise
* specified. The memory block will not be reclaimed when a created
* SharedArrayBuffer is garbage-collected.
*/
static Local<SharedArrayBuffer> New(
Isolate* isolate, void* data, size_t byte_length,
ArrayBufferCreationMode mode = ArrayBufferCreationMode::kExternalized);
/**
* Returns true if SharedArrayBuffer is externalized, that is, does not
* own its memory block.
*/
bool IsExternal() const;
/**
* Make this SharedArrayBuffer external. The pointer to underlying memory
* block and byte length are returned as |Contents| structure. After
* SharedArrayBuffer had been externalized, it does no longer own the memory
* block. The caller should take steps to free memory when it is no longer
* needed.
*
* The memory block is guaranteed to be allocated with |Allocator::Allocate|
* by the allocator specified in
* v8::Isolate::CreateParams::array_buffer_allocator.
*
*/
Contents Externalize();
/**
* Get a pointer to the ArrayBuffer's underlying memory block without
* externalizing it. If the ArrayBuffer is not externalized, this pointer
* will become invalid as soon as the ArrayBuffer became garbage collected.
*
* The embedder should make sure to hold a strong reference to the
* ArrayBuffer while accessing this pointer.
*
* The memory block is guaranteed to be allocated with |Allocator::Allocate|
* by the allocator specified in
* v8::Isolate::CreateParams::array_buffer_allocator.
*/
Contents GetContents();
V8_INLINE static SharedArrayBuffer* Cast(Value* obj);
static const int kInternalFieldCount = V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT;
private:
SharedArrayBuffer();
static void CheckCast(Value* obj);
};
/**
* An instance of the built-in Date constructor (ECMA-262, 15.9).
*/
class V8_EXPORT Date : public Object {
public:
static V8_DEPRECATE_SOON("Use maybe version.",
Local<Value> New(Isolate* isolate, double time));
static V8_WARN_UNUSED_RESULT MaybeLocal<Value> New(Local<Context> context,
double time);
/**
* A specialization of Value::NumberValue that is more efficient
* because we know the structure of this object.
*/
double ValueOf() const;
V8_INLINE static Date* Cast(Value* obj);
/**
* Notification that the embedder has changed the time zone,
* daylight savings time, or other date / time configuration
* parameters. V8 keeps a cache of various values used for
* date / time computation. This notification will reset
* those cached values for the current context so that date /
* time configuration changes would be reflected in the Date
* object.
*
* This API should not be called more than needed as it will
* negatively impact the performance of date operations.
*/
static void DateTimeConfigurationChangeNotification(Isolate* isolate);
private:
static void CheckCast(Value* obj);
};
/**
* A Number object (ECMA-262, 4.3.21).
*/
class V8_EXPORT NumberObject : public Object {
public:
static Local<Value> New(Isolate* isolate, double value);
double ValueOf() const;
V8_INLINE static NumberObject* Cast(Value* obj);
private:
static void CheckCast(Value* obj);
};
/**
* A Boolean object (ECMA-262, 4.3.15).
*/
class V8_EXPORT BooleanObject : public Object {
public:
static Local<Value> New(Isolate* isolate, bool value);
bool ValueOf() const;
V8_INLINE static BooleanObject* Cast(Value* obj);
private:
static void CheckCast(Value* obj);
};
/**
* A String object (ECMA-262, 4.3.18).
*/
class V8_EXPORT StringObject : public Object {
public:
static Local<Value> New(Local<String> value);
Local<String> ValueOf() const;
V8_INLINE static StringObject* Cast(Value* obj);
private:
static void CheckCast(Value* obj);
};
/**
* A Symbol object (ECMA-262 edition 6).
*/
class V8_EXPORT SymbolObject : public Object {
public:
static Local<Value> New(Isolate* isolate, Local<Symbol> value);
Local<Symbol> ValueOf() const;
V8_INLINE static SymbolObject* Cast(Value* obj);
private:
static void CheckCast(Value* obj);
};
/**
* An instance of the built-in RegExp constructor (ECMA-262, 15.10).
*/
class V8_EXPORT RegExp : public Object {
public:
/**
* Regular expression flag bits. They can be or'ed to enable a set
* of flags.
*/
enum Flags {
kNone = 0,
kGlobal = 1 << 0,
kIgnoreCase = 1 << 1,
kMultiline = 1 << 2,
kSticky = 1 << 3,
kUnicode = 1 << 4,
kDotAll = 1 << 5,
};
/**
* Creates a regular expression from the given pattern string and
* the flags bit field. May throw a JavaScript exception as
* described in ECMA-262, 15.10.4.1.
*
* For example,
* RegExp::New(v8::String::New("foo"),
* static_cast<RegExp::Flags>(kGlobal | kMultiline))
* is equivalent to evaluating "/foo/gm".
*/
static V8_DEPRECATE_SOON("Use maybe version",
Local<RegExp> New(Local<String> pattern,
Flags flags));
static V8_WARN_UNUSED_RESULT MaybeLocal<RegExp> New(Local<Context> context,
Local<String> pattern,
Flags flags);
/**
* Returns the value of the source property: a string representing
* the regular expression.
*/
Local<String> GetSource() const;
/**
* Returns the flags bit field.
*/
Flags GetFlags() const;
V8_INLINE static RegExp* Cast(Value* obj);
private:
static void CheckCast(Value* obj);
};
/**
* A JavaScript value that wraps a C++ void*. This type of value is mainly used
* to associate C++ data structures with JavaScript objects.
*/
class V8_EXPORT External : public Value {
public:
static Local<External> New(Isolate* isolate, void* value);
V8_INLINE static External* Cast(Value* obj);
void* Value() const;
private:
static void CheckCast(v8::Value* obj);
};
#define V8_INTRINSICS_LIST(F) \
F(ArrayProto_entries, array_entries_iterator) \
F(ArrayProto_forEach, array_for_each_iterator) \
F(ArrayProto_keys, array_keys_iterator) \
F(ArrayProto_values, array_values_iterator) \
F(ErrorPrototype, initial_error_prototype) \
F(IteratorPrototype, initial_iterator_prototype)
enum Intrinsic {
#define V8_DECL_INTRINSIC(name, iname) k##name,
V8_INTRINSICS_LIST(V8_DECL_INTRINSIC)
#undef V8_DECL_INTRINSIC
};
// --- Templates ---
/**
* The superclass of object and function templates.
*/
class V8_EXPORT Template : public Data {
public:
/**
* Adds a property to each instance created by this template.
*
* The property must be defined either as a primitive value, or a template.
*/
void Set(Local<Name> name, Local<Data> value,
PropertyAttribute attributes = None);
void SetPrivate(Local<Private> name, Local<Data> value,
PropertyAttribute attributes = None);
V8_INLINE void Set(Isolate* isolate, const char* name, Local<Data> value);
void SetAccessorProperty(
Local<Name> name,
Local<FunctionTemplate> getter = Local<FunctionTemplate>(),
Local<FunctionTemplate> setter = Local<FunctionTemplate>(),
PropertyAttribute attribute = None,
AccessControl settings = DEFAULT);
/**
* Whenever the property with the given name is accessed on objects
* created from this Template the getter and setter callbacks
* are called instead of getting and setting the property directly
* on the JavaScript object.
*
* \param name The name of the property for which an accessor is added.
* \param getter The callback to invoke when getting the property.
* \param setter The callback to invoke when setting the property.
* \param data A piece of data that will be passed to the getter and setter
* callbacks whenever they are invoked.
* \param settings Access control settings for the accessor. This is a bit
* field consisting of one of more of
* DEFAULT = 0, ALL_CAN_READ = 1, or ALL_CAN_WRITE = 2.
* The default is to not allow cross-context access.
* ALL_CAN_READ means that all cross-context reads are allowed.
* ALL_CAN_WRITE means that all cross-context writes are allowed.
* The combination ALL_CAN_READ | ALL_CAN_WRITE can be used to allow all
* cross-context access.
* \param attribute The attributes of the property for which an accessor
* is added.
* \param signature The signature describes valid receivers for the accessor
* and is used to perform implicit instance checks against them. If the
* receiver is incompatible (i.e. is not an instance of the constructor as
* defined by FunctionTemplate::HasInstance()), an implicit TypeError is
* thrown and no callback is invoked.
*/
void SetNativeDataProperty(
Local<String> name, AccessorGetterCallback getter,
AccessorSetterCallback setter = 0,
// TODO(dcarney): gcc can't handle Local below
Local<Value> data = Local<Value>(), PropertyAttribute attribute = None,
Local<AccessorSignature> signature = Local<AccessorSignature>(),
AccessControl settings = DEFAULT);
void SetNativeDataProperty(
Local<Name> name, AccessorNameGetterCallback getter,
AccessorNameSetterCallback setter = 0,
// TODO(dcarney): gcc can't handle Local below
Local<Value> data = Local<Value>(), PropertyAttribute attribute = None,
Local<AccessorSignature> signature = Local<AccessorSignature>(),
AccessControl settings = DEFAULT);
/**
* Like SetNativeDataProperty, but V8 will replace the native data property
* with a real data property on first access.
*/
void SetLazyDataProperty(Local<Name> name, AccessorNameGetterCallback getter,
Local<Value> data = Local<Value>(),
PropertyAttribute attribute = None);
/**
* During template instantiation, sets the value with the intrinsic property
* from the correct context.
*/
void SetIntrinsicDataProperty(Local<Name> name, Intrinsic intrinsic,
PropertyAttribute attribute = None);
private:
Template();
friend class ObjectTemplate;
friend class FunctionTemplate;
};
/**
* NamedProperty[Getter|Setter] are used as interceptors on object.
* See ObjectTemplate::SetNamedPropertyHandler.
*/
typedef void (*NamedPropertyGetterCallback)(
Local<String> property,
const PropertyCallbackInfo<Value>& info);
/**
* Returns the value if the setter intercepts the request.
* Otherwise, returns an empty handle.
*/
typedef void (*NamedPropertySetterCallback)(
Local<String> property,
Local<Value> value,
const PropertyCallbackInfo<Value>& info);
/**
* Returns a non-empty handle if the interceptor intercepts the request.
* The result is an integer encoding property attributes (like v8::None,
* v8::DontEnum, etc.)
*/
typedef void (*NamedPropertyQueryCallback)(
Local<String> property,
const PropertyCallbackInfo<Integer>& info);
/**
* Returns a non-empty handle if the deleter intercepts the request.
* The return value is true if the property could be deleted and false
* otherwise.
*/
typedef void (*NamedPropertyDeleterCallback)(
Local<String> property,
const PropertyCallbackInfo<Boolean>& info);
/**
* Returns an array containing the names of the properties the named
* property getter intercepts.
*
* Note: The values in the array must be of type v8::Name.
*/
typedef void (*NamedPropertyEnumeratorCallback)(
const PropertyCallbackInfo<Array>& info);
// TODO(dcarney): Deprecate and remove previous typedefs, and replace
// GenericNamedPropertyFooCallback with just NamedPropertyFooCallback.
/**
* Interceptor for get requests on an object.
*
* Use `info.GetReturnValue().Set()` to set the return value of the
* intercepted get request.
*
* \param property The name of the property for which the request was
* intercepted.
* \param info Information about the intercepted request, such as
* isolate, receiver, return value, or whether running in `'use strict`' mode.
* See `PropertyCallbackInfo`.
*
* \code
* void GetterCallback(
* Local<Name> name,
* const v8::PropertyCallbackInfo<v8::Value>& info) {
* info.GetReturnValue().Set(v8_num(42));
* }
*
* v8::Local<v8::FunctionTemplate> templ =
* v8::FunctionTemplate::New(isolate);
* templ->InstanceTemplate()->SetHandler(
* v8::NamedPropertyHandlerConfiguration(GetterCallback));
* LocalContext env;
* env->Global()
* ->Set(env.local(), v8_str("obj"), templ->GetFunction(env.local())
* .ToLocalChecked()
* ->NewInstance(env.local())
* .ToLocalChecked())
* .FromJust();
* v8::Local<v8::Value> result = CompileRun("obj.a = 17; obj.a");
* CHECK(v8_num(42)->Equals(env.local(), result).FromJust());
* \endcode
*
* See also `ObjectTemplate::SetHandler`.
*/
typedef void (*GenericNamedPropertyGetterCallback)(
Local<Name> property, const PropertyCallbackInfo<Value>& info);
/**
* Interceptor for set requests on an object.
*
* Use `info.GetReturnValue()` to indicate whether the request was intercepted
* or not. If the setter successfully intercepts the request, i.e., if the
* request should not be further executed, call
* `info.GetReturnValue().Set(value)`. If the setter
* did not intercept the request, i.e., if the request should be handled as
* if no interceptor is present, do not not call `Set()`.
*
* \param property The name of the property for which the request was
* intercepted.
* \param value The value which the property will have if the request
* is not intercepted.
* \param info Information about the intercepted request, such as
* isolate, receiver, return value, or whether running in `'use strict'` mode.
* See `PropertyCallbackInfo`.
*
* See also
* `ObjectTemplate::SetHandler.`
*/
typedef void (*GenericNamedPropertySetterCallback)(
Local<Name> property, Local<Value> value,
const PropertyCallbackInfo<Value>& info);
/**
* Intercepts all requests that query the attributes of the
* property, e.g., getOwnPropertyDescriptor(), propertyIsEnumerable(), and
* defineProperty().
*
* Use `info.GetReturnValue().Set(value)` to set the property attributes. The
* value is an integer encoding a `v8::PropertyAttribute`.
*
* \param property The name of the property for which the request was
* intercepted.
* \param info Information about the intercepted request, such as
* isolate, receiver, return value, or whether running in `'use strict'` mode.
* See `PropertyCallbackInfo`.
*
* \note Some functions query the property attributes internally, even though
* they do not return the attributes. For example, `hasOwnProperty()` can
* trigger this interceptor depending on the state of the object.
*
* See also
* `ObjectTemplate::SetHandler.`
*/
typedef void (*GenericNamedPropertyQueryCallback)(
Local<Name> property, const PropertyCallbackInfo<Integer>& info);
/**
* Interceptor for delete requests on an object.
*
* Use `info.GetReturnValue()` to indicate whether the request was intercepted
* or not. If the deleter successfully intercepts the request, i.e., if the
* request should not be further executed, call
* `info.GetReturnValue().Set(value)` with a boolean `value`. The `value` is
* used as the return value of `delete`.
*
* \param property The name of the property for which the request was
* intercepted.
* \param info Information about the intercepted request, such as
* isolate, receiver, return value, or whether running in `'use strict'` mode.
* See `PropertyCallbackInfo`.
*
* \note If you need to mimic the behavior of `delete`, i.e., throw in strict
* mode instead of returning false, use `info.ShouldThrowOnError()` to determine
* if you are in strict mode.
*
* See also `ObjectTemplate::SetHandler.`
*/
typedef void (*GenericNamedPropertyDeleterCallback)(
Local<Name> property, const PropertyCallbackInfo<Boolean>& info);
/**
* Returns an array containing the names of the properties the named
* property getter intercepts.
*
* Note: The values in the array must be of type v8::Name.
*/
typedef void (*GenericNamedPropertyEnumeratorCallback)(
const PropertyCallbackInfo<Array>& info);
/**
* Interceptor for defineProperty requests on an object.
*
* Use `info.GetReturnValue()` to indicate whether the request was intercepted
* or not. If the definer successfully intercepts the request, i.e., if the
* request should not be further executed, call
* `info.GetReturnValue().Set(value)`. If the definer
* did not intercept the request, i.e., if the request should be handled as
* if no interceptor is present, do not not call `Set()`.
*
* \param property The name of the property for which the request was
* intercepted.
* \param desc The property descriptor which is used to define the
* property if the request is not intercepted.
* \param info Information about the intercepted request, such as
* isolate, receiver, return value, or whether running in `'use strict'` mode.
* See `PropertyCallbackInfo`.
*
* See also `ObjectTemplate::SetHandler`.
*/
typedef void (*GenericNamedPropertyDefinerCallback)(
Local<Name> property, const PropertyDescriptor& desc,
const PropertyCallbackInfo<Value>& info);
/**
* Interceptor for getOwnPropertyDescriptor requests on an object.
*
* Use `info.GetReturnValue().Set()` to set the return value of the
* intercepted request. The return value must be an object that
* can be converted to a PropertyDescriptor, e.g., a `v8::value` returned from
* `v8::Object::getOwnPropertyDescriptor`.
*
* \param property The name of the property for which the request was
* intercepted.
* \info Information about the intercepted request, such as
* isolate, receiver, return value, or whether running in `'use strict'` mode.
* See `PropertyCallbackInfo`.
*
* \note If GetOwnPropertyDescriptor is intercepted, it will
* always return true, i.e., indicate that the property was found.
*
* See also `ObjectTemplate::SetHandler`.
*/
typedef void (*GenericNamedPropertyDescriptorCallback)(
Local<Name> property, const PropertyCallbackInfo<Value>& info);
/**
* See `v8::GenericNamedPropertyGetterCallback`.
*/
typedef void (*IndexedPropertyGetterCallback)(
uint32_t index,
const PropertyCallbackInfo<Value>& info);
/**
* See `v8::GenericNamedPropertySetterCallback`.
*/
typedef void (*IndexedPropertySetterCallback)(
uint32_t index,
Local<Value> value,
const PropertyCallbackInfo<Value>& info);
/**
* See `v8::GenericNamedPropertyQueryCallback`.
*/
typedef void (*IndexedPropertyQueryCallback)(
uint32_t index,
const PropertyCallbackInfo<Integer>& info);
/**
* See `v8::GenericNamedPropertyDeleterCallback`.
*/
typedef void (*IndexedPropertyDeleterCallback)(
uint32_t index,
const PropertyCallbackInfo<Boolean>& info);
/**
* Returns an array containing the indices of the properties the indexed
* property getter intercepts.
*
* Note: The values in the array must be uint32_t.
*/
typedef void (*IndexedPropertyEnumeratorCallback)(
const PropertyCallbackInfo<Array>& info);
/**
* See `v8::GenericNamedPropertyDefinerCallback`.
*/
typedef void (*IndexedPropertyDefinerCallback)(
uint32_t index, const PropertyDescriptor& desc,
const PropertyCallbackInfo<Value>& info);
/**
* See `v8::GenericNamedPropertyDescriptorCallback`.
*/
typedef void (*IndexedPropertyDescriptorCallback)(
uint32_t index, const PropertyCallbackInfo<Value>& info);
/**
* Access type specification.
*/
enum AccessType {
ACCESS_GET,
ACCESS_SET,
ACCESS_HAS,
ACCESS_DELETE,
ACCESS_KEYS
};
/**
* Returns true if the given context should be allowed to access the given
* object.
*/
typedef bool (*AccessCheckCallback)(Local<Context> accessing_context,
Local<Object> accessed_object,
Local<Value> data);
/**
* A FunctionTemplate is used to create functions at runtime. There
* can only be one function created from a FunctionTemplate in a
* context. The lifetime of the created function is equal to the
* lifetime of the context. So in case the embedder needs to create
* temporary functions that can be collected using Scripts is
* preferred.
*
* Any modification of a FunctionTemplate after first instantiation will trigger
* a crash.
*
* A FunctionTemplate can have properties, these properties are added to the
* function object when it is created.
*
* A FunctionTemplate has a corresponding instance template which is
* used to create object instances when the function is used as a
* constructor. Properties added to the instance template are added to
* each object instance.
*
* A FunctionTemplate can have a prototype template. The prototype template
* is used to create the prototype object of the function.
*
* The following example shows how to use a FunctionTemplate:
*
* \code
* v8::Local<v8::FunctionTemplate> t = v8::FunctionTemplate::New(isolate);
* t->Set(isolate, "func_property", v8::Number::New(isolate, 1));
*
* v8::Local<v8::Template> proto_t = t->PrototypeTemplate();
* proto_t->Set(isolate,
* "proto_method",
* v8::FunctionTemplate::New(isolate, InvokeCallback));
* proto_t->Set(isolate, "proto_const", v8::Number::New(isolate, 2));
*
* v8::Local<v8::ObjectTemplate> instance_t = t->InstanceTemplate();
* instance_t->SetAccessor(String::NewFromUtf8(isolate, "instance_accessor"),
* InstanceAccessorCallback);
* instance_t->SetHandler(
* NamedPropertyHandlerConfiguration(PropertyHandlerCallback));
* instance_t->Set(String::NewFromUtf8(isolate, "instance_property"),
* Number::New(isolate, 3));
*
* v8::Local<v8::Function> function = t->GetFunction();
* v8::Local<v8::Object> instance = function->NewInstance();
* \endcode
*
* Let's use "function" as the JS variable name of the function object
* and "instance" for the instance object created above. The function
* and the instance will have the following properties:
*
* \code
* func_property in function == true;
* function.func_property == 1;
*
* function.prototype.proto_method() invokes 'InvokeCallback'
* function.prototype.proto_const == 2;
*
* instance instanceof function == true;
* instance.instance_accessor calls 'InstanceAccessorCallback'
* instance.instance_property == 3;
* \endcode
*
* A FunctionTemplate can inherit from another one by calling the
* FunctionTemplate::Inherit method. The following graph illustrates
* the semantics of inheritance:
*
* \code
* FunctionTemplate Parent -> Parent() . prototype -> { }
* ^ ^
* | Inherit(Parent) | .__proto__
* | |
* FunctionTemplate Child -> Child() . prototype -> { }
* \endcode
*
* A FunctionTemplate 'Child' inherits from 'Parent', the prototype
* object of the Child() function has __proto__ pointing to the
* Parent() function's prototype object. An instance of the Child
* function has all properties on Parent's instance templates.
*
* Let Parent be the FunctionTemplate initialized in the previous
* section and create a Child FunctionTemplate by:
*
* \code
* Local<FunctionTemplate> parent = t;
* Local<FunctionTemplate> child = FunctionTemplate::New();
* child->Inherit(parent);
*
* Local<Function> child_function = child->GetFunction();
* Local<Object> child_instance = child_function->NewInstance();
* \endcode
*
* The Child function and Child instance will have the following
* properties:
*
* \code
* child_func.prototype.__proto__ == function.prototype;
* child_instance.instance_accessor calls 'InstanceAccessorCallback'
* child_instance.instance_property == 3;
* \endcode
*/
class V8_EXPORT FunctionTemplate : public Template {
public:
/** Creates a function template.*/
static Local<FunctionTemplate> New(
Isolate* isolate, FunctionCallback callback = 0,
Local<Value> data = Local<Value>(),
Local<Signature> signature = Local<Signature>(), int length = 0,
ConstructorBehavior behavior = ConstructorBehavior::kAllow);
/** Get a template included in the snapshot by index. */
static MaybeLocal<FunctionTemplate> FromSnapshot(Isolate* isolate,
size_t index);
/**
* Creates a function template backed/cached by a private property.
*/
static Local<FunctionTemplate> NewWithCache(
Isolate* isolate, FunctionCallback callback,
Local<Private> cache_property, Local<Value> data = Local<Value>(),
Local<Signature> signature = Local<Signature>(), int length = 0);
/** Returns the unique function instance in the current execution context.*/
V8_DEPRECATE_SOON("Use maybe version", Local<Function> GetFunction());
V8_WARN_UNUSED_RESULT MaybeLocal<Function> GetFunction(
Local<Context> context);
/**
* Similar to Context::NewRemoteContext, this creates an instance that
* isn't backed by an actual object.
*
* The InstanceTemplate of this FunctionTemplate must have access checks with
* handlers installed.
*/
V8_WARN_UNUSED_RESULT MaybeLocal<Object> NewRemoteInstance();
/**
* Set the call-handler callback for a FunctionTemplate. This
* callback is called whenever the function created from this
* FunctionTemplate is called.
*/
void SetCallHandler(FunctionCallback callback,
Local<Value> data = Local<Value>());
/** Set the predefined length property for the FunctionTemplate. */
void SetLength(int length);
/** Get the InstanceTemplate. */
Local<ObjectTemplate> InstanceTemplate();
/**
* Causes the function template to inherit from a parent function template.
* This means the the function's prototype.__proto__ is set to the parent
* function's prototype.
**/
void Inherit(Local<FunctionTemplate> parent);
/**
* A PrototypeTemplate is the template used to create the prototype object
* of the function created by this template.
*/
Local<ObjectTemplate> PrototypeTemplate();
/**
* A PrototypeProviderTemplate is another function template whose prototype
* property is used for this template. This is mutually exclusive with setting
* a prototype template indirectly by calling PrototypeTemplate() or using
* Inherit().
**/
void SetPrototypeProviderTemplate(Local<FunctionTemplate> prototype_provider);
/**
* Set the class name of the FunctionTemplate. This is used for
* printing objects created with the function created from the
* FunctionTemplate as its constructor.
*/
void SetClassName(Local<String> name);
/**
* When set to true, no access check will be performed on the receiver of a
* function call. Currently defaults to true, but this is subject to change.
*/
void SetAcceptAnyReceiver(bool value);
/**
* Determines whether the __proto__ accessor ignores instances of
* the function template. If instances of the function template are
* ignored, __proto__ skips all instances and instead returns the
* next object in the prototype chain.
*
* Call with a value of true to make the __proto__ accessor ignore
* instances of the function template. Call with a value of false
* to make the __proto__ accessor not ignore instances of the
* function template. By default, instances of a function template
* are not ignored.
*/
void SetHiddenPrototype(bool value);
/**
* Sets the ReadOnly flag in the attributes of the 'prototype' property
* of functions created from this FunctionTemplate to true.
*/
void ReadOnlyPrototype();
/**
* Removes the prototype property from functions created from this
* FunctionTemplate.
*/
void RemovePrototype();
/**
* Returns true if the given object is an instance of this function
* template.
*/
bool HasInstance(Local<Value> object);
V8_INLINE static FunctionTemplate* Cast(Data* data);
private:
FunctionTemplate();
static void CheckCast(Data* that);
friend class Context;
friend class ObjectTemplate;
};
/**
* Configuration flags for v8::NamedPropertyHandlerConfiguration or
* v8::IndexedPropertyHandlerConfiguration.
*/
enum class PropertyHandlerFlags {
/**
* None.
*/
kNone = 0,
/**
* See ALL_CAN_READ above.
*/
kAllCanRead = 1,
/** Will not call into interceptor for properties on the receiver or prototype
* chain, i.e., only call into interceptor for properties that do not exist.
* Currently only valid for named interceptors.
*/
kNonMasking = 1 << 1,
/**
* Will not call into interceptor for symbol lookup. Only meaningful for
* named interceptors.
*/
kOnlyInterceptStrings = 1 << 2,
};
struct NamedPropertyHandlerConfiguration {
NamedPropertyHandlerConfiguration(
/** Note: getter is required */
GenericNamedPropertyGetterCallback getter = 0,
GenericNamedPropertySetterCallback setter = 0,
GenericNamedPropertyQueryCallback query = 0,
GenericNamedPropertyDeleterCallback deleter = 0,
GenericNamedPropertyEnumeratorCallback enumerator = 0,
Local<Value> data = Local<Value>(),
PropertyHandlerFlags flags = PropertyHandlerFlags::kNone)
: getter(getter),
setter(setter),
query(query),
deleter(deleter),
enumerator(enumerator),
definer(0),
descriptor(0),
data(data),
flags(flags) {}
NamedPropertyHandlerConfiguration(
GenericNamedPropertyGetterCallback getter,
GenericNamedPropertySetterCallback setter,
GenericNamedPropertyDescriptorCallback descriptor,
GenericNamedPropertyDeleterCallback deleter,
GenericNamedPropertyEnumeratorCallback enumerator,
GenericNamedPropertyDefinerCallback definer,
Local<Value> data = Local<Value>(),
PropertyHandlerFlags flags = PropertyHandlerFlags::kNone)
: getter(getter),
setter(setter),
query(0),
deleter(deleter),
enumerator(enumerator),
definer(definer),
descriptor(descriptor),
data(data),
flags(flags) {}
GenericNamedPropertyGetterCallback getter;
GenericNamedPropertySetterCallback setter;
GenericNamedPropertyQueryCallback query;
GenericNamedPropertyDeleterCallback deleter;
GenericNamedPropertyEnumeratorCallback enumerator;
GenericNamedPropertyDefinerCallback definer;
GenericNamedPropertyDescriptorCallback descriptor;
Local<Value> data;
PropertyHandlerFlags flags;
};
struct IndexedPropertyHandlerConfiguration {
IndexedPropertyHandlerConfiguration(
/** Note: getter is required */
IndexedPropertyGetterCallback getter = 0,
IndexedPropertySetterCallback setter = 0,
IndexedPropertyQueryCallback query = 0,
IndexedPropertyDeleterCallback deleter = 0,
IndexedPropertyEnumeratorCallback enumerator = 0,
Local<Value> data = Local<Value>(),
PropertyHandlerFlags flags = PropertyHandlerFlags::kNone)
: getter(getter),
setter(setter),
query(query),
deleter(deleter),
enumerator(enumerator),
definer(0),
descriptor(0),
data(data),
flags(flags) {}
IndexedPropertyHandlerConfiguration(
IndexedPropertyGetterCallback getter,
IndexedPropertySetterCallback setter,
IndexedPropertyDescriptorCallback descriptor,
IndexedPropertyDeleterCallback deleter,
IndexedPropertyEnumeratorCallback enumerator,
IndexedPropertyDefinerCallback definer,
Local<Value> data = Local<Value>(),
PropertyHandlerFlags flags = PropertyHandlerFlags::kNone)
: getter(getter),
setter(setter),
query(0),
deleter(deleter),
enumerator(enumerator),
definer(definer),
descriptor(descriptor),
data(data),
flags(flags) {}
IndexedPropertyGetterCallback getter;
IndexedPropertySetterCallback setter;
IndexedPropertyQueryCallback query;
IndexedPropertyDeleterCallback deleter;
IndexedPropertyEnumeratorCallback enumerator;
IndexedPropertyDefinerCallback definer;
IndexedPropertyDescriptorCallback descriptor;
Local<Value> data;
PropertyHandlerFlags flags;
};
/**
* An ObjectTemplate is used to create objects at runtime.
*
* Properties added to an ObjectTemplate are added to each object
* created from the ObjectTemplate.
*/
class V8_EXPORT ObjectTemplate : public Template {
public:
/** Creates an ObjectTemplate. */
static Local<ObjectTemplate> New(
Isolate* isolate,
Local<FunctionTemplate> constructor = Local<FunctionTemplate>());
/** Get a template included in the snapshot by index. */
static MaybeLocal<ObjectTemplate> FromSnapshot(Isolate* isolate,
size_t index);
/** Creates a new instance of this template.*/
V8_DEPRECATE_SOON("Use maybe version", Local<Object> NewInstance());
V8_WARN_UNUSED_RESULT MaybeLocal<Object> NewInstance(Local<Context> context);
/**
* Sets an accessor on the object template.
*
* Whenever the property with the given name is accessed on objects
* created from this ObjectTemplate the getter and setter callbacks
* are called instead of getting and setting the property directly
* on the JavaScript object.
*
* \param name The name of the property for which an accessor is added.
* \param getter The callback to invoke when getting the property.
* \param setter The callback to invoke when setting the property.
* \param data A piece of data that will be passed to the getter and setter
* callbacks whenever they are invoked.
* \param settings Access control settings for the accessor. This is a bit
* field consisting of one of more of
* DEFAULT = 0, ALL_CAN_READ = 1, or ALL_CAN_WRITE = 2.
* The default is to not allow cross-context access.
* ALL_CAN_READ means that all cross-context reads are allowed.
* ALL_CAN_WRITE means that all cross-context writes are allowed.
* The combination ALL_CAN_READ | ALL_CAN_WRITE can be used to allow all
* cross-context access.
* \param attribute The attributes of the property for which an accessor
* is added.
* \param signature The signature describes valid receivers for the accessor
* and is used to perform implicit instance checks against them. If the
* receiver is incompatible (i.e. is not an instance of the constructor as
* defined by FunctionTemplate::HasInstance()), an implicit TypeError is
* thrown and no callback is invoked.
*/
void SetAccessor(
Local<String> name, AccessorGetterCallback getter,
AccessorSetterCallback setter = 0, Local<Value> data = Local<Value>(),
AccessControl settings = DEFAULT, PropertyAttribute attribute = None,
Local<AccessorSignature> signature = Local<AccessorSignature>());
void SetAccessor(
Local<Name> name, AccessorNameGetterCallback getter,
AccessorNameSetterCallback setter = 0, Local<Value> data = Local<Value>(),
AccessControl settings = DEFAULT, PropertyAttribute attribute = None,
Local<AccessorSignature> signature = Local<AccessorSignature>());
/**
* Sets a named property handler on the object template.
*
* Whenever a property whose name is a string is accessed on objects created
* from this object template, the provided callback is invoked instead of
* accessing the property directly on the JavaScript object.
*
* SetNamedPropertyHandler() is different from SetHandler(), in
* that the latter can intercept symbol-named properties as well as
* string-named properties when called with a
* NamedPropertyHandlerConfiguration. New code should use SetHandler().
*
* \param getter The callback to invoke when getting a property.
* \param setter The callback to invoke when setting a property.
* \param query The callback to invoke to check if a property is present,
* and if present, get its attributes.
* \param deleter The callback to invoke when deleting a property.
* \param enumerator The callback to invoke to enumerate all the named
* properties of an object.
* \param data A piece of data that will be passed to the callbacks
* whenever they are invoked.
*/
V8_DEPRECATE_SOON(
"Use SetHandler(const NamedPropertyHandlerConfiguration) "
"with the kOnlyInterceptStrings flag set.",
void SetNamedPropertyHandler(
NamedPropertyGetterCallback getter,
NamedPropertySetterCallback setter = 0,
NamedPropertyQueryCallback query = 0,
NamedPropertyDeleterCallback deleter = 0,
NamedPropertyEnumeratorCallback enumerator = 0,
Local<Value> data = Local<Value>()));
/**
* Sets a named property handler on the object template.
*
* Whenever a property whose name is a string or a symbol is accessed on
* objects created from this object template, the provided callback is
* invoked instead of accessing the property directly on the JavaScript
* object.
*
* @param configuration The NamedPropertyHandlerConfiguration that defines the
* callbacks to invoke when accessing a property.
*/
void SetHandler(const NamedPropertyHandlerConfiguration& configuration);
/**
* Sets an indexed property handler on the object template.
*
* Whenever an indexed property is accessed on objects created from
* this object template, the provided callback is invoked instead of
* accessing the property directly on the JavaScript object.
*
* \param getter The callback to invoke when getting a property.
* \param setter The callback to invoke when setting a property.
* \param query The callback to invoke to check if an object has a property.
* \param deleter The callback to invoke when deleting a property.
* \param enumerator The callback to invoke to enumerate all the indexed
* properties of an object.
* \param data A piece of data that will be passed to the callbacks
* whenever they are invoked.
*/
// TODO(dcarney): deprecate
void SetIndexedPropertyHandler(
IndexedPropertyGetterCallback getter,
IndexedPropertySetterCallback setter = 0,
IndexedPropertyQueryCallback query = 0,
IndexedPropertyDeleterCallback deleter = 0,
IndexedPropertyEnumeratorCallback enumerator = 0,
Local<Value> data = Local<Value>()) {
SetHandler(IndexedPropertyHandlerConfiguration(getter, setter, query,
deleter, enumerator, data));
}
/**
* Sets an indexed property handler on the object template.
*
* Whenever an indexed property is accessed on objects created from
* this object template, the provided callback is invoked instead of
* accessing the property directly on the JavaScript object.
*
* @param configuration The IndexedPropertyHandlerConfiguration that defines
* the callbacks to invoke when accessing a property.
*/
void SetHandler(const IndexedPropertyHandlerConfiguration& configuration);
/**
* Sets the callback to be used when calling instances created from
* this template as a function. If no callback is set, instances
* behave like normal JavaScript objects that cannot be called as a
* function.
*/
void SetCallAsFunctionHandler(FunctionCallback callback,
Local<Value> data = Local<Value>());
/**
* Mark object instances of the template as undetectable.
*
* In many ways, undetectable objects behave as though they are not
* there. They behave like 'undefined' in conditionals and when
* printed. However, properties can be accessed and called as on
* normal objects.
*/
void MarkAsUndetectable();
/**
* Sets access check callback on the object template and enables access
* checks.
*
* When accessing properties on instances of this object template,
* the access check callback will be called to determine whether or
* not to allow cross-context access to the properties.
*/
void SetAccessCheckCallback(AccessCheckCallback callback,
Local<Value> data = Local<Value>());
/**
* Like SetAccessCheckCallback but invokes an interceptor on failed access
* checks instead of looking up all-can-read properties. You can only use
* either this method or SetAccessCheckCallback, but not both at the same
* time.
*/
void SetAccessCheckCallbackAndHandler(
AccessCheckCallback callback,
const NamedPropertyHandlerConfiguration& named_handler,
const IndexedPropertyHandlerConfiguration& indexed_handler,
Local<Value> data = Local<Value>());
/**
* Gets the number of internal fields for objects generated from
* this template.
*/
int InternalFieldCount();
/**
* Sets the number of internal fields for objects generated from
* this template.
*/
void SetInternalFieldCount(int value);
/**
* Returns true if the object will be an immutable prototype exotic object.
*/
bool IsImmutableProto();
/**
* Makes the ObjectTemplate for an immutable prototype exotic object, with an
* immutable __proto__.
*/
void SetImmutableProto();
V8_INLINE static ObjectTemplate* Cast(Data* data);
private:
ObjectTemplate();
static Local<ObjectTemplate> New(internal::Isolate* isolate,
Local<FunctionTemplate> constructor);
static void CheckCast(Data* that);
friend class FunctionTemplate;
};
/**
* A Signature specifies which receiver is valid for a function.
*
* A receiver matches a given signature if the receiver (or any of its
* hidden prototypes) was created from the signature's FunctionTemplate, or
* from a FunctionTemplate that inherits directly or indirectly from the
* signature's FunctionTemplate.
*/
class V8_EXPORT Signature : public Data {
public:
static Local<Signature> New(
Isolate* isolate,
Local<FunctionTemplate> receiver = Local<FunctionTemplate>());
V8_INLINE static Signature* Cast(Data* data);
private:
Signature();
static void CheckCast(Data* that);
};
/**
* An AccessorSignature specifies which receivers are valid parameters
* to an accessor callback.
*/
class V8_EXPORT AccessorSignature : public Data {
public:
static Local<AccessorSignature> New(
Isolate* isolate,
Local<FunctionTemplate> receiver = Local<FunctionTemplate>());
V8_INLINE static AccessorSignature* Cast(Data* data);
private:
AccessorSignature();
static void CheckCast(Data* that);
};
// --- Extensions ---
class V8_EXPORT ExternalOneByteStringResourceImpl
: public String::ExternalOneByteStringResource {
public:
ExternalOneByteStringResourceImpl() : data_(0), length_(0) {}
ExternalOneByteStringResourceImpl(const char* data, size_t length)
: data_(data), length_(length) {}
const char* data() const { return data_; }
size_t length() const { return length_; }
private:
const char* data_;
size_t length_;
};
/**
* Ignore
*/
class V8_EXPORT Extension { // NOLINT
public:
// Note that the strings passed into this constructor must live as long
// as the Extension itself.
Extension(const char* name,
const char* source = 0,
int dep_count = 0,
const char** deps = 0,
int source_length = -1);
virtual ~Extension() { }
virtual Local<FunctionTemplate> GetNativeFunctionTemplate(
Isolate* isolate, Local<String> name) {
return Local<FunctionTemplate>();
}
const char* name() const { return name_; }
size_t source_length() const { return source_length_; }
const String::ExternalOneByteStringResource* source() const {
return &source_; }
int dependency_count() { return dep_count_; }
const char** dependencies() { return deps_; }
void set_auto_enable(bool value) { auto_enable_ = value; }
bool auto_enable() { return auto_enable_; }
// Disallow copying and assigning.
Extension(const Extension&) = delete;
void operator=(const Extension&) = delete;
private:
const char* name_;
size_t source_length_; // expected to initialize before source_
ExternalOneByteStringResourceImpl source_;
int dep_count_;
const char** deps_;
bool auto_enable_;
};
void V8_EXPORT RegisterExtension(Extension* extension);
// --- Statics ---
V8_INLINE Local<Primitive> Undefined(Isolate* isolate);
V8_INLINE Local<Primitive> Null(Isolate* isolate);
V8_INLINE Local<Boolean> True(Isolate* isolate);
V8_INLINE Local<Boolean> False(Isolate* isolate);
/**
* A set of constraints that specifies the limits of the runtime's memory use.
* You must set the heap size before initializing the VM - the size cannot be
* adjusted after the VM is initialized.
*
* If you are using threads then you should hold the V8::Locker lock while
* setting the stack limit and you must set a non-default stack limit separately
* for each thread.
*
* The arguments for set_max_semi_space_size, set_max_old_space_size,
* set_max_executable_size, set_code_range_size specify limits in MB.
*
* The argument for set_max_semi_space_size_in_kb is in KB.
*/
class V8_EXPORT ResourceConstraints {
public:
ResourceConstraints();
/**
* Configures the constraints with reasonable default values based on the
* capabilities of the current device the VM is running on.
*
* \param physical_memory The total amount of physical memory on the current
* device, in bytes.
* \param virtual_memory_limit The amount of virtual memory on the current
* device, in bytes, or zero, if there is no limit.
*/
void ConfigureDefaults(uint64_t physical_memory,
uint64_t virtual_memory_limit);
// Returns the max semi-space size in MB.
V8_DEPRECATE_SOON("Use max_semi_space_size_in_kb()",
int max_semi_space_size()) {
return static_cast<int>(max_semi_space_size_in_kb_ / 1024);
}
// Sets the max semi-space size in MB.
V8_DEPRECATE_SOON("Use set_max_semi_space_size_in_kb(size_t limit_in_kb)",
void set_max_semi_space_size(int limit_in_mb)) {
max_semi_space_size_in_kb_ = limit_in_mb * 1024;
}
// Returns the max semi-space size in KB.
size_t max_semi_space_size_in_kb() const {
return max_semi_space_size_in_kb_;
}
// Sets the max semi-space size in KB.
void set_max_semi_space_size_in_kb(size_t limit_in_kb) {
max_semi_space_size_in_kb_ = limit_in_kb;
}
int max_old_space_size() const { return max_old_space_size_; }
void set_max_old_space_size(int limit_in_mb) {
max_old_space_size_ = limit_in_mb;
}
V8_DEPRECATE_SOON("max_executable_size_ is subsumed by max_old_space_size_",
int max_executable_size() const) {
return max_executable_size_;
}
V8_DEPRECATE_SOON("max_executable_size_ is subsumed by max_old_space_size_",
void set_max_executable_size(int limit_in_mb)) {
max_executable_size_ = limit_in_mb;
}
uint32_t* stack_limit() const { return stack_limit_; }
// Sets an address beyond which the VM's stack may not grow.
void set_stack_limit(uint32_t* value) { stack_limit_ = value; }
size_t code_range_size() const { return code_range_size_; }
void set_code_range_size(size_t limit_in_mb) {
code_range_size_ = limit_in_mb;
}
size_t max_zone_pool_size() const { return max_zone_pool_size_; }
void set_max_zone_pool_size(const size_t bytes) {
max_zone_pool_size_ = bytes;
}
private:
// max_semi_space_size_ is in KB
size_t max_semi_space_size_in_kb_;
// The remaining limits are in MB
int max_old_space_size_;
int max_executable_size_;
uint32_t* stack_limit_;
size_t code_range_size_;
size_t max_zone_pool_size_;
};
// --- Exceptions ---
typedef void (*FatalErrorCallback)(const char* location, const char* message);
typedef void (*OOMErrorCallback)(const char* location, bool is_heap_oom);
typedef void (*DcheckErrorCallback)(const char* file, int line,
const char* message);
typedef void (*MessageCallback)(Local<Message> message, Local<Value> data);
// --- Tracing ---
typedef void (*LogEventCallback)(const char* name, int event);
/**
* Create new error objects by calling the corresponding error object
* constructor with the message.
*/
class V8_EXPORT Exception {
public:
static Local<Value> RangeError(Local<String> message);
static Local<Value> ReferenceError(Local<String> message);
static Local<Value> SyntaxError(Local<String> message);
static Local<Value> TypeError(Local<String> message);
static Local<Value> Error(Local<String> message);
/**
* Creates an error message for the given exception.
* Will try to reconstruct the original stack trace from the exception value,
* or capture the current stack trace if not available.
*/
static Local<Message> CreateMessage(Isolate* isolate, Local<Value> exception);
/**
* Returns the original stack trace that was captured at the creation time
* of a given exception, or an empty handle if not available.
*/
static Local<StackTrace> GetStackTrace(Local<Value> exception);
};
// --- Counters Callbacks ---
typedef int* (*CounterLookupCallback)(const char* name);
typedef void* (*CreateHistogramCallback)(const char* name,
int min,
int max,
size_t buckets);
typedef void (*AddHistogramSampleCallback)(void* histogram, int sample);
// --- Memory Allocation Callback ---
enum ObjectSpace {
kObjectSpaceNewSpace = 1 << 0,
kObjectSpaceOldSpace = 1 << 1,
kObjectSpaceCodeSpace = 1 << 2,
kObjectSpaceMapSpace = 1 << 3,
kObjectSpaceLoSpace = 1 << 4,
kObjectSpaceAll = kObjectSpaceNewSpace | kObjectSpaceOldSpace |
kObjectSpaceCodeSpace | kObjectSpaceMapSpace |
kObjectSpaceLoSpace
};
enum AllocationAction {
kAllocationActionAllocate = 1 << 0,
kAllocationActionFree = 1 << 1,
kAllocationActionAll = kAllocationActionAllocate | kAllocationActionFree
};
// --- Enter/Leave Script Callback ---
typedef void (*BeforeCallEnteredCallback)(Isolate*);
typedef void (*CallCompletedCallback)(Isolate*);
typedef void (*DeprecatedCallCompletedCallback)();
/**
* HostImportModuleDynamicallyCallback is called when we require the
* embedder to load a module. This is used as part of the dynamic
* import syntax.
*
* The referrer contains metadata about the script/module that calls
* import.
*
* The specifier is the name of the module that should be imported.
*
* The embedder must compile, instantiate, evaluate the Module, and
* obtain it's namespace object.
*
* The Promise returned from this function is forwarded to userland
* JavaScript. The embedder must resolve this promise with the module
* namespace object. In case of an exception, the embedder must reject
* this promise with the exception. If the promise creation itself
* fails (e.g. due to stack overflow), the embedder must propagate
* that exception by returning an empty MaybeLocal.
*/
typedef MaybeLocal<Promise> (*HostImportModuleDynamicallyCallback)(
Local<Context> context, Local<ScriptOrModule> referrer,
Local<String> specifier);
/**
* HostInitializeImportMetaObjectCallback is called the first time import.meta
* is accessed for a module. Subsequent access will reuse the same value.
*
* The method combines two implementation-defined abstract operations into one:
* HostGetImportMetaProperties and HostFinalizeImportMeta.
*
* The embedder should use v8::Object::CreateDataProperty to add properties on
* the meta object.
*/
typedef void (*HostInitializeImportMetaObjectCallback)(Local<Context> context,
Local<Module> module,
Local<Object> meta);
/**
* PromiseHook with type kInit is called when a new promise is
* created. When a new promise is created as part of the chain in the
* case of Promise.then or in the intermediate promises created by
* Promise.{race, all}/AsyncFunctionAwait, we pass the parent promise
* otherwise we pass undefined.
*
* PromiseHook with type kResolve is called at the beginning of
* resolve or reject function defined by CreateResolvingFunctions.
*
* PromiseHook with type kBefore is called at the beginning of the
* PromiseReactionJob.
*
* PromiseHook with type kAfter is called right at the end of the
* PromiseReactionJob.
*/
enum class PromiseHookType { kInit, kResolve, kBefore, kAfter };
typedef void (*PromiseHook)(PromiseHookType type, Local<Promise> promise,
Local<Value> parent);
// --- Promise Reject Callback ---
enum PromiseRejectEvent {
kPromiseRejectWithNoHandler = 0,
kPromiseHandlerAddedAfterReject = 1
};
class PromiseRejectMessage {
public:
PromiseRejectMessage(Local<Promise> promise, PromiseRejectEvent event,
Local<Value> value, Local<StackTrace> stack_trace)
: promise_(promise),
event_(event),
value_(value),
stack_trace_(stack_trace) {}
V8_INLINE Local<Promise> GetPromise() const { return promise_; }
V8_INLINE PromiseRejectEvent GetEvent() const { return event_; }
V8_INLINE Local<Value> GetValue() const { return value_; }
private:
Local<Promise> promise_;
PromiseRejectEvent event_;
Local<Value> value_;
Local<StackTrace> stack_trace_;
};
typedef void (*PromiseRejectCallback)(PromiseRejectMessage message);
// --- Microtasks Callbacks ---
typedef void (*MicrotasksCompletedCallback)(Isolate*);
typedef void (*MicrotaskCallback)(void* data);
/**
* Policy for running microtasks:
* - explicit: microtasks are invoked with Isolate::RunMicrotasks() method;
* - scoped: microtasks invocation is controlled by MicrotasksScope objects;
* - auto: microtasks are invoked when the script call depth decrements
* to zero.
*/
enum class MicrotasksPolicy { kExplicit, kScoped, kAuto };
/**
* This scope is used to control microtasks when kScopeMicrotasksInvocation
* is used on Isolate. In this mode every non-primitive call to V8 should be
* done inside some MicrotasksScope.
* Microtasks are executed when topmost MicrotasksScope marked as kRunMicrotasks
* exits.
* kDoNotRunMicrotasks should be used to annotate calls not intended to trigger
* microtasks.
*/
class V8_EXPORT MicrotasksScope {
public:
enum Type { kRunMicrotasks, kDoNotRunMicrotasks };
MicrotasksScope(Isolate* isolate, Type type);
~MicrotasksScope();
/**
* Runs microtasks if no kRunMicrotasks scope is currently active.
*/
static void PerformCheckpoint(Isolate* isolate);
/**
* Returns current depth of nested kRunMicrotasks scopes.
*/
static int GetCurrentDepth(Isolate* isolate);
/**
* Returns true while microtasks are being executed.
*/
static bool IsRunningMicrotasks(Isolate* isolate);
// Prevent copying.
MicrotasksScope(const MicrotasksScope&) = delete;
MicrotasksScope& operator=(const MicrotasksScope&) = delete;
private:
internal::Isolate* const isolate_;
bool run_;
};
// --- Failed Access Check Callback ---
typedef void (*FailedAccessCheckCallback)(Local<Object> target,
AccessType type,
Local<Value> data);
// --- AllowCodeGenerationFromStrings callbacks ---
/**
* Callback to check if code generation from strings is allowed. See
* Context::AllowCodeGenerationFromStrings.
*/
typedef bool (*AllowCodeGenerationFromStringsCallback)(Local<Context> context,
Local<String> source);
// --- WebAssembly compilation callbacks ---
typedef bool (*ExtensionCallback)(const FunctionCallbackInfo<Value>&);
typedef bool (*AllowWasmCodeGenerationCallback)(Local<Context> context,
Local<String> source);
// --- Callback for APIs defined on v8-supported objects, but implemented
// by the embedder. Example: WebAssembly.{compile|instantiate}Streaming ---
typedef void (*ApiImplementationCallback)(const FunctionCallbackInfo<Value>&);
// --- Garbage Collection Callbacks ---
/**
* Applications can register callback functions which will be called before and
* after certain garbage collection operations. Allocations are not allowed in
* the callback functions, you therefore cannot manipulate objects (set or
* delete properties for example) since it is possible such operations will
* result in the allocation of objects.
*/
enum GCType {
kGCTypeScavenge = 1 << 0,
kGCTypeMarkSweepCompact = 1 << 1,
kGCTypeIncrementalMarking = 1 << 2,
kGCTypeProcessWeakCallbacks = 1 << 3,
kGCTypeAll = kGCTypeScavenge | kGCTypeMarkSweepCompact |
kGCTypeIncrementalMarking | kGCTypeProcessWeakCallbacks
};
/**
* GCCallbackFlags is used to notify additional information about the GC
* callback.
* - kGCCallbackFlagConstructRetainedObjectInfos: The GC callback is for
* constructing retained object infos.
* - kGCCallbackFlagForced: The GC callback is for a forced GC for testing.
* - kGCCallbackFlagSynchronousPhantomCallbackProcessing: The GC callback
* is called synchronously without getting posted to an idle task.
* - kGCCallbackFlagCollectAllAvailableGarbage: The GC callback is called
* in a phase where V8 is trying to collect all available garbage
* (e.g., handling a low memory notification).
* - kGCCallbackScheduleIdleGarbageCollection: The GC callback is called to
* trigger an idle garbage collection.
*/
enum GCCallbackFlags {
kNoGCCallbackFlags = 0,
kGCCallbackFlagConstructRetainedObjectInfos = 1 << 1,
kGCCallbackFlagForced = 1 << 2,
kGCCallbackFlagSynchronousPhantomCallbackProcessing = 1 << 3,
kGCCallbackFlagCollectAllAvailableGarbage = 1 << 4,
kGCCallbackFlagCollectAllExternalMemory = 1 << 5,
kGCCallbackScheduleIdleGarbageCollection = 1 << 6,
};
typedef void (*GCCallback)(GCType type, GCCallbackFlags flags);
typedef void (*InterruptCallback)(Isolate* isolate, void* data);
/**
* Collection of V8 heap information.
*
* Instances of this class can be passed to v8::V8::HeapStatistics to
* get heap statistics from V8.
*/
class V8_EXPORT HeapStatistics {
public:
HeapStatistics();
size_t total_heap_size() { return total_heap_size_; }
size_t total_heap_size_executable() { return total_heap_size_executable_; }
size_t total_physical_size() { return total_physical_size_; }
size_t total_available_size() { return total_available_size_; }
size_t used_heap_size() { return used_heap_size_; }
size_t heap_size_limit() { return heap_size_limit_; }
size_t malloced_memory() { return malloced_memory_; }
size_t peak_malloced_memory() { return peak_malloced_memory_; }
size_t number_of_native_contexts() { return number_of_native_contexts_; }
size_t number_of_detached_contexts() { return number_of_detached_contexts_; }
/**
* Returns a 0/1 boolean, which signifies whether the V8 overwrite heap
* garbage with a bit pattern.
*/
size_t does_zap_garbage() { return does_zap_garbage_; }
private:
size_t total_heap_size_;
size_t total_heap_size_executable_;
size_t total_physical_size_;
size_t total_available_size_;
size_t used_heap_size_;
size_t heap_size_limit_;
size_t malloced_memory_;
size_t peak_malloced_memory_;
bool does_zap_garbage_;
size_t number_of_native_contexts_;
size_t number_of_detached_contexts_;
friend class V8;
friend class Isolate;
};
class V8_EXPORT HeapSpaceStatistics {
public:
HeapSpaceStatistics();
const char* space_name() { return space_name_; }
size_t space_size() { return space_size_; }
size_t space_used_size() { return space_used_size_; }
size_t space_available_size() { return space_available_size_; }
size_t physical_space_size() { return physical_space_size_; }
private:
const char* space_name_;
size_t space_size_;
size_t space_used_size_;
size_t space_available_size_;
size_t physical_space_size_;
friend class Isolate;
};
class V8_EXPORT HeapObjectStatistics {
public:
HeapObjectStatistics();
const char* object_type() { return object_type_; }
const char* object_sub_type() { return object_sub_type_; }
size_t object_count() { return object_count_; }
size_t object_size() { return object_size_; }
private:
const char* object_type_;
const char* object_sub_type_;
size_t object_count_;
size_t object_size_;
friend class Isolate;
};
class V8_EXPORT HeapCodeStatistics {
public:
HeapCodeStatistics();
size_t code_and_metadata_size() { return code_and_metadata_size_; }
size_t bytecode_and_metadata_size() { return bytecode_and_metadata_size_; }
private:
size_t code_and_metadata_size_;
size_t bytecode_and_metadata_size_;
friend class Isolate;
};
class RetainedObjectInfo;
/**
* FunctionEntryHook is the type of the profile entry hook called at entry to
* any generated function when function-level profiling is enabled.
*
* \param function the address of the function that's being entered.
* \param return_addr_location points to a location on stack where the machine
* return address resides. This can be used to identify the caller of
* \p function, and/or modified to divert execution when \p function exits.
*
* \note the entry hook must not cause garbage collection.
*/
typedef void (*FunctionEntryHook)(uintptr_t function,
uintptr_t return_addr_location);
/**
* A JIT code event is issued each time code is added, moved or removed.
*
* \note removal events are not currently issued.
*/
struct JitCodeEvent {
enum EventType {
CODE_ADDED,
CODE_MOVED,
CODE_REMOVED,
CODE_ADD_LINE_POS_INFO,
CODE_START_LINE_INFO_RECORDING,
CODE_END_LINE_INFO_RECORDING
};
// Definition of the code position type. The "POSITION" type means the place
// in the source code which are of interest when making stack traces to
// pin-point the source location of a stack frame as close as possible.
// The "STATEMENT_POSITION" means the place at the beginning of each
// statement, and is used to indicate possible break locations.
enum PositionType { POSITION, STATEMENT_POSITION };
// Type of event.
EventType type;
// Start of the instructions.
void* code_start;
// Size of the instructions.
size_t code_len;
// Script info for CODE_ADDED event.
Local<UnboundScript> script;
// User-defined data for *_LINE_INFO_* event. It's used to hold the source
// code line information which is returned from the
// CODE_START_LINE_INFO_RECORDING event. And it's passed to subsequent
// CODE_ADD_LINE_POS_INFO and CODE_END_LINE_INFO_RECORDING events.
void* user_data;
struct name_t {
// Name of the object associated with the code, note that the string is not
// zero-terminated.
const char* str;
// Number of chars in str.
size_t len;
};
struct line_info_t {
// PC offset
size_t offset;
// Code position
size_t pos;
// The position type.
PositionType position_type;
};
union {
// Only valid for CODE_ADDED.
struct name_t name;
// Only valid for CODE_ADD_LINE_POS_INFO
struct line_info_t line_info;
// New location of instructions. Only valid for CODE_MOVED.
void* new_code_start;
};
};
/**
* Option flags passed to the SetRAILMode function.
* See documentation https://developers.google.com/web/tools/chrome-devtools/
* profile/evaluate-performance/rail
*/
enum RAILMode {
// Response performance mode: In this mode very low virtual machine latency
// is provided. V8 will try to avoid JavaScript execution interruptions.
// Throughput may be throttled.
PERFORMANCE_RESPONSE,
// Animation performance mode: In this mode low virtual machine latency is
// provided. V8 will try to avoid as many JavaScript execution interruptions
// as possible. Throughput may be throttled. This is the default mode.
PERFORMANCE_ANIMATION,
// Idle performance mode: The embedder is idle. V8 can complete deferred work
// in this mode.
PERFORMANCE_IDLE,
// Load performance mode: In this mode high throughput is provided. V8 may
// turn off latency optimizations.
PERFORMANCE_LOAD
};
/**
* Option flags passed to the SetJitCodeEventHandler function.
*/
enum JitCodeEventOptions {
kJitCodeEventDefault = 0,
// Generate callbacks for already existent code.
kJitCodeEventEnumExisting = 1
};
/**
* Callback function passed to SetJitCodeEventHandler.
*
* \param event code add, move or removal event.
*/
typedef void (*JitCodeEventHandler)(const JitCodeEvent* event);
/**
* Interface for iterating through all external resources in the heap.
*/
class V8_EXPORT ExternalResourceVisitor { // NOLINT
public:
virtual ~ExternalResourceVisitor() {}
virtual void VisitExternalString(Local<String> string) {}
};
/**
* Interface for iterating through all the persistent handles in the heap.
*/
class V8_EXPORT PersistentHandleVisitor { // NOLINT
public:
virtual ~PersistentHandleVisitor() {}
virtual void VisitPersistentHandle(Persistent<Value>* value,
uint16_t class_id) {}
};
/**
* Memory pressure level for the MemoryPressureNotification.
* kNone hints V8 that there is no memory pressure.
* kModerate hints V8 to speed up incremental garbage collection at the cost of
* of higher latency due to garbage collection pauses.
* kCritical hints V8 to free memory as soon as possible. Garbage collection
* pauses at this level will be large.
*/
enum class MemoryPressureLevel { kNone, kModerate, kCritical };
/**
* Interface for tracing through the embedder heap. During a v8 garbage
* collection, v8 collects hidden fields of all potential wrappers, and at the
* end of its marking phase iterates the collection and asks the embedder to
* trace through its heap and use reporter to report each JavaScript object
* reachable from any of the given wrappers.
*
* Before the first call to the TraceWrappersFrom function TracePrologue will be
* called. When the garbage collection cycle is finished, TraceEpilogue will be
* called.
*/
class V8_EXPORT EmbedderHeapTracer {
public:
enum ForceCompletionAction { FORCE_COMPLETION, DO_NOT_FORCE_COMPLETION };
struct AdvanceTracingActions {
explicit AdvanceTracingActions(ForceCompletionAction force_completion_)
: force_completion(force_completion_) {}
ForceCompletionAction force_completion;
};
/**
* Called by v8 to register internal fields of found wrappers.
*
* The embedder is expected to store them somewhere and trace reachable
* wrappers from them when called through |AdvanceTracing|.
*/
virtual void RegisterV8References(
const std::vector<std::pair<void*, void*> >& embedder_fields) = 0;
/**
* Called at the beginning of a GC cycle.
*/
virtual void TracePrologue() = 0;
/**
* Called to to make a tracing step in the embedder.
*
* The embedder is expected to trace its heap starting from wrappers reported
* by RegisterV8References method, and report back all reachable wrappers.
* Furthermore, the embedder is expected to stop tracing by the given
* deadline.
*
* Returns true if there is still work to do.
*/
virtual bool AdvanceTracing(double deadline_in_ms,
AdvanceTracingActions actions) = 0;
/**
* Called at the end of a GC cycle.
*
* Note that allocation is *not* allowed within |TraceEpilogue|.
*/
virtual void TraceEpilogue() = 0;
/**
* Called upon entering the final marking pause. No more incremental marking
* steps will follow this call.
*/
virtual void EnterFinalPause() = 0;
/**
* Called when tracing is aborted.
*
* The embedder is expected to throw away all intermediate data and reset to
* the initial state.
*/
virtual void AbortTracing() = 0;
/**
* Returns the number of wrappers that are still to be traced by the embedder.
*/
virtual size_t NumberOfWrappersToTrace() { return 0; }
protected:
virtual ~EmbedderHeapTracer() = default;
};
/**
* Callback and supporting data used in SnapshotCreator to implement embedder
* logic to serialize internal fields.
*/
struct SerializeInternalFieldsCallback {
typedef StartupData (*CallbackFunction)(Local<Object> holder, int index,
void* data);
SerializeInternalFieldsCallback(CallbackFunction function = nullptr,
void* data_arg = nullptr)
: callback(function), data(data_arg) {}
CallbackFunction callback;
void* data;
};
// Note that these fields are called "internal fields" in the API and called
// "embedder fields" within V8.
typedef SerializeInternalFieldsCallback SerializeEmbedderFieldsCallback;
/**
* Callback and supporting data used to implement embedder logic to deserialize
* internal fields.
*/
struct DeserializeInternalFieldsCallback {
typedef void (*CallbackFunction)(Local<Object> holder, int index,
StartupData payload, void* data);
DeserializeInternalFieldsCallback(CallbackFunction function = nullptr,
void* data_arg = nullptr)
: callback(function), data(data_arg) {}
void (*callback)(Local<Object> holder, int index, StartupData payload,
void* data);
void* data;
};
typedef DeserializeInternalFieldsCallback DeserializeEmbedderFieldsCallback;
/**
* Isolate represents an isolated instance of the V8 engine. V8 isolates have
* completely separate states. Objects from one isolate must not be used in
* other isolates. The embedder can create multiple isolates and use them in
* parallel in multiple threads. An isolate can be entered by at most one
* thread at any given time. The Locker/Unlocker API must be used to
* synchronize.
*/
class V8_EXPORT Isolate {
public:
/**
* Initial configuration parameters for a new Isolate.
*/
struct CreateParams {
CreateParams()
: entry_hook(nullptr),
code_event_handler(nullptr),
snapshot_blob(nullptr),
counter_lookup_callback(nullptr),
create_histogram_callback(nullptr),
add_histogram_sample_callback(nullptr),
array_buffer_allocator(nullptr),
external_references(nullptr),
allow_atomics_wait(true) {}
/**
* The optional entry_hook allows the host application to provide the
* address of a function that's invoked on entry to every V8-generated
* function. Note that entry_hook is invoked at the very start of each
* generated function.
* An entry_hook can only be provided in no-snapshot builds; in snapshot
* builds it must be nullptr.
*/
FunctionEntryHook entry_hook;
/**
* Allows the host application to provide the address of a function that is
* notified each time code is added, moved or removed.
*/
JitCodeEventHandler code_event_handler;
/**
* ResourceConstraints to use for the new Isolate.
*/
ResourceConstraints constraints;
/**
* Explicitly specify a startup snapshot blob. The embedder owns the blob.
*/
StartupData* snapshot_blob;
/**
* Enables the host application to provide a mechanism for recording
* statistics counters.
*/
CounterLookupCallback counter_lookup_callback;
/**
* Enables the host application to provide a mechanism for recording
* histograms. The CreateHistogram function returns a
* histogram which will later be passed to the AddHistogramSample
* function.
*/
CreateHistogramCallback create_histogram_callback;
AddHistogramSampleCallback add_histogram_sample_callback;
/**
* The ArrayBuffer::Allocator to use for allocating and freeing the backing
* store of ArrayBuffers.
*/
ArrayBuffer::Allocator* array_buffer_allocator;
/**
* Specifies an optional nullptr-terminated array of raw addresses in the
* embedder that V8 can match against during serialization and use for
* deserialization. This array and its content must stay valid for the
* entire lifetime of the isolate.
*/
const intptr_t* external_references;
/**
* Whether calling Atomics.wait (a function that may block) is allowed in
* this isolate. This can also be configured via SetAllowAtomicsWait.
*/
bool allow_atomics_wait;
};
/**
* Stack-allocated class which sets the isolate for all operations
* executed within a local scope.
*/
class V8_EXPORT Scope {
public:
explicit Scope(Isolate* isolate) : isolate_(isolate) {
isolate->Enter();
}
~Scope() { isolate_->Exit(); }
// Prevent copying of Scope objects.
Scope(const Scope&) = delete;
Scope& operator=(const Scope&) = delete;
private:
Isolate* const isolate_;
};
/**
* Assert that no Javascript code is invoked.
*/
class V8_EXPORT DisallowJavascriptExecutionScope {
public:
enum OnFailure { CRASH_ON_FAILURE, THROW_ON_FAILURE };
DisallowJavascriptExecutionScope(Isolate* isolate, OnFailure on_failure);
~DisallowJavascriptExecutionScope();
// Prevent copying of Scope objects.
DisallowJavascriptExecutionScope(const DisallowJavascriptExecutionScope&) =
delete;
DisallowJavascriptExecutionScope& operator=(
const DisallowJavascriptExecutionScope&) = delete;
private:
bool on_failure_;
void* internal_;
};
/**
* Introduce exception to DisallowJavascriptExecutionScope.
*/
class V8_EXPORT AllowJavascriptExecutionScope {
public:
explicit AllowJavascriptExecutionScope(Isolate* isolate);
~AllowJavascriptExecutionScope();
// Prevent copying of Scope objects.
AllowJavascriptExecutionScope(const AllowJavascriptExecutionScope&) =
delete;
AllowJavascriptExecutionScope& operator=(
const AllowJavascriptExecutionScope&) = delete;
private:
void* internal_throws_;
void* internal_assert_;
};
/**
* Do not run microtasks while this scope is active, even if microtasks are
* automatically executed otherwise.
*/
class V8_EXPORT SuppressMicrotaskExecutionScope {
public:
explicit SuppressMicrotaskExecutionScope(Isolate* isolate);
~SuppressMicrotaskExecutionScope();
// Prevent copying of Scope objects.
SuppressMicrotaskExecutionScope(const SuppressMicrotaskExecutionScope&) =
delete;
SuppressMicrotaskExecutionScope& operator=(
const SuppressMicrotaskExecutionScope&) = delete;
private:
internal::Isolate* const isolate_;
};
/**
* Types of garbage collections that can be requested via
* RequestGarbageCollectionForTesting.
*/
enum GarbageCollectionType {
kFullGarbageCollection,
kMinorGarbageCollection
};
/**
* Features reported via the SetUseCounterCallback callback. Do not change
* assigned numbers of existing items; add new features to the end of this
* list.
*/
enum UseCounterFeature {
kUseAsm = 0,
kBreakIterator = 1,
kLegacyConst = 2,
kMarkDequeOverflow = 3,
kStoreBufferOverflow = 4,
kSlotsBufferOverflow = 5,
kObjectObserve = 6,
kForcedGC = 7,
kSloppyMode = 8,
kStrictMode = 9,
kStrongMode = 10,
kRegExpPrototypeStickyGetter = 11,
kRegExpPrototypeToString = 12,
kRegExpPrototypeUnicodeGetter = 13,
kIntlV8Parse = 14,
kIntlPattern = 15,
kIntlResolved = 16,
kPromiseChain = 17,
kPromiseAccept = 18,
kPromiseDefer = 19,
kHtmlCommentInExternalScript = 20,
kHtmlComment = 21,
kSloppyModeBlockScopedFunctionRedefinition = 22,
kForInInitializer = 23,
kArrayProtectorDirtied = 24,
kArraySpeciesModified = 25,
kArrayPrototypeConstructorModified = 26,
kArrayInstanceProtoModified = 27,
kArrayInstanceConstructorModified = 28,
kLegacyFunctionDeclaration = 29,
kRegExpPrototypeSourceGetter = 30,
kRegExpPrototypeOldFlagGetter = 31,
kDecimalWithLeadingZeroInStrictMode = 32,
kLegacyDateParser = 33,
kDefineGetterOrSetterWouldThrow = 34,
kFunctionConstructorReturnedUndefined = 35,
kAssigmentExpressionLHSIsCallInSloppy = 36,
kAssigmentExpressionLHSIsCallInStrict = 37,
kPromiseConstructorReturnedUndefined = 38,
kConstructorNonUndefinedPrimitiveReturn = 39,
kLabeledExpressionStatement = 40,
kLineOrParagraphSeparatorAsLineTerminator = 41,
kIndexAccessor = 42,
kErrorCaptureStackTrace = 43,
kErrorPrepareStackTrace = 44,
kErrorStackTraceLimit = 45,
kWebAssemblyInstantiation = 46,
kDeoptimizerDisableSpeculation = 47,
// If you add new values here, you'll also need to update Chromium's:
// web_feature.mojom, UseCounterCallback.cpp, and enums.xml. V8 changes to
// this list need to be landed first, then changes on the Chromium side.
kUseCounterFeatureCount // This enum value must be last.
};
enum MessageErrorLevel {
kMessageLog = (1 << 0),
kMessageDebug = (1 << 1),
kMessageInfo = (1 << 2),
kMessageError = (1 << 3),
kMessageWarning = (1 << 4),
kMessageAll = kMessageLog | kMessageDebug | kMessageInfo | kMessageError |
kMessageWarning,
};
typedef void (*UseCounterCallback)(Isolate* isolate,
UseCounterFeature feature);
/**
* Creates a new isolate. Does not change the currently entered
* isolate.
*
* When an isolate is no longer used its resources should be freed
* by calling Dispose(). Using the delete operator is not allowed.
*
* V8::Initialize() must have run prior to this.
*/
static Isolate* New(const CreateParams& params);
/**
* Returns the entered isolate for the current thread or NULL in
* case there is no current isolate.
*
* This method must not be invoked before V8::Initialize() was invoked.
*/
static Isolate* GetCurrent();
/**
* Custom callback used by embedders to help V8 determine if it should abort
* when it throws and no internal handler is predicted to catch the
* exception. If --abort-on-uncaught-exception is used on the command line,
* then V8 will abort if either:
* - no custom callback is set.
* - the custom callback set returns true.
* Otherwise, the custom callback will not be called and V8 will not abort.
*/
typedef bool (*AbortOnUncaughtExceptionCallback)(Isolate*);
void SetAbortOnUncaughtExceptionCallback(
AbortOnUncaughtExceptionCallback callback);
/**
* This specifies the callback called by the upcoming dynamic
* import() language feature to load modules.
*/
void SetHostImportModuleDynamicallyCallback(
HostImportModuleDynamicallyCallback callback);
/**
* This specifies the callback called by the upcoming importa.meta
* language feature to retrieve host-defined meta data for a module.
*/
void SetHostInitializeImportMetaObjectCallback(
HostInitializeImportMetaObjectCallback callback);
/**
* Optional notification that the system is running low on memory.
* V8 uses these notifications to guide heuristics.
* It is allowed to call this function from another thread while
* the isolate is executing long running JavaScript code.
*/
void MemoryPressureNotification(MemoryPressureLevel level);
/**
* Methods below this point require holding a lock (using Locker) in
* a multi-threaded environment.
*/
/**
* Sets this isolate as the entered one for the current thread.
* Saves the previously entered one (if any), so that it can be
* restored when exiting. Re-entering an isolate is allowed.
*/
void Enter();
/**
* Exits this isolate by restoring the previously entered one in the
* current thread. The isolate may still stay the same, if it was
* entered more than once.
*
* Requires: this == Isolate::GetCurrent().
*/
void Exit();
/**
* Disposes the isolate. The isolate must not be entered by any
* thread to be disposable.
*/
void Dispose();
/**
* Dumps activated low-level V8 internal stats. This can be used instead
* of performing a full isolate disposal.
*/
void DumpAndResetStats();
/**
* Discards all V8 thread-specific data for the Isolate. Should be used
* if a thread is terminating and it has used an Isolate that will outlive
* the thread -- all thread-specific data for an Isolate is discarded when
* an Isolate is disposed so this call is pointless if an Isolate is about
* to be Disposed.
*/
void DiscardThreadSpecificMetadata();
/**
* Associate embedder-specific data with the isolate. |slot| has to be
* between 0 and GetNumberOfDataSlots() - 1.
*/
V8_INLINE void SetData(uint32_t slot, void* data);
/**
* Retrieve embedder-specific data from the isolate.
* Returns NULL if SetData has never been called for the given |slot|.
*/
V8_INLINE void* GetData(uint32_t slot);
/**
* Returns the maximum number of available embedder data slots. Valid slots
* are in the range of 0 - GetNumberOfDataSlots() - 1.
*/
V8_INLINE static uint32_t GetNumberOfDataSlots();
/**
* Return data that was previously attached to the isolate snapshot via
* SnapshotCreator, and removes the reference to it.
* Repeated call with the same index returns an empty MaybeLocal.
*/
template <class T>
V8_INLINE MaybeLocal<T> GetDataFromSnapshotOnce(size_t index);
/**
* Get statistics about the heap memory usage.
*/
void GetHeapStatistics(HeapStatistics* heap_statistics);
/**
* Returns the number of spaces in the heap.
*/
size_t NumberOfHeapSpaces();
/**
* Get the memory usage of a space in the heap.
*
* \param space_statistics The HeapSpaceStatistics object to fill in
* statistics.
* \param index The index of the space to get statistics from, which ranges
* from 0 to NumberOfHeapSpaces() - 1.
* \returns true on success.
*/
bool GetHeapSpaceStatistics(HeapSpaceStatistics* space_statistics,
size_t index);
/**
* Returns the number of types of objects tracked in the heap at GC.
*/
size_t NumberOfTrackedHeapObjectTypes();
/**
* Get statistics about objects in the heap.
*
* \param object_statistics The HeapObjectStatistics object to fill in
* statistics of objects of given type, which were live in the previous GC.
* \param type_index The index of the type of object to fill details about,
* which ranges from 0 to NumberOfTrackedHeapObjectTypes() - 1.
* \returns true on success.
*/
bool GetHeapObjectStatisticsAtLastGC(HeapObjectStatistics* object_statistics,
size_t type_index);
/**
* Get statistics about code and its metadata in the heap.
*
* \param object_statistics The HeapCodeStatistics object to fill in
* statistics of code, bytecode and their metadata.
* \returns true on success.
*/
bool GetHeapCodeAndMetadataStatistics(HeapCodeStatistics* object_statistics);
/**
* Get a call stack sample from the isolate.
* \param state Execution state.
* \param frames Caller allocated buffer to store stack frames.
* \param frames_limit Maximum number of frames to capture. The buffer must
* be large enough to hold the number of frames.
* \param sample_info The sample info is filled up by the function
* provides number of actual captured stack frames and
* the current VM state.
* \note GetStackSample should only be called when the JS thread is paused or
* interrupted. Otherwise the behavior is undefined.
*/
void GetStackSample(const RegisterState& state, void** frames,
size_t frames_limit, SampleInfo* sample_info);
/**
* Adjusts the amount of registered external memory. Used to give V8 an
* indication of the amount of externally allocated memory that is kept alive
* by JavaScript objects. V8 uses this to decide when to perform global
* garbage collections. Registering externally allocated memory will trigger
* global garbage collections more often than it would otherwise in an attempt
* to garbage collect the JavaScript objects that keep the externally
* allocated memory alive.
*
* \param change_in_bytes the change in externally allocated memory that is
* kept alive by JavaScript objects.
* \returns the adjusted value.
*/
V8_INLINE int64_t
AdjustAmountOfExternalAllocatedMemory(int64_t change_in_bytes);
/**
* Returns the number of phantom handles without callbacks that were reset
* by the garbage collector since the last call to this function.
*/
size_t NumberOfPhantomHandleResetsSinceLastCall();
/**
* Returns heap profiler for this isolate. Will return NULL until the isolate
* is initialized.
*/
HeapProfiler* GetHeapProfiler();
/**
* Returns CPU profiler for this isolate. Will return NULL unless the isolate
* is initialized. It is the embedder's responsibility to stop all CPU
* profiling activities if it has started any.
*/
V8_DEPRECATED("CpuProfiler should be created with CpuProfiler::New call.",
CpuProfiler* GetCpuProfiler());
/** Returns true if this isolate has a current context. */
bool InContext();
/**
* Returns the context of the currently running JavaScript, or the context
* on the top of the stack if no JavaScript is running.
*/
Local<Context> GetCurrentContext();
/**
* Returns the context of the calling JavaScript code. That is the
* context of the top-most JavaScript frame. If there are no
* JavaScript frames an empty handle is returned.
*/
V8_DEPRECATED(
"Calling context concept is not compatible with tail calls, and will be "
"removed.",
Local<Context> GetCallingContext());
/** Returns the last context entered through V8's C++ API. */
Local<Context> GetEnteredContext();
/**
* Returns either the last context entered through V8's C++ API, or the
* context of the currently running microtask while processing microtasks.
* If a context is entered while executing a microtask, that context is
* returned.
*/
Local<Context> GetEnteredOrMicrotaskContext();
/**
* Returns the Context that corresponds to the Incumbent realm in HTML spec.
* https://html.spec.whatwg.org/multipage/webappapis.html#incumbent
*/
Local<Context> GetIncumbentContext();
/**
* Schedules an exception to be thrown when returning to JavaScript. When an
* exception has been scheduled it is illegal to invoke any JavaScript
* operation; the caller must return immediately and only after the exception
* has been handled does it become legal to invoke JavaScript operations.
*/
Local<Value> ThrowException(Local<Value> exception);
typedef void (*GCCallback)(Isolate* isolate, GCType type,
GCCallbackFlags flags);
typedef void (*GCCallbackWithData)(Isolate* isolate, GCType type,
GCCallbackFlags flags, void* data);
/**
* Enables the host application to receive a notification before a
* garbage collection. Allocations are allowed in the callback function,
* but the callback is not re-entrant: if the allocation inside it will
* trigger the garbage collection, the callback won't be called again.
* It is possible to specify the GCType filter for your callback. But it is
* not possible to register the same callback function two times with
* different GCType filters.
*/
void AddGCPrologueCallback(GCCallbackWithData callback, void* data = nullptr,
GCType gc_type_filter = kGCTypeAll);
void AddGCPrologueCallback(GCCallback callback,
GCType gc_type_filter = kGCTypeAll);
/**
* This function removes callback which was installed by
* AddGCPrologueCallback function.
*/
void RemoveGCPrologueCallback(GCCallbackWithData, void* data = nullptr);
void RemoveGCPrologueCallback(GCCallback callback);
/**
* Sets the embedder heap tracer for the isolate.
*/
void SetEmbedderHeapTracer(EmbedderHeapTracer* tracer);
/**
* Enables the host application to receive a notification after a
* garbage collection. Allocations are allowed in the callback function,
* but the callback is not re-entrant: if the allocation inside it will
* trigger the garbage collection, the callback won't be called again.
* It is possible to specify the GCType filter for your callback. But it is
* not possible to register the same callback function two times with
* different GCType filters.
*/
void AddGCEpilogueCallback(GCCallbackWithData callback, void* data = nullptr,
GCType gc_type_filter = kGCTypeAll);
void AddGCEpilogueCallback(GCCallback callback,
GCType gc_type_filter = kGCTypeAll);
/**
* This function removes callback which was installed by
* AddGCEpilogueCallback function.
*/
void RemoveGCEpilogueCallback(GCCallbackWithData callback,
void* data = nullptr);
void RemoveGCEpilogueCallback(GCCallback callback);
typedef size_t (*GetExternallyAllocatedMemoryInBytesCallback)();
/**
* Set the callback that tells V8 how much memory is currently allocated
* externally of the V8 heap. Ideally this memory is somehow connected to V8
* objects and may get freed-up when the corresponding V8 objects get
* collected by a V8 garbage collection.
*/
void SetGetExternallyAllocatedMemoryInBytesCallback(
GetExternallyAllocatedMemoryInBytesCallback callback);
/**
* Forcefully terminate the current thread of JavaScript execution
* in the given isolate.
*
* This method can be used by any thread even if that thread has not
* acquired the V8 lock with a Locker object.
*/
void TerminateExecution();
/**
* Is V8 terminating JavaScript execution.
*
* Returns true if JavaScript execution is currently terminating
* because of a call to TerminateExecution. In that case there are
* still JavaScript frames on the stack and the termination
* exception is still active.
*/
bool IsExecutionTerminating();
/**
* Resume execution capability in the given isolate, whose execution
* was previously forcefully terminated using TerminateExecution().
*
* When execution is forcefully terminated using TerminateExecution(),
* the isolate can not resume execution until all JavaScript frames
* have propagated the uncatchable exception which is generated. This
* method allows the program embedding the engine to handle the
* termination event and resume execution capability, even if
* JavaScript frames remain on the stack.
*
* This method can be used by any thread even if that thread has not
* acquired the V8 lock with a Locker object.
*/
void CancelTerminateExecution();
/**
* Request V8 to interrupt long running JavaScript code and invoke
* the given |callback| passing the given |data| to it. After |callback|
* returns control will be returned to the JavaScript code.
* There may be a number of interrupt requests in flight.
* Can be called from another thread without acquiring a |Locker|.
* Registered |callback| must not reenter interrupted Isolate.
*/
void RequestInterrupt(InterruptCallback callback, void* data);
/**
* Request garbage collection in this Isolate. It is only valid to call this
* function if --expose_gc was specified.
*
* This should only be used for testing purposes and not to enforce a garbage
* collection schedule. It has strong negative impact on the garbage
* collection performance. Use IdleNotificationDeadline() or
* LowMemoryNotification() instead to influence the garbage collection
* schedule.
*/
void RequestGarbageCollectionForTesting(GarbageCollectionType type);
/**
* Set the callback to invoke for logging event.
*/
void SetEventLogger(LogEventCallback that);
/**
* Adds a callback to notify the host application right before a script
* is about to run. If a script re-enters the runtime during executing, the
* BeforeCallEnteredCallback is invoked for each re-entrance.
* Executing scripts inside the callback will re-trigger the callback.
*/
void AddBeforeCallEnteredCallback(BeforeCallEnteredCallback callback);
/**
* Removes callback that was installed by AddBeforeCallEnteredCallback.
*/
void RemoveBeforeCallEnteredCallback(BeforeCallEnteredCallback callback);
/**
* Adds a callback to notify the host application when a script finished
* running. If a script re-enters the runtime during executing, the
* CallCompletedCallback is only invoked when the outer-most script
* execution ends. Executing scripts inside the callback do not trigger
* further callbacks.
*/
void AddCallCompletedCallback(CallCompletedCallback callback);
V8_DEPRECATED(
"Use callback with parameter",
void AddCallCompletedCallback(DeprecatedCallCompletedCallback callback));
/**
* Removes callback that was installed by AddCallCompletedCallback.
*/
void RemoveCallCompletedCallback(CallCompletedCallback callback);
V8_DEPRECATED("Use callback with parameter",
void RemoveCallCompletedCallback(
DeprecatedCallCompletedCallback callback));
/**
* Set the PromiseHook callback for various promise lifecycle
* events.
*/
void SetPromiseHook(PromiseHook hook);
/**
* Set callback to notify about promise reject with no handler, or
* revocation of such a previous notification once the handler is added.
*/
void SetPromiseRejectCallback(PromiseRejectCallback callback);
/**
* Runs the Microtask Work Queue until empty
* Any exceptions thrown by microtask callbacks are swallowed.
*/
void RunMicrotasks();
/**
* Enqueues the callback to the Microtask Work Queue
*/
void EnqueueMicrotask(Local<Function> microtask);
/**
* Enqueues the callback to the Microtask Work Queue
*/
void EnqueueMicrotask(MicrotaskCallback microtask, void* data = NULL);
/**
* Controls how Microtasks are invoked. See MicrotasksPolicy for details.
*/
void SetMicrotasksPolicy(MicrotasksPolicy policy);
V8_DEPRECATED("Use SetMicrotasksPolicy",
void SetAutorunMicrotasks(bool autorun));
/**
* Returns the policy controlling how Microtasks are invoked.
*/
MicrotasksPolicy GetMicrotasksPolicy() const;
V8_DEPRECATED("Use GetMicrotasksPolicy", bool WillAutorunMicrotasks() const);
/**
* Adds a callback to notify the host application after
* microtasks were run. The callback is triggered by explicit RunMicrotasks
* call or automatic microtasks execution (see SetAutorunMicrotasks).
*
* Callback will trigger even if microtasks were attempted to run,
* but the microtasks queue was empty and no single microtask was actually
* executed.
*
* Executing scriptsinside the callback will not re-trigger microtasks and
* the callback.
*/
void AddMicrotasksCompletedCallback(MicrotasksCompletedCallback callback);
/**
* Removes callback that was installed by AddMicrotasksCompletedCallback.
*/
void RemoveMicrotasksCompletedCallback(MicrotasksCompletedCallback callback);
/**
* Sets a callback for counting the number of times a feature of V8 is used.
*/
void SetUseCounterCallback(UseCounterCallback callback);
/**
* Enables the host application to provide a mechanism for recording
* statistics counters.
*/
void SetCounterFunction(CounterLookupCallback);
/**
* Enables the host application to provide a mechanism for recording
* histograms. The CreateHistogram function returns a
* histogram which will later be passed to the AddHistogramSample
* function.
*/
void SetCreateHistogramFunction(CreateHistogramCallback);
void SetAddHistogramSampleFunction(AddHistogramSampleCallback);
/**
* Optional notification that the embedder is idle.
* V8 uses the notification to perform garbage collection.
* This call can be used repeatedly if the embedder remains idle.
* Returns true if the embedder should stop calling IdleNotificationDeadline
* until real work has been done. This indicates that V8 has done
* as much cleanup as it will be able to do.
*
* The deadline_in_seconds argument specifies the deadline V8 has to finish
* garbage collection work. deadline_in_seconds is compared with
* MonotonicallyIncreasingTime() and should be based on the same timebase as
* that function. There is no guarantee that the actual work will be done
* within the time limit.
*/
bool IdleNotificationDeadline(double deadline_in_seconds);
/**
* Optional notification that the system is running low on memory.
* V8 uses these notifications to attempt to free memory.
*/
void LowMemoryNotification();
/**
* Optional notification that a context has been disposed. V8 uses
* these notifications to guide the GC heuristic. Returns the number
* of context disposals - including this one - since the last time
* V8 had a chance to clean up.
*
* The optional parameter |dependant_context| specifies whether the disposed
* context was depending on state from other contexts or not.
*/
int ContextDisposedNotification(bool dependant_context = true);
/**
* Optional notification that the isolate switched to the foreground.
* V8 uses these notifications to guide heuristics.
*/
void IsolateInForegroundNotification();
/**
* Optional notification that the isolate switched to the background.
* V8 uses these notifications to guide heuristics.
*/
void IsolateInBackgroundNotification();
/**
* Optional notification to tell V8 the current performance requirements
* of the embedder based on RAIL.
* V8 uses these notifications to guide heuristics.
* This is an unfinished experimental feature. Semantics and implementation
* may change frequently.
*/
void SetRAILMode(RAILMode rail_mode);
/**
* Optional notification to tell V8 the current isolate is used for debugging
* and requires higher heap limit.
*/
void IncreaseHeapLimitForDebugging();
/**
* Restores the original heap limit after IncreaseHeapLimitForDebugging().
*/
void RestoreOriginalHeapLimit();
/**
* Returns true if the heap limit was increased for debugging and the
* original heap limit was not restored yet.
*/
bool IsHeapLimitIncreasedForDebugging();
/**
* Allows the host application to provide the address of a function that is
* notified each time code is added, moved or removed.
*
* \param options options for the JIT code event handler.
* \param event_handler the JIT code event handler, which will be invoked
* each time code is added, moved or removed.
* \note \p event_handler won't get notified of existent code.
* \note since code removal notifications are not currently issued, the
* \p event_handler may get notifications of code that overlaps earlier
* code notifications. This happens when code areas are reused, and the
* earlier overlapping code areas should therefore be discarded.
* \note the events passed to \p event_handler and the strings they point to
* are not guaranteed to live past each call. The \p event_handler must
* copy strings and other parameters it needs to keep around.
* \note the set of events declared in JitCodeEvent::EventType is expected to
* grow over time, and the JitCodeEvent structure is expected to accrue
* new members. The \p event_handler function must ignore event codes
* it does not recognize to maintain future compatibility.
* \note Use Isolate::CreateParams to get events for code executed during
* Isolate setup.
*/
void SetJitCodeEventHandler(JitCodeEventOptions options,
JitCodeEventHandler event_handler);
/**
* Modifies the stack limit for this Isolate.
*
* \param stack_limit An address beyond which the Vm's stack may not grow.
*
* \note If you are using threads then you should hold the V8::Locker lock
* while setting the stack limit and you must set a non-default stack
* limit separately for each thread.
*/
void SetStackLimit(uintptr_t stack_limit);
/**
* Returns a memory range that can potentially contain jitted code.
*
* On Win64, embedders are advised to install function table callbacks for
* these ranges, as default SEH won't be able to unwind through jitted code.
*
* The first page of the code range is reserved for the embedder and is
* committed, writable, and executable.
*
* Might be empty on other platforms.
*
* https://code.google.com/p/v8/issues/detail?id=3598
*/
void GetCodeRange(void** start, size_t* length_in_bytes);
/** Set the callback to invoke in case of fatal errors. */
void SetFatalErrorHandler(FatalErrorCallback that);
/** Set the callback to invoke in case of OOM errors. */
void SetOOMErrorHandler(OOMErrorCallback that);
/**
* Set the callback to invoke to check if code generation from
* strings should be allowed.
*/
void SetAllowCodeGenerationFromStringsCallback(
AllowCodeGenerationFromStringsCallback callback);
/**
* Set the callback to invoke to check if wasm code generation should
* be allowed.
*/
void SetAllowWasmCodeGenerationCallback(
AllowWasmCodeGenerationCallback callback);
/**
* Embedder over{ride|load} injection points for wasm APIs. The expectation
* is that the embedder sets them at most once.
*/
void SetWasmModuleCallback(ExtensionCallback callback);
void SetWasmInstanceCallback(ExtensionCallback callback);
void SetWasmCompileStreamingCallback(ApiImplementationCallback callback);
/**
* Check if V8 is dead and therefore unusable. This is the case after
* fatal errors such as out-of-memory situations.
*/
bool IsDead();
/**
* Adds a message listener (errors only).
*
* The same message listener can be added more than once and in that
* case it will be called more than once for each message.
*
* If data is specified, it will be passed to the callback when it is called.
* Otherwise, the exception object will be passed to the callback instead.
*/
bool AddMessageListener(MessageCallback that,
Local<Value> data = Local<Value>());
/**
* Adds a message listener.
*
* The same message listener can be added more than once and in that
* case it will be called more than once for each message.
*
* If data is specified, it will be passed to the callback when it is called.
* Otherwise, the exception object will be passed to the callback instead.
*
* A listener can listen for particular error levels by providing a mask.
*/
bool AddMessageListenerWithErrorLevel(MessageCallback that,
int message_levels,
Local<Value> data = Local<Value>());
/**
* Remove all message listeners from the specified callback function.
*/
void RemoveMessageListeners(MessageCallback that);
/** Callback function for reporting failed access checks.*/
void SetFailedAccessCheckCallbackFunction(FailedAccessCheckCallback);
/**
* Tells V8 to capture current stack trace when uncaught exception occurs
* and report it to the message listeners. The option is off by default.
*/
void SetCaptureStackTraceForUncaughtExceptions(
bool capture, int frame_limit = 10,
StackTrace::StackTraceOptions options = StackTrace::kOverview);
/**
* Iterates through all external resources referenced from current isolate
* heap. GC is not invoked prior to iterating, therefore there is no
* guarantee that visited objects are still alive.
*/
void VisitExternalResources(ExternalResourceVisitor* visitor);
/**
* Iterates through all the persistent handles in the current isolate's heap
* that have class_ids.
*/
void VisitHandlesWithClassIds(PersistentHandleVisitor* visitor);
/**
* Iterates through all the persistent handles in the current isolate's heap
* that have class_ids and are candidates to be marked as partially dependent
* handles. This will visit handles to young objects created since the last
* garbage collection but is free to visit an arbitrary superset of these
* objects.
*/
void VisitHandlesForPartialDependence(PersistentHandleVisitor* visitor);
/**
* Iterates through all the persistent handles in the current isolate's heap
* that have class_ids and are weak to be marked as inactive if there is no
* pending activity for the handle.
*/
void VisitWeakHandles(PersistentHandleVisitor* visitor);
/**
* Check if this isolate is in use.
* True if at least one thread Enter'ed this isolate.
*/
bool IsInUse();
/**
* Set whether calling Atomics.wait (a function that may block) is allowed in
* this isolate. This can also be configured via
* CreateParams::allow_atomics_wait.
*/
void SetAllowAtomicsWait(bool allow);
Isolate() = delete;
~Isolate() = delete;
Isolate(const Isolate&) = delete;
Isolate& operator=(const Isolate&) = delete;
// Deleting operator new and delete here is allowed as ctor and dtor is also
// deleted.
void* operator new(size_t size) = delete;
void* operator new[](size_t size) = delete;
void operator delete(void*, size_t) = delete;
void operator delete[](void*, size_t) = delete;
private:
template <class K, class V, class Traits>
friend class PersistentValueMapBase;
internal::Object** GetDataFromSnapshotOnce(size_t index);
void ReportExternalAllocationLimitReached();
void CheckMemoryPressure();
};
class V8_EXPORT StartupData {
public:
const char* data;
int raw_size;
};
/**
* EntropySource is used as a callback function when v8 needs a source
* of entropy.
*/
typedef bool (*EntropySource)(unsigned char* buffer, size_t length);
/**
* ReturnAddressLocationResolver is used as a callback function when v8 is
* resolving the location of a return address on the stack. Profilers that
* change the return address on the stack can use this to resolve the stack
* location to wherever the profiler stashed the original return address.
*
* \param return_addr_location A location on stack where a machine
* return address resides.
* \returns Either return_addr_location, or else a pointer to the profiler's
* copy of the original return address.
*
* \note The resolver function must not cause garbage collection.
*/
typedef uintptr_t (*ReturnAddressLocationResolver)(
uintptr_t return_addr_location);
/**
* Container class for static utility functions.
*/
class V8_EXPORT V8 {
public:
/**
* Hand startup data to V8, in case the embedder has chosen to build
* V8 with external startup data.
*
* Note:
* - By default the startup data is linked into the V8 library, in which
* case this function is not meaningful.
* - If this needs to be called, it needs to be called before V8
* tries to make use of its built-ins.
* - To avoid unnecessary copies of data, V8 will point directly into the
* given data blob, so pretty please keep it around until V8 exit.
* - Compression of the startup blob might be useful, but needs to
* handled entirely on the embedders' side.
* - The call will abort if the data is invalid.
*/
static void SetNativesDataBlob(StartupData* startup_blob);
static void SetSnapshotDataBlob(StartupData* startup_blob);
/**
* Bootstrap an isolate and a context from scratch to create a startup
* snapshot. Include the side-effects of running the optional script.
* Returns { NULL, 0 } on failure.
* The caller acquires ownership of the data array in the return value.
*/
static StartupData CreateSnapshotDataBlob(const char* embedded_source = NULL);
/**
* Bootstrap an isolate and a context from the cold startup blob, run the
* warm-up script to trigger code compilation. The side effects are then
* discarded. The resulting startup snapshot will include compiled code.
* Returns { NULL, 0 } on failure.
* The caller acquires ownership of the data array in the return value.
* The argument startup blob is untouched.
*/
static StartupData WarmUpSnapshotDataBlob(StartupData cold_startup_blob,
const char* warmup_source);
/** Set the callback to invoke in case of Dcheck failures. */
static void SetDcheckErrorHandler(DcheckErrorCallback that);
/**
* Sets V8 flags from a string.
*/
static void SetFlagsFromString(const char* str, int length);
/**
* Sets V8 flags from the command line.
*/
static void SetFlagsFromCommandLine(int* argc,
char** argv,
bool remove_flags);
/** Get the version string. */
static const char* GetVersion();
/**
* Initializes V8. This function needs to be called before the first Isolate
* is created. It always returns true.
*/
static bool Initialize();
/**
* Allows the host application to provide a callback which can be used
* as a source of entropy for random number generators.
*/
static void SetEntropySource(EntropySource source);
/**
* Allows the host application to provide a callback that allows v8 to
* cooperate with a profiler that rewrites return addresses on stack.
*/
static void SetReturnAddressLocationResolver(
ReturnAddressLocationResolver return_address_resolver);
/**
* Releases any resources used by v8 and stops any utility threads
* that may be running. Note that disposing v8 is permanent, it
* cannot be reinitialized.
*
* It should generally not be necessary to dispose v8 before exiting
* a process, this should happen automatically. It is only necessary
* to use if the process needs the resources taken up by v8.
*/
static bool Dispose();
/**
* Initialize the ICU library bundled with V8. The embedder should only
* invoke this method when using the bundled ICU. If V8 was compiled with
* the ICU data in an external file and when the default location of that
* file should be used, a path to the executable must be provided.
* Returns true on success.
*
* The default is a file called icudtl.dat side-by-side with the executable.
*
* Optionally, the location of the data file can be provided to override the
* default.
*/
static bool InitializeICUDefaultLocation(const char* exec_path,
const char* icu_data_file = nullptr);
/**
* Initialize the external startup data. The embedder only needs to
* invoke this method when external startup data was enabled in a build.
*
* If V8 was compiled with the startup data in an external file, then
* V8 needs to be given those external files during startup. There are
* three ways to do this:
* - InitializeExternalStartupData(const char*)
* This will look in the given directory for files "natives_blob.bin"
* and "snapshot_blob.bin" - which is what the default build calls them.
* - InitializeExternalStartupData(const char*, const char*)
* As above, but will directly use the two given file names.
* - Call SetNativesDataBlob, SetNativesDataBlob.
* This will read the blobs from the given data structures and will
* not perform any file IO.
*/
static void InitializeExternalStartupData(const char* directory_path);
static void InitializeExternalStartupData(const char* natives_blob,
const char* snapshot_blob);
/**
* Sets the v8::Platform to use. This should be invoked before V8 is
* initialized.
*/
static void InitializePlatform(Platform* platform);
/**
* Clears all references to the v8::Platform. This should be invoked after
* V8 was disposed.
*/
static void ShutdownPlatform();
#if V8_OS_POSIX
/**
* Give the V8 signal handler a chance to handle a fault.
*
* This function determines whether a memory access violation can be recovered
* by V8. If so, it will return true and modify context to return to a code
* fragment that can recover from the fault. Otherwise, TryHandleSignal will
* return false.
*
* The parameters to this function correspond to those passed to a Linux
* signal handler.
*
* \param signal_number The signal number.
*
* \param info A pointer to the siginfo_t structure provided to the signal
* handler.
*
* \param context The third argument passed to the Linux signal handler, which
* points to a ucontext_t structure.
*/
static bool TryHandleSignal(int signal_number, void* info, void* context);
#endif // V8_OS_POSIX
/**
* Enable the default signal handler rather than using one provided by the
* embedder.
*/
static bool RegisterDefaultSignalHandler();
private:
V8();
static internal::Object** GlobalizeReference(internal::Isolate* isolate,
internal::Object** handle);
static internal::Object** CopyPersistent(internal::Object** handle);
static void DisposeGlobal(internal::Object** global_handle);
static void MakeWeak(internal::Object** location, void* data,
WeakCallbackInfo<void>::Callback weak_callback,
WeakCallbackType type);
static void MakeWeak(internal::Object** location, void* data,
// Must be 0 or -1.
int internal_field_index1,
// Must be 1 or -1.
int internal_field_index2,
WeakCallbackInfo<void>::Callback weak_callback);
static void MakeWeak(internal::Object*** location_addr);
static void* ClearWeak(internal::Object** location);
static Value* Eternalize(Isolate* isolate, Value* handle);
static void RegisterExternallyReferencedObject(internal::Object** object,
internal::Isolate* isolate);
template <class K, class V, class T>
friend class PersistentValueMapBase;
static void FromJustIsNothing();
static void ToLocalEmpty();
static void InternalFieldOutOfBounds(int index);
template <class T> friend class Local;
template <class T>
friend class MaybeLocal;
template <class T>
friend class Maybe;
template <class T>
friend class WeakCallbackInfo;
template <class T> friend class Eternal;
template <class T> friend class PersistentBase;
template <class T, class M> friend class Persistent;
friend class Context;
};
/**
* Helper class to create a snapshot data blob.
*/
class V8_EXPORT SnapshotCreator {
public:
enum class FunctionCodeHandling { kClear, kKeep };
/**
* Create and enter an isolate, and set it up for serialization.
* The isolate is either created from scratch or from an existing snapshot.
* The caller keeps ownership of the argument snapshot.
* \param existing_blob existing snapshot from which to create this one.
* \param external_references a null-terminated array of external references
* that must be equivalent to CreateParams::external_references.
*/
SnapshotCreator(const intptr_t* external_references = nullptr,
StartupData* existing_blob = nullptr);
~SnapshotCreator();
/**
* \returns the isolate prepared by the snapshot creator.
*/
Isolate* GetIsolate();
/**
* Set the default context to be included in the snapshot blob.
* The snapshot will not contain the global proxy, and we expect one or a
* global object template to create one, to be provided upon deserialization.
*
* \param callback optional callback to serialize internal fields.
*/
void SetDefaultContext(Local<Context> context,
SerializeInternalFieldsCallback callback =
SerializeInternalFieldsCallback());
/**
* Add additional context to be included in the snapshot blob.
* The snapshot will include the global proxy.
*
* \param callback optional callback to serialize internal fields.
*
* \returns the index of the context in the snapshot blob.
*/
size_t AddContext(Local<Context> context,
SerializeInternalFieldsCallback callback =
SerializeInternalFieldsCallback());
/**
* Add a template to be included in the snapshot blob.
* \returns the index of the template in the snapshot blob.
*/
size_t AddTemplate(Local<Template> template_obj);
/**
* Attach arbitrary V8::Data to the context snapshot, which can be retrieved
* via Context::GetDataFromSnapshot after deserialization. This data does not
* survive when a new snapshot is created from an existing snapshot.
* \returns the index for retrieval.
*/
template <class T>
V8_INLINE size_t AddData(Local<Context> context, Local<T> object);
/**
* Attach arbitrary V8::Data to the isolate snapshot, which can be retrieved
* via Isolate::GetDataFromSnapshot after deserialization. This data does not
* survive when a new snapshot is created from an existing snapshot.
* \returns the index for retrieval.
*/
template <class T>
V8_INLINE size_t AddData(Local<T> object);
/**
* Created a snapshot data blob.
* This must not be called from within a handle scope.
* \param function_code_handling whether to include compiled function code
* in the snapshot.
* \returns { nullptr, 0 } on failure, and a startup snapshot on success. The
* caller acquires ownership of the data array in the return value.
*/
StartupData CreateBlob(FunctionCodeHandling function_code_handling);
// Disallow copying and assigning.
SnapshotCreator(const SnapshotCreator&) = delete;
void operator=(const SnapshotCreator&) = delete;
private:
size_t AddData(Local<Context> context, internal::Object* object);
size_t AddData(internal::Object* object);
void* data_;
};
/**
* A simple Maybe type, representing an object which may or may not have a
* value, see https://hackage.haskell.org/package/base/docs/Data-Maybe.html.
*
* If an API method returns a Maybe<>, the API method can potentially fail
* either because an exception is thrown, or because an exception is pending,
* e.g. because a previous API call threw an exception that hasn't been caught
* yet, or because a TerminateExecution exception was thrown. In that case, a
* "Nothing" value is returned.
*/
template <class T>
class Maybe {
public:
V8_INLINE bool IsNothing() const { return !has_value_; }
V8_INLINE bool IsJust() const { return has_value_; }
/**
* An alias for |FromJust|. Will crash if the Maybe<> is nothing.
*/
V8_INLINE T ToChecked() const { return FromJust(); }
/**
* Converts this Maybe<> to a value of type T. If this Maybe<> is
* nothing (empty), |false| is returned and |out| is left untouched.
*/
V8_WARN_UNUSED_RESULT V8_INLINE bool To(T* out) const {
if (V8_LIKELY(IsJust())) *out = value_;
return IsJust();
}
/**
* Converts this Maybe<> to a value of type T. If this Maybe<> is
* nothing (empty), V8 will crash the process.
*/
V8_INLINE T FromJust() const {
if (V8_UNLIKELY(!IsJust())) V8::FromJustIsNothing();
return value_;
}
/**
* Converts this Maybe<> to a value of type T, using a default value if this
* Maybe<> is nothing (empty).
*/
V8_INLINE T FromMaybe(const T& default_value) const {
return has_value_ ? value_ : default_value;
}
V8_INLINE bool operator==(const Maybe& other) const {
return (IsJust() == other.IsJust()) &&
(!IsJust() || FromJust() == other.FromJust());
}
V8_INLINE bool operator!=(const Maybe& other) const {
return !operator==(other);
}
private:
Maybe() : has_value_(false) {}
explicit Maybe(const T& t) : has_value_(true), value_(t) {}
bool has_value_;
T value_;
template <class U>
friend Maybe<U> Nothing();
template <class U>
friend Maybe<U> Just(const U& u);
};
template <class T>
inline Maybe<T> Nothing() {
return Maybe<T>();
}
template <class T>
inline Maybe<T> Just(const T& t) {
return Maybe<T>(t);
}
// A template specialization of Maybe<T> for the case of T = void.
template <>
class Maybe<void> {
public:
V8_INLINE bool IsNothing() const { return !is_valid_; }
V8_INLINE bool IsJust() const { return is_valid_; }
V8_INLINE bool operator==(const Maybe& other) const {
return IsJust() == other.IsJust();
}
V8_INLINE bool operator!=(const Maybe& other) const {
return !operator==(other);
}
private:
struct JustTag {};
Maybe() : is_valid_(false) {}
explicit Maybe(JustTag) : is_valid_(true) {}
bool is_valid_;
template <class U>
friend Maybe<U> Nothing();
friend Maybe<void> JustVoid();
};
inline Maybe<void> JustVoid() { return Maybe<void>(Maybe<void>::JustTag()); }
/**
* An external exception handler.
*/
class V8_EXPORT TryCatch {
public:
/**
* Creates a new try/catch block and registers it with v8. Note that
* all TryCatch blocks should be stack allocated because the memory
* location itself is compared against JavaScript try/catch blocks.
*/
TryCatch(Isolate* isolate);
/**
* Unregisters and deletes this try/catch block.
*/
~TryCatch();
/**
* Returns true if an exception has been caught by this try/catch block.
*/
bool HasCaught() const;
/**
* For certain types of exceptions, it makes no sense to continue execution.
*
* If CanContinue returns false, the correct action is to perform any C++
* cleanup needed and then return. If CanContinue returns false and
* HasTerminated returns true, it is possible to call
* CancelTerminateExecution in order to continue calling into the engine.
*/
bool CanContinue() const;
/**
* Returns true if an exception has been caught due to script execution
* being terminated.
*
* There is no JavaScript representation of an execution termination
* exception. Such exceptions are thrown when the TerminateExecution
* methods are called to terminate a long-running script.
*
* If such an exception has been thrown, HasTerminated will return true,
* indicating that it is possible to call CancelTerminateExecution in order
* to continue calling into the engine.
*/
bool HasTerminated() const;
/**
* Throws the exception caught by this TryCatch in a way that avoids
* it being caught again by this same TryCatch. As with ThrowException
* it is illegal to execute any JavaScript operations after calling
* ReThrow; the caller must return immediately to where the exception
* is caught.
*/
Local<Value> ReThrow();
/**
* Returns the exception caught by this try/catch block. If no exception has
* been caught an empty handle is returned.
*
* The returned handle is valid until this TryCatch block has been destroyed.
*/
Local<Value> Exception() const;
/**
* Returns the .stack property of the thrown object. If no .stack
* property is present an empty handle is returned.
*/
V8_DEPRECATED("Use maybe version.", Local<Value> StackTrace() const);
V8_WARN_UNUSED_RESULT MaybeLocal<Value> StackTrace(
Local<Context> context) const;
/**
* Returns the message associated with this exception. If there is
* no message associated an empty handle is returned.
*
* The returned handle is valid until this TryCatch block has been
* destroyed.
*/
Local<v8::Message> Message() const;
/**
* Clears any exceptions that may have been caught by this try/catch block.
* After this method has been called, HasCaught() will return false. Cancels
* the scheduled exception if it is caught and ReThrow() is not called before.
*
* It is not necessary to clear a try/catch block before using it again; if
* another exception is thrown the previously caught exception will just be
* overwritten. However, it is often a good idea since it makes it easier
* to determine which operation threw a given exception.
*/
void Reset();
/**
* Set verbosity of the external exception handler.
*
* By default, exceptions that are caught by an external exception
* handler are not reported. Call SetVerbose with true on an
* external exception handler to have exceptions caught by the
* handler reported as if they were not caught.
*/
void SetVerbose(bool value);
/**
* Returns true if verbosity is enabled.
*/
bool IsVerbose() const;
/**
* Set whether or not this TryCatch should capture a Message object
* which holds source information about where the exception
* occurred. True by default.
*/
void SetCaptureMessage(bool value);
/**
* There are cases when the raw address of C++ TryCatch object cannot be
* used for comparisons with addresses into the JS stack. The cases are:
* 1) ARM, ARM64 and MIPS simulators which have separate JS stack.
* 2) Address sanitizer allocates local C++ object in the heap when
* UseAfterReturn mode is enabled.
* This method returns address that can be used for comparisons with
* addresses into the JS stack. When neither simulator nor ASAN's
* UseAfterReturn is enabled, then the address returned will be the address
* of the C++ try catch handler itself.
*/
static void* JSStackComparableAddress(TryCatch* handler) {
if (handler == NULL) return NULL;
return handler->js_stack_comparable_address_;
}
TryCatch(const TryCatch&) = delete;
void operator=(const TryCatch&) = delete;
private:
// Declaring operator new and delete as deleted is not spec compliant.
// Therefore declare them private instead to disable dynamic alloc
void* operator new(size_t size);
void* operator new[](size_t size);
void operator delete(void*, size_t);
void operator delete[](void*, size_t);
void ResetInternal();
internal::Isolate* isolate_;
TryCatch* next_;
void* exception_;
void* message_obj_;
void* js_stack_comparable_address_;
bool is_verbose_ : 1;
bool can_continue_ : 1;
bool capture_message_ : 1;
bool rethrow_ : 1;
bool has_terminated_ : 1;
friend class internal::Isolate;
};
// --- Context ---
/**
* A container for extension names.
*/
class V8_EXPORT ExtensionConfiguration {
public:
ExtensionConfiguration() : name_count_(0), names_(NULL) { }
ExtensionConfiguration(int name_count, const char* names[])
: name_count_(name_count), names_(names) { }
const char** begin() const { return &names_[0]; }
const char** end() const { return &names_[name_count_]; }
private:
const int name_count_;
const char** names_;
};
/**
* A sandboxed execution context with its own set of built-in objects
* and functions.
*/
class V8_EXPORT Context {
public:
/**
* Returns the global proxy object.
*
* Global proxy object is a thin wrapper whose prototype points to actual
* context's global object with the properties like Object, etc. This is done
* that way for security reasons (for more details see
* https://wiki.mozilla.org/Gecko:SplitWindow).
*
* Please note that changes to global proxy object prototype most probably
* would break VM---v8 expects only global object as a prototype of global
* proxy object.
*/
Local<Object> Global();
/**
* Detaches the global object from its context before
* the global object can be reused to create a new context.
*/
void DetachGlobal();
/**
* Creates a new context and returns a handle to the newly allocated
* context.
*
* \param isolate The isolate in which to create the context.
*
* \param extensions An optional extension configuration containing
* the extensions to be installed in the newly created context.
*
* \param global_template An optional object template from which the
* global object for the newly created context will be created.
*
* \param global_object An optional global object to be reused for
* the newly created context. This global object must have been
* created by a previous call to Context::New with the same global
* template. The state of the global object will be completely reset
* and only object identify will remain.
*/
static Local<Context> New(
Isolate* isolate, ExtensionConfiguration* extensions = NULL,
MaybeLocal<ObjectTemplate> global_template = MaybeLocal<ObjectTemplate>(),
MaybeLocal<Value> global_object = MaybeLocal<Value>(),
DeserializeInternalFieldsCallback internal_fields_deserializer =
DeserializeInternalFieldsCallback());
/**
* Create a new context from a (non-default) context snapshot. There
* is no way to provide a global object template since we do not create
* a new global object from template, but we can reuse a global object.
*
* \param isolate See v8::Context::New.
*
* \param context_snapshot_index The index of the context snapshot to
* deserialize from. Use v8::Context::New for the default snapshot.
*
* \param embedder_fields_deserializer Optional callback to deserialize
* internal fields. It should match the SerializeInternalFieldCallback used
* to serialize.
*
* \param extensions See v8::Context::New.
*
* \param global_object See v8::Context::New.
*/
static MaybeLocal<Context> FromSnapshot(
Isolate* isolate, size_t context_snapshot_index,
DeserializeInternalFieldsCallback embedder_fields_deserializer =
DeserializeInternalFieldsCallback(),
ExtensionConfiguration* extensions = nullptr,
MaybeLocal<Value> global_object = MaybeLocal<Value>());
/**
* Returns an global object that isn't backed by an actual context.
*
* The global template needs to have access checks with handlers installed.
* If an existing global object is passed in, the global object is detached
* from its context.
*
* Note that this is different from a detached context where all accesses to
* the global proxy will fail. Instead, the access check handlers are invoked.
*
* It is also not possible to detach an object returned by this method.
* Instead, the access check handlers need to return nothing to achieve the
* same effect.
*
* It is possible, however, to create a new context from the global object
* returned by this method.
*/
static MaybeLocal<Object> NewRemoteContext(
Isolate* isolate, Local<ObjectTemplate> global_template,
MaybeLocal<Value> global_object = MaybeLocal<Value>());
/**
* Sets the security token for the context. To access an object in
* another context, the security tokens must match.
*/
void SetSecurityToken(Local<Value> token);
/** Restores the security token to the default value. */
void UseDefaultSecurityToken();
/** Returns the security token of this context.*/
Local<Value> GetSecurityToken();
/**
* Enter this context. After entering a context, all code compiled
* and run is compiled and run in this context. If another context
* is already entered, this old context is saved so it can be
* restored when the new context is exited.
*/
void Enter();
/**
* Exit this context. Exiting the current context restores the
* context that was in place when entering the current context.
*/
void Exit();
/** Returns an isolate associated with a current context. */
Isolate* GetIsolate();
/**
* The field at kDebugIdIndex used to be reserved for the inspector.
* It now serves no purpose.
*/
enum EmbedderDataFields { kDebugIdIndex = 0 };
/**
* Gets the embedder data with the given index, which must have been set by a
* previous call to SetEmbedderData with the same index.
*/
V8_INLINE Local<Value> GetEmbedderData(int index);
/**
* Gets the binding object used by V8 extras. Extra natives get a reference
* to this object and can use it to "export" functionality by adding
* properties. Extra natives can also "import" functionality by accessing
* properties added by the embedder using the V8 API.
*/
Local<Object> GetExtrasBindingObject();
/**
* Sets the embedder data with the given index, growing the data as
* needed. Note that index 0 currently has a special meaning for Chrome's
* debugger.
*/
void SetEmbedderData(int index, Local<Value> value);
/**
* Gets a 2-byte-aligned native pointer from the embedder data with the given
* index, which must have been set by a previous call to
* SetAlignedPointerInEmbedderData with the same index. Note that index 0
* currently has a special meaning for Chrome's debugger.
*/
V8_INLINE void* GetAlignedPointerFromEmbedderData(int index);
/**
* Sets a 2-byte-aligned native pointer in the embedder data with the given
* index, growing the data as needed. Note that index 0 currently has a
* special meaning for Chrome's debugger.
*/
void SetAlignedPointerInEmbedderData(int index, void* value);
/**
* Control whether code generation from strings is allowed. Calling
* this method with false will disable 'eval' and the 'Function'
* constructor for code running in this context. If 'eval' or the
* 'Function' constructor are used an exception will be thrown.
*
* If code generation from strings is not allowed the
* V8::AllowCodeGenerationFromStrings callback will be invoked if
* set before blocking the call to 'eval' or the 'Function'
* constructor. If that callback returns true, the call will be
* allowed, otherwise an exception will be thrown. If no callback is
* set an exception will be thrown.
*/
void AllowCodeGenerationFromStrings(bool allow);
/**
* Returns true if code generation from strings is allowed for the context.
* For more details see AllowCodeGenerationFromStrings(bool) documentation.
*/
bool IsCodeGenerationFromStringsAllowed();
/**
* Sets the error description for the exception that is thrown when
* code generation from strings is not allowed and 'eval' or the 'Function'
* constructor are called.
*/
void SetErrorMessageForCodeGenerationFromStrings(Local<String> message);
/**
* Return data that was previously attached to the context snapshot via
* SnapshotCreator, and removes the reference to it.
* Repeated call with the same index returns an empty MaybeLocal.
*/
template <class T>
V8_INLINE MaybeLocal<T> GetDataFromSnapshotOnce(size_t index);
/**
* Stack-allocated class which sets the execution context for all
* operations executed within a local scope.
*/
class Scope {
public:
explicit V8_INLINE Scope(Local<Context> context) : context_(context) {
context_->Enter();
}
V8_INLINE ~Scope() { context_->Exit(); }
private:
Local<Context> context_;
};
/**
* Stack-allocated class to support the backup incumbent settings object
* stack.
* https://html.spec.whatwg.org/multipage/webappapis.html#backup-incumbent-settings-object-stack
*/
class V8_EXPORT BackupIncumbentScope {
public:
/**
* |backup_incumbent_context| is pushed onto the backup incumbent settings
* object stack.
*/
explicit BackupIncumbentScope(Local<Context> backup_incumbent_context);
~BackupIncumbentScope();
private:
friend class internal::Isolate;
Local<Context> backup_incumbent_context_;
const BackupIncumbentScope* prev_ = nullptr;
};
private:
friend class Value;
friend class Script;
friend class Object;
friend class Function;
internal::Object** GetDataFromSnapshotOnce(size_t index);
Local<Value> SlowGetEmbedderData(int index);
void* SlowGetAlignedPointerFromEmbedderData(int index);
};
/**
* Multiple threads in V8 are allowed, but only one thread at a time is allowed
* to use any given V8 isolate, see the comments in the Isolate class. The
* definition of 'using a V8 isolate' includes accessing handles or holding onto
* object pointers obtained from V8 handles while in the particular V8 isolate.
* It is up to the user of V8 to ensure, perhaps with locking, that this
* constraint is not violated. In addition to any other synchronization
* mechanism that may be used, the v8::Locker and v8::Unlocker classes must be
* used to signal thread switches to V8.
*
* v8::Locker is a scoped lock object. While it's active, i.e. between its
* construction and destruction, the current thread is allowed to use the locked
* isolate. V8 guarantees that an isolate can be locked by at most one thread at
* any time. In other words, the scope of a v8::Locker is a critical section.
*
* Sample usage:
* \code
* ...
* {
* v8::Locker locker(isolate);
* v8::Isolate::Scope isolate_scope(isolate);
* ...
* // Code using V8 and isolate goes here.
* ...
* } // Destructor called here
* \endcode
*
* If you wish to stop using V8 in a thread A you can do this either by
* destroying the v8::Locker object as above or by constructing a v8::Unlocker
* object:
*
* \code
* {
* isolate->Exit();
* v8::Unlocker unlocker(isolate);
* ...
* // Code not using V8 goes here while V8 can run in another thread.
* ...
* } // Destructor called here.
* isolate->Enter();
* \endcode
*
* The Unlocker object is intended for use in a long-running callback from V8,
* where you want to release the V8 lock for other threads to use.
*
* The v8::Locker is a recursive lock, i.e. you can lock more than once in a
* given thread. This can be useful if you have code that can be called either
* from code that holds the lock or from code that does not. The Unlocker is
* not recursive so you can not have several Unlockers on the stack at once, and
* you can not use an Unlocker in a thread that is not inside a Locker's scope.
*
* An unlocker will unlock several lockers if it has to and reinstate the
* correct depth of locking on its destruction, e.g.:
*
* \code
* // V8 not locked.
* {
* v8::Locker locker(isolate);
* Isolate::Scope isolate_scope(isolate);
* // V8 locked.
* {
* v8::Locker another_locker(isolate);
* // V8 still locked (2 levels).
* {
* isolate->Exit();
* v8::Unlocker unlocker(isolate);
* // V8 not locked.
* }
* isolate->Enter();
* // V8 locked again (2 levels).
* }
* // V8 still locked (1 level).
* }
* // V8 Now no longer locked.
* \endcode
*/
class V8_EXPORT Unlocker {
public:
/**
* Initialize Unlocker for a given Isolate.
*/
V8_INLINE explicit Unlocker(Isolate* isolate) { Initialize(isolate); }
~Unlocker();
private:
void Initialize(Isolate* isolate);
internal::Isolate* isolate_;
};
class V8_EXPORT Locker {
public:
/**
* Initialize Locker for a given Isolate.
*/
V8_INLINE explicit Locker(Isolate* isolate) { Initialize(isolate); }
~Locker();
/**
* Returns whether or not the locker for a given isolate, is locked by the
* current thread.
*/
static bool IsLocked(Isolate* isolate);
/**
* Returns whether v8::Locker is being used by this V8 instance.
*/
static bool IsActive();
// Disallow copying and assigning.
Locker(const Locker&) = delete;
void operator=(const Locker&) = delete;
private:
void Initialize(Isolate* isolate);
bool has_lock_;
bool top_level_;
internal::Isolate* isolate_;
};
// --- Implementation ---
namespace internal {
const int kApiPointerSize = sizeof(void*); // NOLINT
const int kApiIntSize = sizeof(int); // NOLINT
const int kApiInt64Size = sizeof(int64_t); // NOLINT
// Tag information for HeapObject.
const int kHeapObjectTag = 1;
const int kHeapObjectTagSize = 2;
const intptr_t kHeapObjectTagMask = (1 << kHeapObjectTagSize) - 1;
// Tag information for Smi.
const int kSmiTag = 0;
const int kSmiTagSize = 1;
const intptr_t kSmiTagMask = (1 << kSmiTagSize) - 1;
template <size_t ptr_size> struct SmiTagging;
template<int kSmiShiftSize>
V8_INLINE internal::Object* IntToSmi(int value) {
int smi_shift_bits = kSmiTagSize + kSmiShiftSize;
uintptr_t tagged_value =
(static_cast<uintptr_t>(value) << smi_shift_bits) | kSmiTag;
return reinterpret_cast<internal::Object*>(tagged_value);
}
// Smi constants for 32-bit systems.
template <> struct SmiTagging<4> {
enum { kSmiShiftSize = 0, kSmiValueSize = 31 };
static int SmiShiftSize() { return kSmiShiftSize; }
static int SmiValueSize() { return kSmiValueSize; }
V8_INLINE static int SmiToInt(const internal::Object* value) {
int shift_bits = kSmiTagSize + kSmiShiftSize;
// Throw away top 32 bits and shift down (requires >> to be sign extending).
return static_cast<int>(reinterpret_cast<intptr_t>(value)) >> shift_bits;
}
V8_INLINE static internal::Object* IntToSmi(int value) {
return internal::IntToSmi<kSmiShiftSize>(value);
}
V8_INLINE static bool IsValidSmi(intptr_t value) {
// To be representable as an tagged small integer, the two
// most-significant bits of 'value' must be either 00 or 11 due to
// sign-extension. To check this we add 01 to the two
// most-significant bits, and check if the most-significant bit is 0
//
// CAUTION: The original code below:
// bool result = ((value + 0x40000000) & 0x80000000) == 0;
// may lead to incorrect results according to the C language spec, and
// in fact doesn't work correctly with gcc4.1.1 in some cases: The
// compiler may produce undefined results in case of signed integer
// overflow. The computation must be done w/ unsigned ints.
return static_cast<uintptr_t>(value + 0x40000000U) < 0x80000000U;
}
};
// Smi constants for 64-bit systems.
template <> struct SmiTagging<8> {
enum { kSmiShiftSize = 31, kSmiValueSize = 32 };
static int SmiShiftSize() { return kSmiShiftSize; }
static int SmiValueSize() { return kSmiValueSize; }
V8_INLINE static int SmiToInt(const internal::Object* value) {
int shift_bits = kSmiTagSize + kSmiShiftSize;
// Shift down and throw away top 32 bits.
return static_cast<int>(reinterpret_cast<intptr_t>(value) >> shift_bits);
}
V8_INLINE static internal::Object* IntToSmi(int value) {
return internal::IntToSmi<kSmiShiftSize>(value);
}
V8_INLINE static bool IsValidSmi(intptr_t value) {
// To be representable as a long smi, the value must be a 32-bit integer.
return (value == static_cast<int32_t>(value));
}
};
typedef SmiTagging<kApiPointerSize> PlatformSmiTagging;
const int kSmiShiftSize = PlatformSmiTagging::kSmiShiftSize;
const int kSmiValueSize = PlatformSmiTagging::kSmiValueSize;
V8_INLINE static bool SmiValuesAre31Bits() { return kSmiValueSize == 31; }
V8_INLINE static bool SmiValuesAre32Bits() { return kSmiValueSize == 32; }
/**
* This class exports constants and functionality from within v8 that
* is necessary to implement inline functions in the v8 api. Don't
* depend on functions and constants defined here.
*/
class Internals {
public:
// These values match non-compiler-dependent values defined within
// the implementation of v8.
static const int kHeapObjectMapOffset = 0;
static const int kMapInstanceTypeOffset = 1 * kApiPointerSize + kApiIntSize;
static const int kStringResourceOffset = 3 * kApiPointerSize;
static const int kOddballKindOffset = 4 * kApiPointerSize + sizeof(double);
static const int kForeignAddressOffset = kApiPointerSize;
static const int kJSObjectHeaderSize = 3 * kApiPointerSize;
static const int kFixedArrayHeaderSize = 2 * kApiPointerSize;
static const int kContextHeaderSize = 2 * kApiPointerSize;
static const int kContextEmbedderDataIndex = 5;
static const int kFullStringRepresentationMask = 0x0f;
static const int kStringEncodingMask = 0x8;
static const int kExternalTwoByteRepresentationTag = 0x02;
static const int kExternalOneByteRepresentationTag = 0x0a;
static const int kIsolateEmbedderDataOffset = 0 * kApiPointerSize;
static const int kExternalMemoryOffset = 4 * kApiPointerSize;
static const int kExternalMemoryLimitOffset =
kExternalMemoryOffset + kApiInt64Size;
static const int kExternalMemoryAtLastMarkCompactOffset =
kExternalMemoryLimitOffset + kApiInt64Size;
static const int kIsolateRootsOffset = kExternalMemoryLimitOffset +
kApiInt64Size + kApiInt64Size +
kApiPointerSize + kApiPointerSize;
static const int kUndefinedValueRootIndex = 4;
static const int kTheHoleValueRootIndex = 5;
static const int kNullValueRootIndex = 6;
static const int kTrueValueRootIndex = 7;
static const int kFalseValueRootIndex = 8;
static const int kEmptyStringRootIndex = 9;
static const int kNodeClassIdOffset = 1 * kApiPointerSize;
static const int kNodeFlagsOffset = 1 * kApiPointerSize + 3;
static const int kNodeStateMask = 0x7;
static const int kNodeStateIsWeakValue = 2;
static const int kNodeStateIsPendingValue = 3;
static const int kNodeStateIsNearDeathValue = 4;
static const int kNodeIsActiveShift = 4;
static const int kFirstNonstringType = 0x80;
static const int kOddballType = 0x83;
static const int kForeignType = 0x87;
static const int kJSSpecialApiObjectType = 0x410;
static const int kJSApiObjectType = 0x420;
static const int kJSObjectType = 0x421;
static const int kUndefinedOddballKind = 5;
static const int kNullOddballKind = 3;
static const uint32_t kNumIsolateDataSlots = 4;
V8_EXPORT static void CheckInitializedImpl(v8::Isolate* isolate);
V8_INLINE static void CheckInitialized(v8::Isolate* isolate) {
#ifdef V8_ENABLE_CHECKS
CheckInitializedImpl(isolate);
#endif
}
V8_INLINE static bool HasHeapObjectTag(const internal::Object* value) {
return ((reinterpret_cast<intptr_t>(value) & kHeapObjectTagMask) ==
kHeapObjectTag);
}
V8_INLINE static int SmiValue(const internal::Object* value) {
return PlatformSmiTagging::SmiToInt(value);
}
V8_INLINE static internal::Object* IntToSmi(int value) {
return PlatformSmiTagging::IntToSmi(value);
}
V8_INLINE static bool IsValidSmi(intptr_t value) {
return PlatformSmiTagging::IsValidSmi(value);
}
V8_INLINE static int GetInstanceType(const internal::Object* obj) {
typedef internal::Object O;
O* map = ReadField<O*>(obj, kHeapObjectMapOffset);
return ReadField<uint16_t>(map, kMapInstanceTypeOffset);
}
V8_INLINE static int GetOddballKind(const internal::Object* obj) {
typedef internal::Object O;
return SmiValue(ReadField<O*>(obj, kOddballKindOffset));
}
V8_INLINE static bool IsExternalTwoByteString(int instance_type) {
int representation = (instance_type & kFullStringRepresentationMask);
return representation == kExternalTwoByteRepresentationTag;
}
V8_INLINE static uint8_t GetNodeFlag(internal::Object** obj, int shift) {
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
return *addr & static_cast<uint8_t>(1U << shift);
}
V8_INLINE static void UpdateNodeFlag(internal::Object** obj,
bool value, int shift) {
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
uint8_t mask = static_cast<uint8_t>(1U << shift);
*addr = static_cast<uint8_t>((*addr & ~mask) | (value << shift));
}
V8_INLINE static uint8_t GetNodeState(internal::Object** obj) {
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
return *addr & kNodeStateMask;
}
V8_INLINE static void UpdateNodeState(internal::Object** obj,
uint8_t value) {
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
*addr = static_cast<uint8_t>((*addr & ~kNodeStateMask) | value);
}
V8_INLINE static void SetEmbedderData(v8::Isolate* isolate,
uint32_t slot,
void* data) {
uint8_t* addr = reinterpret_cast<uint8_t*>(isolate) +
kIsolateEmbedderDataOffset + slot * kApiPointerSize;
*reinterpret_cast<void**>(addr) = data;
}
V8_INLINE static void* GetEmbedderData(const v8::Isolate* isolate,
uint32_t slot) {
const uint8_t* addr = reinterpret_cast<const uint8_t*>(isolate) +
kIsolateEmbedderDataOffset + slot * kApiPointerSize;
return *reinterpret_cast<void* const*>(addr);
}
V8_INLINE static internal::Object** GetRoot(v8::Isolate* isolate,
int index) {
uint8_t* addr = reinterpret_cast<uint8_t*>(isolate) + kIsolateRootsOffset;
return reinterpret_cast<internal::Object**>(addr + index * kApiPointerSize);
}
template <typename T>
V8_INLINE static T ReadField(const internal::Object* ptr, int offset) {
const uint8_t* addr =
reinterpret_cast<const uint8_t*>(ptr) + offset - kHeapObjectTag;
return *reinterpret_cast<const T*>(addr);
}
template <typename T>
V8_INLINE static T ReadEmbedderData(const v8::Context* context, int index) {
typedef internal::Object O;
typedef internal::Internals I;
O* ctx = *reinterpret_cast<O* const*>(context);
int embedder_data_offset = I::kContextHeaderSize +
(internal::kApiPointerSize * I::kContextEmbedderDataIndex);
O* embedder_data = I::ReadField<O*>(ctx, embedder_data_offset);
int value_offset =
I::kFixedArrayHeaderSize + (internal::kApiPointerSize * index);
return I::ReadField<T>(embedder_data, value_offset);
}
};
// Only perform cast check for types derived from v8::Data since
// other types do not implement the Cast method.
template <bool PerformCheck>
struct CastCheck {
template <class T>
static void Perform(T* data);
};
template <>
template <class T>
void CastCheck<true>::Perform(T* data) {
T::Cast(data);
}
template <>
template <class T>
void CastCheck<false>::Perform(T* data) {}
template <class T>
V8_INLINE void PerformCastCheck(T* data) {
CastCheck<std::is_base_of<Data, T>::value>::Perform(data);
}
} // namespace internal
template <class T>
Local<T> Local<T>::New(Isolate* isolate, Local<T> that) {
return New(isolate, that.val_);
}
template <class T>
Local<T> Local<T>::New(Isolate* isolate, const PersistentBase<T>& that) {
return New(isolate, that.val_);
}
template <class T>
Local<T> Local<T>::New(Isolate* isolate, T* that) {
if (that == NULL) return Local<T>();
T* that_ptr = that;
internal::Object** p = reinterpret_cast<internal::Object**>(that_ptr);
return Local<T>(reinterpret_cast<T*>(HandleScope::CreateHandle(
reinterpret_cast<internal::Isolate*>(isolate), *p)));
}
template<class T>
template<class S>
void Eternal<T>::Set(Isolate* isolate, Local<S> handle) {
TYPE_CHECK(T, S);
val_ = reinterpret_cast<T*>(
V8::Eternalize(isolate, reinterpret_cast<Value*>(*handle)));
}
template <class T>
Local<T> Eternal<T>::Get(Isolate* isolate) const {
// The eternal handle will never go away, so as with the roots, we don't even
// need to open a handle.
return Local<T>(val_);
}
template <class T>
Local<T> MaybeLocal<T>::ToLocalChecked() {
if (V8_UNLIKELY(val_ == nullptr)) V8::ToLocalEmpty();
return Local<T>(val_);
}
template <class T>
void* WeakCallbackInfo<T>::GetInternalField(int index) const {
#ifdef V8_ENABLE_CHECKS
if (index < 0 || index >= kEmbedderFieldsInWeakCallback) {
V8::InternalFieldOutOfBounds(index);
}
#endif
return embedder_fields_[index];
}
template <class T>
T* PersistentBase<T>::New(Isolate* isolate, T* that) {
if (that == NULL) return NULL;
internal::Object** p = reinterpret_cast<internal::Object**>(that);
return reinterpret_cast<T*>(
V8::GlobalizeReference(reinterpret_cast<internal::Isolate*>(isolate),
p));
}
template <class T, class M>
template <class S, class M2>
void Persistent<T, M>::Copy(const Persistent<S, M2>& that) {
TYPE_CHECK(T, S);
this->Reset();
if (that.IsEmpty()) return;
internal::Object** p = reinterpret_cast<internal::Object**>(that.val_);
this->val_ = reinterpret_cast<T*>(V8::CopyPersistent(p));
M::Copy(that, this);
}
template <class T>
bool PersistentBase<T>::IsIndependent() const {
return true;
}
template <class T>
bool PersistentBase<T>::IsNearDeath() const {
typedef internal::Internals I;
if (this->IsEmpty()) return false;
uint8_t node_state =
I::GetNodeState(reinterpret_cast<internal::Object**>(this->val_));
return node_state == I::kNodeStateIsNearDeathValue ||
node_state == I::kNodeStateIsPendingValue;
}
template <class T>
bool PersistentBase<T>::IsWeak() const {
typedef internal::Internals I;
if (this->IsEmpty()) return false;
return I::GetNodeState(reinterpret_cast<internal::Object**>(this->val_)) ==
I::kNodeStateIsWeakValue;
}
template <class T>
void PersistentBase<T>::Reset() {
if (this->IsEmpty()) return;
V8::DisposeGlobal(reinterpret_cast<internal::Object**>(this->val_));
val_ = 0;
}
template <class T>
template <class S>
void PersistentBase<T>::Reset(Isolate* isolate, const Local<S>& other) {
TYPE_CHECK(T, S);
Reset();
if (other.IsEmpty()) return;
this->val_ = New(isolate, other.val_);
}
template <class T>
template <class S>
void PersistentBase<T>::Reset(Isolate* isolate,
const PersistentBase<S>& other) {
TYPE_CHECK(T, S);
Reset();
if (other.IsEmpty()) return;
this->val_ = New(isolate, other.val_);
}
template <class T>
template <typename P>
V8_INLINE void PersistentBase<T>::SetWeak(
P* parameter, typename WeakCallbackInfo<P>::Callback callback,
WeakCallbackType type) {
typedef typename WeakCallbackInfo<void>::Callback Callback;
V8::MakeWeak(reinterpret_cast<internal::Object**>(this->val_), parameter,
reinterpret_cast<Callback>(callback), type);
}
template <class T>
void PersistentBase<T>::SetWeak() {
V8::MakeWeak(reinterpret_cast<internal::Object***>(&this->val_));
}
template <class T>
template <typename P>
P* PersistentBase<T>::ClearWeak() {
return reinterpret_cast<P*>(
V8::ClearWeak(reinterpret_cast<internal::Object**>(this->val_)));
}
template <class T>
void PersistentBase<T>::RegisterExternalReference(Isolate* isolate) const {
if (IsEmpty()) return;
V8::RegisterExternallyReferencedObject(
reinterpret_cast<internal::Object**>(this->val_),
reinterpret_cast<internal::Isolate*>(isolate));
}
template <class T>
void PersistentBase<T>::MarkIndependent() {}
template <class T>
void PersistentBase<T>::MarkActive() {
typedef internal::Internals I;
if (this->IsEmpty()) return;
I::UpdateNodeFlag(reinterpret_cast<internal::Object**>(this->val_), true,
I::kNodeIsActiveShift);
}
template <class T>
void PersistentBase<T>::SetWrapperClassId(uint16_t class_id) {
typedef internal::Internals I;
if (this->IsEmpty()) return;
internal::Object** obj = reinterpret_cast<internal::Object**>(this->val_);
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + I::kNodeClassIdOffset;
*reinterpret_cast<uint16_t*>(addr) = class_id;
}
template <class T>
uint16_t PersistentBase<T>::WrapperClassId() const {
typedef internal::Internals I;
if (this->IsEmpty()) return 0;
internal::Object** obj = reinterpret_cast<internal::Object**>(this->val_);
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + I::kNodeClassIdOffset;
return *reinterpret_cast<uint16_t*>(addr);
}
template<typename T>
ReturnValue<T>::ReturnValue(internal::Object** slot) : value_(slot) {}
template<typename T>
template<typename S>
void ReturnValue<T>::Set(const Persistent<S>& handle) {
TYPE_CHECK(T, S);
if (V8_UNLIKELY(handle.IsEmpty())) {
*value_ = GetDefaultValue();
} else {
*value_ = *reinterpret_cast<internal::Object**>(*handle);
}
}
template <typename T>
template <typename S>
void ReturnValue<T>::Set(const Global<S>& handle) {
TYPE_CHECK(T, S);
if (V8_UNLIKELY(handle.IsEmpty())) {
*value_ = GetDefaultValue();
} else {
*value_ = *reinterpret_cast<internal::Object**>(*handle);
}
}
template <typename T>
template <typename S>
void ReturnValue<T>::Set(const Local<S> handle) {
TYPE_CHECK(T, S);
if (V8_UNLIKELY(handle.IsEmpty())) {
*value_ = GetDefaultValue();
} else {
*value_ = *reinterpret_cast<internal::Object**>(*handle);
}
}
template<typename T>
void ReturnValue<T>::Set(double i) {
TYPE_CHECK(T, Number);
Set(Number::New(GetIsolate(), i));
}
template<typename T>
void ReturnValue<T>::Set(int32_t i) {
TYPE_CHECK(T, Integer);
typedef internal::Internals I;
if (V8_LIKELY(I::IsValidSmi(i))) {
*value_ = I::IntToSmi(i);
return;
}
Set(Integer::New(GetIsolate(), i));
}
template<typename T>
void ReturnValue<T>::Set(uint32_t i) {
TYPE_CHECK(T, Integer);
// Can't simply use INT32_MAX here for whatever reason.
bool fits_into_int32_t = (i & (1U << 31)) == 0;
if (V8_LIKELY(fits_into_int32_t)) {
Set(static_cast<int32_t>(i));
return;
}
Set(Integer::NewFromUnsigned(GetIsolate(), i));
}
template<typename T>
void ReturnValue<T>::Set(bool value) {
TYPE_CHECK(T, Boolean);
typedef internal::Internals I;
int root_index;
if (value) {
root_index = I::kTrueValueRootIndex;
} else {
root_index = I::kFalseValueRootIndex;
}
*value_ = *I::GetRoot(GetIsolate(), root_index);
}
template<typename T>
void ReturnValue<T>::SetNull() {
TYPE_CHECK(T, Primitive);
typedef internal::Internals I;
*value_ = *I::GetRoot(GetIsolate(), I::kNullValueRootIndex);
}
template<typename T>
void ReturnValue<T>::SetUndefined() {
TYPE_CHECK(T, Primitive);
typedef internal::Internals I;
*value_ = *I::GetRoot(GetIsolate(), I::kUndefinedValueRootIndex);
}
template<typename T>
void ReturnValue<T>::SetEmptyString() {
TYPE_CHECK(T, String);
typedef internal::Internals I;
*value_ = *I::GetRoot(GetIsolate(), I::kEmptyStringRootIndex);
}
template <typename T>
Isolate* ReturnValue<T>::GetIsolate() const {
// Isolate is always the pointer below the default value on the stack.
return *reinterpret_cast<Isolate**>(&value_[-2]);
}
template <typename T>
Local<Value> ReturnValue<T>::Get() const {
typedef internal::Internals I;
if (*value_ == *I::GetRoot(GetIsolate(), I::kTheHoleValueRootIndex))
return Local<Value>(*Undefined(GetIsolate()));
return Local<Value>::New(GetIsolate(), reinterpret_cast<Value*>(value_));
}
template <typename T>
template <typename S>
void ReturnValue<T>::Set(S* whatever) {
// Uncompilable to prevent inadvertent misuse.
TYPE_CHECK(S*, Primitive);
}
template<typename T>
internal::Object* ReturnValue<T>::GetDefaultValue() {
// Default value is always the pointer below value_ on the stack.
return value_[-1];
}
template <typename T>
FunctionCallbackInfo<T>::FunctionCallbackInfo(internal::Object** implicit_args,
internal::Object** values,
int length)
: implicit_args_(implicit_args), values_(values), length_(length) {}
template<typename T>
Local<Value> FunctionCallbackInfo<T>::operator[](int i) const {
if (i < 0 || length_ <= i) return Local<Value>(*Undefined(GetIsolate()));
return Local<Value>(reinterpret_cast<Value*>(values_ - i));
}
template<typename T>
Local<Object> FunctionCallbackInfo<T>::This() const {
return Local<Object>(reinterpret_cast<Object*>(values_ + 1));
}
template<typename T>
Local<Object> FunctionCallbackInfo<T>::Holder() const {
return Local<Object>(reinterpret_cast<Object*>(
&implicit_args_[kHolderIndex]));
}
template <typename T>
Local<Value> FunctionCallbackInfo<T>::NewTarget() const {
return Local<Value>(
reinterpret_cast<Value*>(&implicit_args_[kNewTargetIndex]));
}
template <typename T>
Local<Value> FunctionCallbackInfo<T>::Data() const {
return Local<Value>(reinterpret_cast<Value*>(&implicit_args_[kDataIndex]));
}
template<typename T>
Isolate* FunctionCallbackInfo<T>::GetIsolate() const {
return *reinterpret_cast<Isolate**>(&implicit_args_[kIsolateIndex]);
}
template<typename T>
ReturnValue<T> FunctionCallbackInfo<T>::GetReturnValue() const {
return ReturnValue<T>(&implicit_args_[kReturnValueIndex]);
}
template<typename T>
bool FunctionCallbackInfo<T>::IsConstructCall() const {
return !NewTarget()->IsUndefined();
}
template<typename T>
int FunctionCallbackInfo<T>::Length() const {
return length_;
}
ScriptOrigin::ScriptOrigin(Local<Value> resource_name,
Local<Integer> resource_line_offset,
Local<Integer> resource_column_offset,
Local<Boolean> resource_is_shared_cross_origin,
Local<Integer> script_id,
Local<Value> source_map_url,
Local<Boolean> resource_is_opaque,
Local<Boolean> is_wasm, Local<Boolean> is_module,
Local<PrimitiveArray> host_defined_options)
: resource_name_(resource_name),
resource_line_offset_(resource_line_offset),
resource_column_offset_(resource_column_offset),
options_(!resource_is_shared_cross_origin.IsEmpty() &&
resource_is_shared_cross_origin->IsTrue(),
!resource_is_opaque.IsEmpty() && resource_is_opaque->IsTrue(),
!is_wasm.IsEmpty() && is_wasm->IsTrue(),
!is_module.IsEmpty() && is_module->IsTrue()),
script_id_(script_id),
source_map_url_(source_map_url),
host_defined_options_(host_defined_options) {}
Local<Value> ScriptOrigin::ResourceName() const { return resource_name_; }
Local<PrimitiveArray> ScriptOrigin::HostDefinedOptions() const {
return host_defined_options_;
}
Local<Integer> ScriptOrigin::ResourceLineOffset() const {
return resource_line_offset_;
}
Local<Integer> ScriptOrigin::ResourceColumnOffset() const {
return resource_column_offset_;
}
Local<Integer> ScriptOrigin::ScriptID() const { return script_id_; }
Local<Value> ScriptOrigin::SourceMapUrl() const { return source_map_url_; }
ScriptCompiler::Source::Source(Local<String> string, const ScriptOrigin& origin,
CachedData* data)
: source_string(string),
resource_name(origin.ResourceName()),
resource_line_offset(origin.ResourceLineOffset()),
resource_column_offset(origin.ResourceColumnOffset()),
resource_options(origin.Options()),
source_map_url(origin.SourceMapUrl()),
host_defined_options(origin.HostDefinedOptions()),
cached_data(data) {}
ScriptCompiler::Source::Source(Local<String> string,
CachedData* data)
: source_string(string), cached_data(data) {}
ScriptCompiler::Source::~Source() {
delete cached_data;
}
const ScriptCompiler::CachedData* ScriptCompiler::Source::GetCachedData()
const {
return cached_data;
}
const ScriptOriginOptions& ScriptCompiler::Source::GetResourceOptions() const {
return resource_options;
}
Local<Boolean> Boolean::New(Isolate* isolate, bool value) {
return value ? True(isolate) : False(isolate);
}
void Template::Set(Isolate* isolate, const char* name, Local<Data> value) {
Set(String::NewFromUtf8(isolate, name, NewStringType::kInternalized)
.ToLocalChecked(),
value);
}
FunctionTemplate* FunctionTemplate::Cast(Data* data) {
#ifdef V8_ENABLE_CHECKS
CheckCast(data);
#endif
return reinterpret_cast<FunctionTemplate*>(data);
}
ObjectTemplate* ObjectTemplate::Cast(Data* data) {
#ifdef V8_ENABLE_CHECKS
CheckCast(data);
#endif
return reinterpret_cast<ObjectTemplate*>(data);
}
Signature* Signature::Cast(Data* data) {
#ifdef V8_ENABLE_CHECKS
CheckCast(data);
#endif
return reinterpret_cast<Signature*>(data);
}
AccessorSignature* AccessorSignature::Cast(Data* data) {
#ifdef V8_ENABLE_CHECKS
CheckCast(data);
#endif
return reinterpret_cast<AccessorSignature*>(data);
}
Local<Value> Object::GetInternalField(int index) {
#ifndef V8_ENABLE_CHECKS
typedef internal::Object O;
typedef internal::HeapObject HO;
typedef internal::Internals I;
O* obj = *reinterpret_cast<O**>(this);
// Fast path: If the object is a plain JSObject, which is the common case, we
// know where to find the internal fields and can return the value directly.
auto instance_type = I::GetInstanceType(obj);
if (instance_type == I::kJSObjectType ||
instance_type == I::kJSApiObjectType ||
instance_type == I::kJSSpecialApiObjectType) {
int offset = I::kJSObjectHeaderSize + (internal::kApiPointerSize * index);
O* value = I::ReadField<O*>(obj, offset);
O** result = HandleScope::CreateHandle(reinterpret_cast<HO*>(obj), value);
return Local<Value>(reinterpret_cast<Value*>(result));
}
#endif
return SlowGetInternalField(index);
}
void* Object::GetAlignedPointerFromInternalField(int index) {
#ifndef V8_ENABLE_CHECKS
typedef internal::Object O;
typedef internal::Internals I;
O* obj = *reinterpret_cast<O**>(this);
// Fast path: If the object is a plain JSObject, which is the common case, we
// know where to find the internal fields and can return the value directly.
auto instance_type = I::GetInstanceType(obj);
if (V8_LIKELY(instance_type == I::kJSObjectType ||
instance_type == I::kJSApiObjectType ||
instance_type == I::kJSSpecialApiObjectType)) {
int offset = I::kJSObjectHeaderSize + (internal::kApiPointerSize * index);
return I::ReadField<void*>(obj, offset);
}
#endif
return SlowGetAlignedPointerFromInternalField(index);
}
String* String::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<String*>(value);
}
Local<String> String::Empty(Isolate* isolate) {
typedef internal::Object* S;
typedef internal::Internals I;
I::CheckInitialized(isolate);
S* slot = I::GetRoot(isolate, I::kEmptyStringRootIndex);
return Local<String>(reinterpret_cast<String*>(slot));
}
String::ExternalStringResource* String::GetExternalStringResource() const {
typedef internal::Object O;
typedef internal::Internals I;
O* obj = *reinterpret_cast<O* const*>(this);
String::ExternalStringResource* result;
if (I::IsExternalTwoByteString(I::GetInstanceType(obj))) {
void* value = I::ReadField<void*>(obj, I::kStringResourceOffset);
result = reinterpret_cast<String::ExternalStringResource*>(value);
} else {
result = NULL;
}
#ifdef V8_ENABLE_CHECKS
VerifyExternalStringResource(result);
#endif
return result;
}
String::ExternalStringResourceBase* String::GetExternalStringResourceBase(
String::Encoding* encoding_out) const {
typedef internal::Object O;
typedef internal::Internals I;
O* obj = *reinterpret_cast<O* const*>(this);
int type = I::GetInstanceType(obj) & I::kFullStringRepresentationMask;
*encoding_out = static_cast<Encoding>(type & I::kStringEncodingMask);
ExternalStringResourceBase* resource = NULL;
if (type == I::kExternalOneByteRepresentationTag ||
type == I::kExternalTwoByteRepresentationTag) {
void* value = I::ReadField<void*>(obj, I::kStringResourceOffset);
resource = static_cast<ExternalStringResourceBase*>(value);
}
#ifdef V8_ENABLE_CHECKS
VerifyExternalStringResourceBase(resource, *encoding_out);
#endif
return resource;
}
bool Value::IsUndefined() const {
#ifdef V8_ENABLE_CHECKS
return FullIsUndefined();
#else
return QuickIsUndefined();
#endif
}
bool Value::QuickIsUndefined() const {
typedef internal::Object O;
typedef internal::Internals I;
O* obj = *reinterpret_cast<O* const*>(this);
if (!I::HasHeapObjectTag(obj)) return false;
if (I::GetInstanceType(obj) != I::kOddballType) return false;
return (I::GetOddballKind(obj) == I::kUndefinedOddballKind);
}
bool Value::IsNull() const {
#ifdef V8_ENABLE_CHECKS
return FullIsNull();
#else
return QuickIsNull();
#endif
}
bool Value::QuickIsNull() const {
typedef internal::Object O;
typedef internal::Internals I;
O* obj = *reinterpret_cast<O* const*>(this);
if (!I::HasHeapObjectTag(obj)) return false;
if (I::GetInstanceType(obj) != I::kOddballType) return false;
return (I::GetOddballKind(obj) == I::kNullOddballKind);
}
bool Value::IsNullOrUndefined() const {
#ifdef V8_ENABLE_CHECKS
return FullIsNull() || FullIsUndefined();
#else
return QuickIsNullOrUndefined();
#endif
}
bool Value::QuickIsNullOrUndefined() const {
typedef internal::Object O;
typedef internal::Internals I;
O* obj = *reinterpret_cast<O* const*>(this);
if (!I::HasHeapObjectTag(obj)) return false;
if (I::GetInstanceType(obj) != I::kOddballType) return false;
int kind = I::GetOddballKind(obj);
return kind == I::kNullOddballKind || kind == I::kUndefinedOddballKind;
}
bool Value::IsString() const {
#ifdef V8_ENABLE_CHECKS
return FullIsString();
#else
return QuickIsString();
#endif
}
bool Value::QuickIsString() const {
typedef internal::Object O;
typedef internal::Internals I;
O* obj = *reinterpret_cast<O* const*>(this);
if (!I::HasHeapObjectTag(obj)) return false;
return (I::GetInstanceType(obj) < I::kFirstNonstringType);
}
template <class T> Value* Value::Cast(T* value) {
return static_cast<Value*>(value);
}
Local<Boolean> Value::ToBoolean() const {
return ToBoolean(Isolate::GetCurrent()->GetCurrentContext())
.FromMaybe(Local<Boolean>());
}
Local<String> Value::ToString() const {
return ToString(Isolate::GetCurrent()->GetCurrentContext())
.FromMaybe(Local<String>());
}
Local<Object> Value::ToObject() const {
return ToObject(Isolate::GetCurrent()->GetCurrentContext())
.FromMaybe(Local<Object>());
}
Local<Integer> Value::ToInteger() const {
return ToInteger(Isolate::GetCurrent()->GetCurrentContext())
.FromMaybe(Local<Integer>());
}
Boolean* Boolean::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<Boolean*>(value);
}
Name* Name::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<Name*>(value);
}
Symbol* Symbol::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<Symbol*>(value);
}
Private* Private::Cast(Data* data) {
#ifdef V8_ENABLE_CHECKS
CheckCast(data);
#endif
return reinterpret_cast<Private*>(data);
}
Number* Number::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<Number*>(value);
}
Integer* Integer::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<Integer*>(value);
}
Int32* Int32::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<Int32*>(value);
}
Uint32* Uint32::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<Uint32*>(value);
}
Date* Date::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<Date*>(value);
}
StringObject* StringObject::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<StringObject*>(value);
}
SymbolObject* SymbolObject::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<SymbolObject*>(value);
}
NumberObject* NumberObject::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<NumberObject*>(value);
}
BooleanObject* BooleanObject::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<BooleanObject*>(value);
}
RegExp* RegExp::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<RegExp*>(value);
}
Object* Object::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<Object*>(value);
}
Array* Array::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<Array*>(value);
}
Map* Map::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<Map*>(value);
}
Set* Set::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<Set*>(value);
}
Promise* Promise::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<Promise*>(value);
}
Proxy* Proxy::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<Proxy*>(value);
}
WasmCompiledModule* WasmCompiledModule::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<WasmCompiledModule*>(value);
}
Promise::Resolver* Promise::Resolver::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<Promise::Resolver*>(value);
}
ArrayBuffer* ArrayBuffer::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<ArrayBuffer*>(value);
}
ArrayBufferView* ArrayBufferView::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<ArrayBufferView*>(value);
}
TypedArray* TypedArray::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<TypedArray*>(value);
}
Uint8Array* Uint8Array::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<Uint8Array*>(value);
}
Int8Array* Int8Array::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<Int8Array*>(value);
}
Uint16Array* Uint16Array::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<Uint16Array*>(value);
}
Int16Array* Int16Array::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<Int16Array*>(value);
}
Uint32Array* Uint32Array::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<Uint32Array*>(value);
}
Int32Array* Int32Array::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<Int32Array*>(value);
}
Float32Array* Float32Array::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<Float32Array*>(value);
}
Float64Array* Float64Array::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<Float64Array*>(value);
}
Uint8ClampedArray* Uint8ClampedArray::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<Uint8ClampedArray*>(value);
}
DataView* DataView::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<DataView*>(value);
}
SharedArrayBuffer* SharedArrayBuffer::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<SharedArrayBuffer*>(value);
}
Function* Function::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<Function*>(value);
}
External* External::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<External*>(value);
}
template<typename T>
Isolate* PropertyCallbackInfo<T>::GetIsolate() const {
return *reinterpret_cast<Isolate**>(&args_[kIsolateIndex]);
}
template<typename T>
Local<Value> PropertyCallbackInfo<T>::Data() const {
return Local<Value>(reinterpret_cast<Value*>(&args_[kDataIndex]));
}
template<typename T>
Local<Object> PropertyCallbackInfo<T>::This() const {
return Local<Object>(reinterpret_cast<Object*>(&args_[kThisIndex]));
}
template<typename T>
Local<Object> PropertyCallbackInfo<T>::Holder() const {
return Local<Object>(reinterpret_cast<Object*>(&args_[kHolderIndex]));
}
template<typename T>
ReturnValue<T> PropertyCallbackInfo<T>::GetReturnValue() const {
return ReturnValue<T>(&args_[kReturnValueIndex]);
}
template <typename T>
bool PropertyCallbackInfo<T>::ShouldThrowOnError() const {
typedef internal::Internals I;
return args_[kShouldThrowOnErrorIndex] != I::IntToSmi(0);
}
Local<Primitive> Undefined(Isolate* isolate) {
typedef internal::Object* S;
typedef internal::Internals I;
I::CheckInitialized(isolate);
S* slot = I::GetRoot(isolate, I::kUndefinedValueRootIndex);
return Local<Primitive>(reinterpret_cast<Primitive*>(slot));
}
Local<Primitive> Null(Isolate* isolate) {
typedef internal::Object* S;
typedef internal::Internals I;
I::CheckInitialized(isolate);
S* slot = I::GetRoot(isolate, I::kNullValueRootIndex);
return Local<Primitive>(reinterpret_cast<Primitive*>(slot));
}
Local<Boolean> True(Isolate* isolate) {
typedef internal::Object* S;
typedef internal::Internals I;
I::CheckInitialized(isolate);
S* slot = I::GetRoot(isolate, I::kTrueValueRootIndex);
return Local<Boolean>(reinterpret_cast<Boolean*>(slot));
}
Local<Boolean> False(Isolate* isolate) {
typedef internal::Object* S;
typedef internal::Internals I;
I::CheckInitialized(isolate);
S* slot = I::GetRoot(isolate, I::kFalseValueRootIndex);
return Local<Boolean>(reinterpret_cast<Boolean*>(slot));
}
void Isolate::SetData(uint32_t slot, void* data) {
typedef internal::Internals I;
I::SetEmbedderData(this, slot, data);
}
void* Isolate::GetData(uint32_t slot) {
typedef internal::Internals I;
return I::GetEmbedderData(this, slot);
}
uint32_t Isolate::GetNumberOfDataSlots() {
typedef internal::Internals I;
return I::kNumIsolateDataSlots;
}
template <class T>
MaybeLocal<T> Isolate::GetDataFromSnapshotOnce(size_t index) {
T* data = reinterpret_cast<T*>(GetDataFromSnapshotOnce(index));
if (data) internal::PerformCastCheck(data);
return Local<T>(data);
}
int64_t Isolate::AdjustAmountOfExternalAllocatedMemory(
int64_t change_in_bytes) {
typedef internal::Internals I;
const int64_t kMemoryReducerActivationLimit = 32 * 1024 * 1024;
int64_t* external_memory = reinterpret_cast<int64_t*>(
reinterpret_cast<uint8_t*>(this) + I::kExternalMemoryOffset);
int64_t* external_memory_limit = reinterpret_cast<int64_t*>(
reinterpret_cast<uint8_t*>(this) + I::kExternalMemoryLimitOffset);
int64_t* external_memory_at_last_mc =
reinterpret_cast<int64_t*>(reinterpret_cast<uint8_t*>(this) +
I::kExternalMemoryAtLastMarkCompactOffset);
const int64_t amount = *external_memory + change_in_bytes;
*external_memory = amount;
int64_t allocation_diff_since_last_mc =
*external_memory_at_last_mc - *external_memory;
allocation_diff_since_last_mc = allocation_diff_since_last_mc < 0
? -allocation_diff_since_last_mc
: allocation_diff_since_last_mc;
if (allocation_diff_since_last_mc > kMemoryReducerActivationLimit) {
CheckMemoryPressure();
}
if (change_in_bytes < 0) {
*external_memory_limit += change_in_bytes;
}
if (change_in_bytes > 0 && amount > *external_memory_limit) {
ReportExternalAllocationLimitReached();
}
return *external_memory;
}
Local<Value> Context::GetEmbedderData(int index) {
#ifndef V8_ENABLE_CHECKS
typedef internal::Object O;
typedef internal::HeapObject HO;
typedef internal::Internals I;
HO* context = *reinterpret_cast<HO**>(this);
O** result =
HandleScope::CreateHandle(context, I::ReadEmbedderData<O*>(this, index));
return Local<Value>(reinterpret_cast<Value*>(result));
#else
return SlowGetEmbedderData(index);
#endif
}
void* Context::GetAlignedPointerFromEmbedderData(int index) {
#ifndef V8_ENABLE_CHECKS
typedef internal::Internals I;
return I::ReadEmbedderData<void*>(this, index);
#else
return SlowGetAlignedPointerFromEmbedderData(index);
#endif
}
template <class T>
MaybeLocal<T> Context::GetDataFromSnapshotOnce(size_t index) {
T* data = reinterpret_cast<T*>(GetDataFromSnapshotOnce(index));
if (data) internal::PerformCastCheck(data);
return Local<T>(data);
}
template <class T>
size_t SnapshotCreator::AddData(Local<Context> context, Local<T> object) {
T* object_ptr = *object;
internal::Object** p = reinterpret_cast<internal::Object**>(object_ptr);
return AddData(context, *p);
}
template <class T>
size_t SnapshotCreator::AddData(Local<T> object) {
T* object_ptr = *object;
internal::Object** p = reinterpret_cast<internal::Object**>(object_ptr);
return AddData(*p);
}
/**
* \example shell.cc
* A simple shell that takes a list of expressions on the
* command-line and executes them.
*/
/**
* \example process.cc
*/
} // namespace v8
#undef TYPE_CHECK
#endif // INCLUDE_V8_H_