blob: 78b266cb0b962d0c7a7702e2555104395bb1792a [file] [log] [blame] [edit]
// Copyright 2013 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_ARM64_TEST_UTILS_ARM64_H_
#define V8_ARM64_TEST_UTILS_ARM64_H_
#include "src/v8.h"
#include "test/cctest/cctest.h"
#include "src/arm64/macro-assembler-arm64.h"
#include "src/arm64/utils-arm64.h"
#include "src/macro-assembler.h"
namespace v8 {
namespace internal {
// Structure representing Q registers in a RegisterDump.
struct vec128_t {
uint64_t l;
uint64_t h;
};
// RegisterDump: Object allowing integer, floating point and flags registers
// to be saved to itself for future reference.
class RegisterDump {
public:
RegisterDump() : completed_(false) {}
// The Dump method generates code to store a snapshot of the register values.
// It needs to be able to use the stack temporarily, and requires that the
// current stack pointer is csp, and is properly aligned.
//
// The dumping code is generated though the given MacroAssembler. No registers
// are corrupted in the process, but the stack is used briefly. The flags will
// be corrupted during this call.
void Dump(MacroAssembler* assm);
// Register accessors.
inline int32_t wreg(unsigned code) const {
if (code == kSPRegInternalCode) {
return wspreg();
}
CHECK(RegAliasesMatch(code));
return dump_.w_[code];
}
inline int64_t xreg(unsigned code) const {
if (code == kSPRegInternalCode) {
return spreg();
}
CHECK(RegAliasesMatch(code));
return dump_.x_[code];
}
// VRegister accessors.
inline uint32_t sreg_bits(unsigned code) const {
CHECK(FPRegAliasesMatch(code));
return dump_.s_[code];
}
inline float sreg(unsigned code) const {
return bit_cast<float>(sreg_bits(code));
}
inline uint64_t dreg_bits(unsigned code) const {
CHECK(FPRegAliasesMatch(code));
return dump_.d_[code];
}
inline double dreg(unsigned code) const {
return bit_cast<double>(dreg_bits(code));
}
inline vec128_t qreg(unsigned code) const { return dump_.q_[code]; }
// Stack pointer accessors.
inline int64_t spreg() const {
CHECK(SPRegAliasesMatch());
return dump_.sp_;
}
inline int32_t wspreg() const {
CHECK(SPRegAliasesMatch());
return static_cast<int32_t>(dump_.wsp_);
}
// Flags accessors.
inline uint32_t flags_nzcv() const {
CHECK(IsComplete());
CHECK_EQ(dump_.flags_ & ~Flags_mask, 0);
return dump_.flags_ & Flags_mask;
}
inline bool IsComplete() const {
return completed_;
}
private:
// Indicate whether the dump operation has been completed.
bool completed_;
// Check that the lower 32 bits of x<code> exactly match the 32 bits of
// w<code>. A failure of this test most likely represents a failure in the
// ::Dump method, or a failure in the simulator.
bool RegAliasesMatch(unsigned code) const {
CHECK(IsComplete());
CHECK_LT(code, kNumberOfRegisters);
return ((dump_.x_[code] & kWRegMask) == dump_.w_[code]);
}
// As RegAliasesMatch, but for the stack pointer.
bool SPRegAliasesMatch() const {
CHECK(IsComplete());
return ((dump_.sp_ & kWRegMask) == dump_.wsp_);
}
// As RegAliasesMatch, but for floating-point registers.
bool FPRegAliasesMatch(unsigned code) const {
CHECK(IsComplete());
CHECK_LT(code, kNumberOfVRegisters);
return (dump_.d_[code] & kSRegMask) == dump_.s_[code];
}
// Store all the dumped elements in a simple struct so the implementation can
// use offsetof to quickly find the correct field.
struct dump_t {
// Core registers.
uint64_t x_[kNumberOfRegisters];
uint32_t w_[kNumberOfRegisters];
// Floating-point registers, as raw bits.
uint64_t d_[kNumberOfVRegisters];
uint32_t s_[kNumberOfVRegisters];
// Vector registers.
vec128_t q_[kNumberOfVRegisters];
// The stack pointer.
uint64_t sp_;
uint64_t wsp_;
// NZCV flags, stored in bits 28 to 31.
// bit[31] : Negative
// bit[30] : Zero
// bit[29] : Carry
// bit[28] : oVerflow
uint64_t flags_;
} dump_;
static dump_t for_sizeof();
static_assert(kXRegSize == kDRegSize, "X and D registers must be same size.");
static_assert(kWRegSize == kSRegSize, "W and S registers must be same size.");
static_assert(sizeof(for_sizeof().q_[0]) == kQRegSize,
"Array elements must be size of Q register.");
static_assert(sizeof(for_sizeof().d_[0]) == kDRegSize,
"Array elements must be size of D register.");
static_assert(sizeof(for_sizeof().s_[0]) == kSRegSize,
"Array elements must be size of S register.");
static_assert(sizeof(for_sizeof().x_[0]) == kXRegSize,
"Array elements must be size of X register.");
static_assert(sizeof(for_sizeof().w_[0]) == kWRegSize,
"Array elements must be size of W register.");
};
// Some of these methods don't use the RegisterDump argument, but they have to
// accept them so that they can overload those that take register arguments.
bool Equal32(uint32_t expected, const RegisterDump*, uint32_t result);
bool Equal64(uint64_t expected, const RegisterDump*, uint64_t result);
bool EqualFP32(float expected, const RegisterDump*, float result);
bool EqualFP64(double expected, const RegisterDump*, double result);
bool Equal32(uint32_t expected, const RegisterDump* core, const Register& reg);
bool Equal64(uint64_t expected, const RegisterDump* core, const Register& reg);
bool EqualFP32(float expected, const RegisterDump* core,
const VRegister& fpreg);
bool EqualFP64(double expected, const RegisterDump* core,
const VRegister& fpreg);
bool Equal64(const Register& reg0, const RegisterDump* core,
const Register& reg1);
bool Equal128(uint64_t expected_h, uint64_t expected_l,
const RegisterDump* core, const VRegister& reg);
bool EqualNzcv(uint32_t expected, uint32_t result);
bool EqualRegisters(const RegisterDump* a, const RegisterDump* b);
// Create an array of type {RegType}, size {Size}, filled with {NoReg}.
template <typename RegType, size_t Size>
std::array<RegType, Size> CreateRegisterArray() {
return base::make_array<Size>([](size_t) { return RegType::no_reg(); });
}
// Populate the w, x and r arrays with registers from the 'allowed' mask. The
// r array will be populated with <reg_size>-sized registers,
//
// This allows for tests which use large, parameterized blocks of registers
// (such as the push and pop tests), but where certain registers must be
// avoided as they are used for other purposes.
//
// Any of w, x, or r can be nullptr if they are not required.
//
// The return value is a RegList indicating which registers were allocated.
RegList PopulateRegisterArray(Register* w, Register* x, Register* r,
int reg_size, int reg_count, RegList allowed);
// As PopulateRegisterArray, but for floating-point registers.
RegList PopulateVRegisterArray(VRegister* s, VRegister* d, VRegister* v,
int reg_size, int reg_count, RegList allowed);
// Ovewrite the contents of the specified registers. This enables tests to
// check that register contents are written in cases where it's likely that the
// correct outcome could already be stored in the register.
//
// This always overwrites X-sized registers. If tests are operating on W
// registers, a subsequent write into an aliased W register should clear the
// top word anyway, so clobbering the full X registers should make tests more
// rigorous.
void Clobber(MacroAssembler* masm, RegList reg_list,
uint64_t const value = 0xFEDCBA9876543210UL);
// As Clobber, but for FP registers.
void ClobberFP(MacroAssembler* masm, RegList reg_list,
double const value = kFP64SignallingNaN);
// As Clobber, but for a CPURegList with either FP or integer registers. When
// using this method, the clobber value is always the default for the basic
// Clobber or ClobberFP functions.
void Clobber(MacroAssembler* masm, CPURegList reg_list);
} // namespace internal
} // namespace v8
#endif // V8_ARM64_TEST_UTILS_ARM64_H_