blob: 1ddd463795374facb114beddf07ba050fdc4b495 [file] [log] [blame] [edit]
// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdlib.h>
#include "src/base/platform/platform.h"
#include "src/execution/isolate.h"
#include "src/heap/factory-inl.h"
#include "src/init/v8.h"
#include "src/numbers/conversions.h"
#include "src/objects/heap-number-inl.h"
#include "src/objects/objects.h"
#include "src/objects/smi.h"
#include "test/cctest/cctest.h"
namespace v8 {
namespace internal {
TEST(Hex) {
CHECK_EQ(0.0, StringToDouble("0x0", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL));
CHECK_EQ(0.0, StringToDouble("0X0", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL));
CHECK_EQ(1.0, StringToDouble("0x1", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL));
CHECK_EQ(16.0, StringToDouble("0x10", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL));
CHECK_EQ(255.0, StringToDouble("0xFF", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL));
CHECK_EQ(175.0, StringToDouble("0xAF", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL));
CHECK_EQ(0.0, StringToDouble("0x0", ALLOW_HEX));
CHECK_EQ(0.0, StringToDouble("0X0", ALLOW_HEX));
CHECK_EQ(1.0, StringToDouble("0x1", ALLOW_HEX));
CHECK_EQ(16.0, StringToDouble("0x10", ALLOW_HEX));
CHECK_EQ(255.0, StringToDouble("0xFF", ALLOW_HEX));
CHECK_EQ(175.0, StringToDouble("0xAF", ALLOW_HEX));
}
TEST(Octal) {
CHECK_EQ(0.0, StringToDouble("0o0", ALLOW_OCTAL | ALLOW_IMPLICIT_OCTAL));
CHECK_EQ(0.0, StringToDouble("0O0", ALLOW_OCTAL | ALLOW_IMPLICIT_OCTAL));
CHECK_EQ(1.0, StringToDouble("0o1", ALLOW_OCTAL | ALLOW_IMPLICIT_OCTAL));
CHECK_EQ(7.0, StringToDouble("0o7", ALLOW_OCTAL | ALLOW_IMPLICIT_OCTAL));
CHECK_EQ(8.0, StringToDouble("0o10", ALLOW_OCTAL | ALLOW_IMPLICIT_OCTAL));
CHECK_EQ(63.0, StringToDouble("0o77", ALLOW_OCTAL | ALLOW_IMPLICIT_OCTAL));
CHECK_EQ(0.0, StringToDouble("0o0", ALLOW_OCTAL));
CHECK_EQ(0.0, StringToDouble("0O0", ALLOW_OCTAL));
CHECK_EQ(1.0, StringToDouble("0o1", ALLOW_OCTAL));
CHECK_EQ(7.0, StringToDouble("0o7", ALLOW_OCTAL));
CHECK_EQ(8.0, StringToDouble("0o10", ALLOW_OCTAL));
CHECK_EQ(63.0, StringToDouble("0o77", ALLOW_OCTAL));
}
TEST(ImplicitOctal) {
CHECK_EQ(0.0, StringToDouble("0", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL));
CHECK_EQ(0.0, StringToDouble("00", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL));
CHECK_EQ(1.0, StringToDouble("01", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL));
CHECK_EQ(7.0, StringToDouble("07", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL));
CHECK_EQ(8.0, StringToDouble("010", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL));
CHECK_EQ(63.0, StringToDouble("077", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL));
CHECK_EQ(0.0, StringToDouble("0", ALLOW_HEX));
CHECK_EQ(0.0, StringToDouble("00", ALLOW_HEX));
CHECK_EQ(1.0, StringToDouble("01", ALLOW_HEX));
CHECK_EQ(7.0, StringToDouble("07", ALLOW_HEX));
CHECK_EQ(10.0, StringToDouble("010", ALLOW_HEX));
CHECK_EQ(77.0, StringToDouble("077", ALLOW_HEX));
const double x = 010000000000; // Power of 2, no rounding errors.
CHECK_EQ(x * x * x * x * x, StringToDouble("01"
"0000000000"
"0000000000"
"0000000000"
"0000000000"
"0000000000",
ALLOW_IMPLICIT_OCTAL));
}
TEST(Binary) {
CHECK_EQ(0.0, StringToDouble("0b0", ALLOW_BINARY | ALLOW_IMPLICIT_OCTAL));
CHECK_EQ(0.0, StringToDouble("0B0", ALLOW_BINARY | ALLOW_IMPLICIT_OCTAL));
CHECK_EQ(1.0, StringToDouble("0b1", ALLOW_BINARY | ALLOW_IMPLICIT_OCTAL));
CHECK_EQ(2.0, StringToDouble("0b10", ALLOW_BINARY | ALLOW_IMPLICIT_OCTAL));
CHECK_EQ(3.0, StringToDouble("0b11", ALLOW_BINARY | ALLOW_IMPLICIT_OCTAL));
CHECK_EQ(0.0, StringToDouble("0b0", ALLOW_BINARY));
CHECK_EQ(0.0, StringToDouble("0B0", ALLOW_BINARY));
CHECK_EQ(1.0, StringToDouble("0b1", ALLOW_BINARY));
CHECK_EQ(2.0, StringToDouble("0b10", ALLOW_BINARY));
CHECK_EQ(3.0, StringToDouble("0b11", ALLOW_BINARY));
}
TEST(MalformedOctal) {
CHECK_EQ(8.0, StringToDouble("08", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL));
CHECK_EQ(81.0, StringToDouble("081", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL));
CHECK_EQ(78.0, StringToDouble("078", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL));
CHECK(std::isnan(StringToDouble("07.7", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)));
CHECK(std::isnan(StringToDouble("07.8", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)));
CHECK(std::isnan(StringToDouble("07e8", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)));
CHECK(std::isnan(StringToDouble("07e7", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)));
CHECK_EQ(8.7, StringToDouble("08.7", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL));
CHECK_EQ(8e7, StringToDouble("08e7", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL));
CHECK_EQ(0.001, StringToDouble("0.001", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL));
CHECK_EQ(0.713, StringToDouble("0.713", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL));
CHECK_EQ(8.0, StringToDouble("08", ALLOW_HEX));
CHECK_EQ(81.0, StringToDouble("081", ALLOW_HEX));
CHECK_EQ(78.0, StringToDouble("078", ALLOW_HEX));
CHECK_EQ(7.7, StringToDouble("07.7", ALLOW_HEX));
CHECK_EQ(7.8, StringToDouble("07.8", ALLOW_HEX));
CHECK_EQ(7e8, StringToDouble("07e8", ALLOW_HEX));
CHECK_EQ(7e7, StringToDouble("07e7", ALLOW_HEX));
CHECK_EQ(8.7, StringToDouble("08.7", ALLOW_HEX));
CHECK_EQ(8e7, StringToDouble("08e7", ALLOW_HEX));
CHECK_EQ(0.001, StringToDouble("0.001", ALLOW_HEX));
CHECK_EQ(0.713, StringToDouble("0.713", ALLOW_HEX));
}
TEST(TrailingJunk) {
CHECK_EQ(8.0, StringToDouble("8q", ALLOW_TRAILING_JUNK));
CHECK_EQ(63.0, StringToDouble("077qqq",
ALLOW_IMPLICIT_OCTAL | ALLOW_TRAILING_JUNK));
CHECK_EQ(10.0,
StringToDouble("10e", ALLOW_IMPLICIT_OCTAL | ALLOW_TRAILING_JUNK));
CHECK_EQ(10.0,
StringToDouble("10e-", ALLOW_IMPLICIT_OCTAL | ALLOW_TRAILING_JUNK));
}
TEST(NonStrDecimalLiteral) {
CHECK(std::isnan(
StringToDouble(" ", NO_FLAGS, std::numeric_limits<double>::quiet_NaN())));
CHECK(std::isnan(
StringToDouble("", NO_FLAGS, std::numeric_limits<double>::quiet_NaN())));
CHECK(std::isnan(
StringToDouble(" ", NO_FLAGS, std::numeric_limits<double>::quiet_NaN())));
CHECK_EQ(0.0, StringToDouble("", NO_FLAGS));
CHECK_EQ(0.0, StringToDouble(" ", NO_FLAGS));
}
TEST(IntegerStrLiteral) {
CHECK_EQ(0.0, StringToDouble("0.0", NO_FLAGS));
CHECK_EQ(0.0, StringToDouble("0", NO_FLAGS));
CHECK_EQ(0.0, StringToDouble("00", NO_FLAGS));
CHECK_EQ(0.0, StringToDouble("000", NO_FLAGS));
CHECK_EQ(1.0, StringToDouble("1", NO_FLAGS));
CHECK_EQ(-1.0, StringToDouble("-1", NO_FLAGS));
CHECK_EQ(-1.0, StringToDouble(" -1 ", NO_FLAGS));
CHECK_EQ(1.0, StringToDouble(" +1 ", NO_FLAGS));
CHECK(std::isnan(StringToDouble(" - 1 ", NO_FLAGS)));
CHECK(std::isnan(StringToDouble(" + 1 ", NO_FLAGS)));
CHECK_EQ(0.0, StringToDouble("0e0", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL));
CHECK_EQ(0.0, StringToDouble("0e1", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL));
CHECK_EQ(0.0, StringToDouble("0e-1", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL));
CHECK_EQ(0.0, StringToDouble("0e-100000", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL));
CHECK_EQ(0.0, StringToDouble("0e+100000", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL));
CHECK_EQ(0.0, StringToDouble("0.", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL));
}
TEST(LongNumberStr) {
CHECK_EQ(1e10, StringToDouble("1"
"0000000000",
NO_FLAGS));
CHECK_EQ(1e20, StringToDouble("1"
"0000000000"
"0000000000",
NO_FLAGS));
CHECK_EQ(1e60, StringToDouble("1"
"0000000000"
"0000000000"
"0000000000"
"0000000000"
"0000000000"
"0000000000",
NO_FLAGS));
CHECK_EQ(1e-2, StringToDouble("."
"0"
"1",
NO_FLAGS));
CHECK_EQ(1e-11, StringToDouble("."
"0000000000"
"1",
NO_FLAGS));
CHECK_EQ(1e-21, StringToDouble("."
"0000000000"
"0000000000"
"1",
NO_FLAGS));
CHECK_EQ(1e-61, StringToDouble("."
"0000000000"
"0000000000"
"0000000000"
"0000000000"
"0000000000"
"0000000000"
"1",
NO_FLAGS));
// x = 24414062505131248.0 and y = 24414062505131252.0 are representable in
// double. Check chat z = (x + y) / 2 is rounded to x...
CHECK_EQ(24414062505131248.0,
StringToDouble("24414062505131250.0", NO_FLAGS));
// ... and z = (x + y) / 2 + delta is rounded to y.
CHECK_EQ(24414062505131252.0,
StringToDouble("24414062505131250.000000001", NO_FLAGS));
}
TEST(MaximumSignificantDigits) {
char num[] =
"4.4501477170144020250819966727949918635852426585926051135169509"
"122872622312493126406953054127118942431783801370080830523154578"
"251545303238277269592368457430440993619708911874715081505094180"
"604803751173783204118519353387964161152051487413083163272520124"
"606023105869053620631175265621765214646643181420505164043632222"
"668006474326056011713528291579642227455489682133472873831754840"
"341397809846934151055619529382191981473003234105366170879223151"
"087335413188049110555339027884856781219017754500629806224571029"
"581637117459456877330110324211689177656713705497387108207822477"
"584250967061891687062782163335299376138075114200886249979505279"
"101870966346394401564490729731565935244123171539810221213221201"
"847003580761626016356864581135848683152156368691976240370422601"
"6998291015625000000000000000000000000000000000e-308";
CHECK_EQ(4.4501477170144017780491e-308, StringToDouble(num, NO_FLAGS));
// Changes the result of strtod (at least in glibc implementation).
num[sizeof(num) - 8] = '1';
CHECK_EQ(4.4501477170144022721148e-308, StringToDouble(num, NO_FLAGS));
}
TEST(MinimumExponent) {
// Same test but with different point-position.
char num[] =
"445014771701440202508199667279499186358524265859260511351695091"
"228726223124931264069530541271189424317838013700808305231545782"
"515453032382772695923684574304409936197089118747150815050941806"
"048037511737832041185193533879641611520514874130831632725201246"
"060231058690536206311752656217652146466431814205051640436322226"
"680064743260560117135282915796422274554896821334728738317548403"
"413978098469341510556195293821919814730032341053661708792231510"
"873354131880491105553390278848567812190177545006298062245710295"
"816371174594568773301103242116891776567137054973871082078224775"
"842509670618916870627821633352993761380751142008862499795052791"
"018709663463944015644907297315659352441231715398102212132212018"
"470035807616260163568645811358486831521563686919762403704226016"
"998291015625000000000000000000000000000000000e-1108";
CHECK_EQ(4.4501477170144017780491e-308, StringToDouble(num, NO_FLAGS));
// Changes the result of strtod (at least in glibc implementation).
num[sizeof(num) - 8] = '1';
CHECK_EQ(4.4501477170144022721148e-308, StringToDouble(num, NO_FLAGS));
}
TEST(MaximumExponent) {
char num[] = "0.16e309";
CHECK_EQ(1.59999999999999997765e+308, StringToDouble(num, NO_FLAGS));
}
TEST(ExponentNumberStr) {
CHECK_EQ(1e1, StringToDouble("1e1", NO_FLAGS));
CHECK_EQ(1e1, StringToDouble("1e+1", NO_FLAGS));
CHECK_EQ(1e-1, StringToDouble("1e-1", NO_FLAGS));
CHECK_EQ(1e100, StringToDouble("1e+100", NO_FLAGS));
CHECK_EQ(1e-100, StringToDouble("1e-100", NO_FLAGS));
CHECK_EQ(1e-106, StringToDouble(".000001e-100", NO_FLAGS));
}
class OneBit1: public BitField<uint32_t, 0, 1> {};
class OneBit2: public BitField<uint32_t, 7, 1> {};
class EightBit1: public BitField<uint32_t, 0, 8> {};
class EightBit2: public BitField<uint32_t, 13, 8> {};
TEST(BitField) {
uint32_t x;
// One bit bit field can hold values 0 and 1.
CHECK(!OneBit1::is_valid(static_cast<uint32_t>(-1)));
CHECK(!OneBit2::is_valid(static_cast<uint32_t>(-1)));
for (unsigned i = 0; i < 2; i++) {
CHECK(OneBit1::is_valid(i));
x = OneBit1::encode(i);
CHECK_EQ(i, OneBit1::decode(x));
CHECK(OneBit2::is_valid(i));
x = OneBit2::encode(i);
CHECK_EQ(i, OneBit2::decode(x));
}
CHECK(!OneBit1::is_valid(2));
CHECK(!OneBit2::is_valid(2));
// Eight bit bit field can hold values from 0 tp 255.
CHECK(!EightBit1::is_valid(static_cast<uint32_t>(-1)));
CHECK(!EightBit2::is_valid(static_cast<uint32_t>(-1)));
for (unsigned i = 0; i < 256; i++) {
CHECK(EightBit1::is_valid(i));
x = EightBit1::encode(i);
CHECK_EQ(i, EightBit1::decode(x));
CHECK(EightBit2::is_valid(i));
x = EightBit2::encode(i);
CHECK_EQ(i, EightBit2::decode(x));
}
CHECK(!EightBit1::is_valid(256));
CHECK(!EightBit2::is_valid(256));
}
class UpperBits: public BitField64<int, 61, 3> {};
class MiddleBits: public BitField64<int, 31, 2> {};
TEST(BitField64) {
uint64_t x;
// Test most significant bits.
x = V8_2PART_UINT64_C(0xE0000000, 00000000);
CHECK(x == UpperBits::encode(7));
CHECK_EQ(7, UpperBits::decode(x));
// Test the 32/64-bit boundary bits.
x = V8_2PART_UINT64_C(0x00000001, 80000000);
CHECK(x == MiddleBits::encode(3));
CHECK_EQ(3, MiddleBits::decode(x));
}
static void CheckNonArrayIndex(bool expected, const char* chars) {
auto isolate = CcTest::i_isolate();
auto string = isolate->factory()->NewStringFromAsciiChecked(chars);
CHECK_EQ(expected, IsSpecialIndex(*string));
}
TEST(SpecialIndexParsing) {
auto isolate = CcTest::i_isolate();
HandleScope scope(isolate);
CheckNonArrayIndex(false, "");
CheckNonArrayIndex(false, "-");
CheckNonArrayIndex(true, "0");
CheckNonArrayIndex(true, "-0");
CheckNonArrayIndex(false, "01");
CheckNonArrayIndex(false, "-01");
CheckNonArrayIndex(true, "0.5");
CheckNonArrayIndex(true, "-0.5");
CheckNonArrayIndex(true, "1");
CheckNonArrayIndex(true, "-1");
CheckNonArrayIndex(true, "10");
CheckNonArrayIndex(true, "-10");
CheckNonArrayIndex(true, "NaN");
CheckNonArrayIndex(true, "Infinity");
CheckNonArrayIndex(true, "-Infinity");
CheckNonArrayIndex(true, "4294967295");
CheckNonArrayIndex(true, "429496.7295");
CheckNonArrayIndex(true, "1.3333333333333333");
CheckNonArrayIndex(false, "1.3333333333333339");
CheckNonArrayIndex(true, "1.333333333333331e+222");
CheckNonArrayIndex(true, "-1.3333333333333211e+222");
CheckNonArrayIndex(false, "-1.3333333333333311e+222");
CheckNonArrayIndex(true, "429496.7295");
CheckNonArrayIndex(false, "43s3");
CheckNonArrayIndex(true, "4294967296");
CheckNonArrayIndex(true, "-4294967296");
CheckNonArrayIndex(true, "999999999999999");
CheckNonArrayIndex(false, "9999999999999999");
CheckNonArrayIndex(true, "-999999999999999");
CheckNonArrayIndex(false, "-9999999999999999");
CheckNonArrayIndex(false, "42949672964294967296429496729694966");
}
TEST(NoHandlesForTryNumberToSize) {
i::Isolate* isolate = CcTest::i_isolate();
size_t result = 0;
{
SealHandleScope no_handles(isolate);
Smi smi = Smi::FromInt(1);
CHECK(TryNumberToSize(smi, &result));
CHECK_EQ(result, 1u);
}
result = 0;
{
HandleScope scope(isolate);
Handle<HeapNumber> heap_number1 = isolate->factory()->NewHeapNumber(2.0);
{
SealHandleScope no_handles(isolate);
CHECK(TryNumberToSize(*heap_number1, &result));
CHECK_EQ(result, 2u);
}
Handle<HeapNumber> heap_number2 = isolate->factory()->NewHeapNumber(
static_cast<double>(std::numeric_limits<size_t>::max()) + 10000.0);
{
SealHandleScope no_handles(isolate);
CHECK(!TryNumberToSize(*heap_number2, &result));
}
}
}
TEST(TryNumberToSizeWithMaxSizePlusOne) {
i::Isolate* isolate = CcTest::i_isolate();
{
HandleScope scope(isolate);
// 1 << 64, larger than the limit of size_t.
double value = 18446744073709551616.0;
size_t result = 0;
Handle<HeapNumber> heap_number = isolate->factory()->NewHeapNumber(value);
CHECK(!TryNumberToSize(*heap_number, &result));
}
}
TEST(PositiveNumberToUint32) {
i::Isolate* isolate = CcTest::i_isolate();
i::Factory* factory = isolate->factory();
uint32_t max = std::numeric_limits<uint32_t>::max();
HandleScope scope(isolate);
// Test Smi conversions.
Handle<Object> number = handle(Smi::FromInt(0), isolate);
CHECK_EQ(PositiveNumberToUint32(*number), 0u);
number = handle(Smi::FromInt(-1), isolate);
CHECK_EQ(PositiveNumberToUint32(*number), 0u);
number = handle(Smi::FromInt(-1), isolate);
CHECK_EQ(PositiveNumberToUint32(*number), 0u);
number = handle(Smi::FromInt(Smi::kMinValue), isolate);
CHECK_EQ(PositiveNumberToUint32(*number), 0u);
number = handle(Smi::FromInt(Smi::kMaxValue), isolate);
CHECK_EQ(PositiveNumberToUint32(*number),
static_cast<uint32_t>(Smi::kMaxValue));
// Test Double conversions.
number = factory->NewHeapNumber(0.0);
CHECK_EQ(PositiveNumberToUint32(*number), 0u);
number = factory->NewHeapNumber(0.999);
CHECK_EQ(PositiveNumberToUint32(*number), 0u);
number = factory->NewHeapNumber(1.999);
CHECK_EQ(PositiveNumberToUint32(*number), 1u);
number = factory->NewHeapNumber(-12.0);
CHECK_EQ(PositiveNumberToUint32(*number), 0u);
number = factory->NewHeapNumber(12000.0);
CHECK_EQ(PositiveNumberToUint32(*number), 12000u);
number = factory->NewHeapNumber(static_cast<double>(Smi::kMaxValue) + 1);
CHECK_EQ(PositiveNumberToUint32(*number),
static_cast<uint32_t>(Smi::kMaxValue) + 1);
number = factory->NewHeapNumber(max);
CHECK_EQ(PositiveNumberToUint32(*number), max);
number = factory->NewHeapNumber(static_cast<double>(max) * 1000);
CHECK_EQ(PositiveNumberToUint32(*number), max);
number = factory->NewHeapNumber(std::numeric_limits<double>::max());
CHECK_EQ(PositiveNumberToUint32(*number), max);
number = factory->NewHeapNumber(std::numeric_limits<double>::infinity());
CHECK_EQ(PositiveNumberToUint32(*number), max);
number =
factory->NewHeapNumber(-1.0 * std::numeric_limits<double>::infinity());
CHECK_EQ(PositiveNumberToUint32(*number), 0u);
number = factory->NewHeapNumber(std::nan(""));
CHECK_EQ(PositiveNumberToUint32(*number), 0u);
}
} // namespace internal
} // namespace v8