blob: 26df61ceb8adb478a62f04c81ec1a1e41dec47d4 [file] [log] [blame] [edit]
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "src/api/api-inl.h"
#include "src/base/overflowing-math.h"
#include "src/base/platform/elapsed-timer.h"
#include "src/codegen/assembler-inl.h"
#include "src/utils/utils.h"
#include "test/cctest/cctest.h"
#include "test/cctest/compiler/value-helper.h"
#include "test/cctest/wasm/wasm-run-utils.h"
#include "test/common/wasm/test-signatures.h"
#include "test/common/wasm/wasm-macro-gen.h"
namespace v8 {
namespace internal {
namespace wasm {
namespace test_run_wasm {
// for even shorter tests.
#define B1(a) WASM_BLOCK(a)
#define B2(a, b) WASM_BLOCK(a, b)
#define RET(x) x, kExprReturn
#define RET_I8(x) WASM_I32V_2(x), kExprReturn
WASM_EXEC_TEST(Int32Const) {
WasmRunner<int32_t> r(execution_tier);
const int32_t kExpectedValue = 0x11223344;
// return(kExpectedValue)
BUILD(r, WASM_I32V_5(kExpectedValue));
CHECK_EQ(kExpectedValue, r.Call());
}
WASM_EXEC_TEST(Int32Const_many) {
FOR_INT32_INPUTS(i) {
WasmRunner<int32_t> r(execution_tier);
const int32_t kExpectedValue = i;
// return(kExpectedValue)
BUILD(r, WASM_I32V(kExpectedValue));
CHECK_EQ(kExpectedValue, r.Call());
}
}
WASM_EXEC_TEST(GraphTrimming) {
// This WebAssembly code requires graph trimming in the TurboFan compiler.
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(r, kExprGetLocal, 0, kExprGetLocal, 0, kExprGetLocal, 0, kExprI32RemS,
kExprI32Eq, kExprGetLocal, 0, kExprI32DivS, kExprUnreachable);
r.Call(1);
}
WASM_EXEC_TEST(Int32Param0) {
WasmRunner<int32_t, int32_t> r(execution_tier);
// return(local[0])
BUILD(r, WASM_GET_LOCAL(0));
FOR_INT32_INPUTS(i) { CHECK_EQ(i, r.Call(i)); }
}
WASM_EXEC_TEST(Int32Param0_fallthru) {
WasmRunner<int32_t, int32_t> r(execution_tier);
// local[0]
BUILD(r, WASM_GET_LOCAL(0));
FOR_INT32_INPUTS(i) { CHECK_EQ(i, r.Call(i)); }
}
WASM_EXEC_TEST(Int32Param1) {
WasmRunner<int32_t, int32_t, int32_t> r(execution_tier);
// local[1]
BUILD(r, WASM_GET_LOCAL(1));
FOR_INT32_INPUTS(i) { CHECK_EQ(i, r.Call(-111, i)); }
}
WASM_EXEC_TEST(Int32Add) {
WasmRunner<int32_t> r(execution_tier);
// 11 + 44
BUILD(r, WASM_I32_ADD(WASM_I32V_1(11), WASM_I32V_1(44)));
CHECK_EQ(55, r.Call());
}
WASM_EXEC_TEST(Int32Add_P) {
WasmRunner<int32_t, int32_t> r(execution_tier);
// p0 + 13
BUILD(r, WASM_I32_ADD(WASM_I32V_1(13), WASM_GET_LOCAL(0)));
FOR_INT32_INPUTS(i) { CHECK_EQ(base::AddWithWraparound(i, 13), r.Call(i)); }
}
WASM_EXEC_TEST(Int32Add_P_fallthru) {
WasmRunner<int32_t, int32_t> r(execution_tier);
// p0 + 13
BUILD(r, WASM_I32_ADD(WASM_I32V_1(13), WASM_GET_LOCAL(0)));
FOR_INT32_INPUTS(i) { CHECK_EQ(base::AddWithWraparound(i, 13), r.Call(i)); }
}
static void RunInt32AddTest(ExecutionTier execution_tier, const byte* code,
size_t size) {
TestSignatures sigs;
WasmRunner<int32_t, int32_t, int32_t> r(execution_tier);
r.builder().AddSignature(sigs.ii_v());
r.builder().AddSignature(sigs.iii_v());
r.Build(code, code + size);
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int32_t expected = static_cast<int32_t>(static_cast<uint32_t>(i) +
static_cast<uint32_t>(j));
CHECK_EQ(expected, r.Call(i, j));
}
}
}
WASM_EXEC_TEST(Int32Add_P2) {
EXPERIMENTAL_FLAG_SCOPE(mv);
static const byte code[] = {
WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))};
RunInt32AddTest(execution_tier, code, sizeof(code));
}
WASM_EXEC_TEST(Int32Add_block1) {
EXPERIMENTAL_FLAG_SCOPE(mv);
static const byte code[] = {
WASM_BLOCK_X(1, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)), kExprI32Add};
RunInt32AddTest(execution_tier, code, sizeof(code));
}
WASM_EXEC_TEST(Int32Add_block2) {
EXPERIMENTAL_FLAG_SCOPE(mv);
static const byte code[] = {
WASM_BLOCK_X(1, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1), kExprBr, DEPTH_0),
kExprI32Add};
RunInt32AddTest(execution_tier, code, sizeof(code));
}
WASM_EXEC_TEST(Int32Add_multi_if) {
EXPERIMENTAL_FLAG_SCOPE(mv);
static const byte code[] = {
WASM_IF_ELSE_X(1, WASM_GET_LOCAL(0),
WASM_SEQ(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)),
WASM_SEQ(WASM_GET_LOCAL(1), WASM_GET_LOCAL(0))),
kExprI32Add};
RunInt32AddTest(execution_tier, code, sizeof(code));
}
WASM_EXEC_TEST(Float32Add) {
WasmRunner<int32_t> r(execution_tier);
// int(11.5f + 44.5f)
BUILD(r,
WASM_I32_SCONVERT_F32(WASM_F32_ADD(WASM_F32(11.5f), WASM_F32(44.5f))));
CHECK_EQ(56, r.Call());
}
WASM_EXEC_TEST(Float64Add) {
WasmRunner<int32_t> r(execution_tier);
// return int(13.5d + 43.5d)
BUILD(r, WASM_I32_SCONVERT_F64(WASM_F64_ADD(WASM_F64(13.5), WASM_F64(43.5))));
CHECK_EQ(57, r.Call());
}
// clang-format messes up the FOR_INT32_INPUTS macros.
// clang-format off
template<typename ctype>
static void TestInt32Binop(ExecutionTier execution_tier, WasmOpcode opcode,
ctype(*expected)(ctype, ctype)) {
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
WasmRunner<ctype> r(execution_tier);
// Apply {opcode} on two constants.
BUILD(r, WASM_BINOP(opcode, WASM_I32V(i), WASM_I32V(j)));
CHECK_EQ(expected(i, j), r.Call());
}
}
{
WasmRunner<ctype, ctype, ctype> r(execution_tier);
// Apply {opcode} on two parameters.
BUILD(r, WASM_BINOP(opcode, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
CHECK_EQ(expected(i, j), r.Call(i, j));
}
}
}
}
// clang-format on
#define WASM_I32_BINOP_TEST(expr, ctype, expected) \
WASM_EXEC_TEST(I32Binop_##expr) { \
TestInt32Binop<ctype>(execution_tier, kExprI32##expr, \
[](ctype a, ctype b) -> ctype { return expected; }); \
}
WASM_I32_BINOP_TEST(Add, int32_t, base::AddWithWraparound(a, b))
WASM_I32_BINOP_TEST(Sub, int32_t, base::SubWithWraparound(a, b))
WASM_I32_BINOP_TEST(Mul, int32_t, base::MulWithWraparound(a, b))
WASM_I32_BINOP_TEST(DivS, int32_t,
(a == kMinInt && b == -1) || b == 0
? static_cast<int32_t>(0xDEADBEEF)
: a / b)
WASM_I32_BINOP_TEST(DivU, uint32_t, b == 0 ? 0xDEADBEEF : a / b)
WASM_I32_BINOP_TEST(RemS, int32_t, b == 0 ? 0xDEADBEEF : b == -1 ? 0 : a % b)
WASM_I32_BINOP_TEST(RemU, uint32_t, b == 0 ? 0xDEADBEEF : a % b)
WASM_I32_BINOP_TEST(And, int32_t, a& b)
WASM_I32_BINOP_TEST(Ior, int32_t, a | b)
WASM_I32_BINOP_TEST(Xor, int32_t, a ^ b)
WASM_I32_BINOP_TEST(Shl, int32_t, base::ShlWithWraparound(a, b))
WASM_I32_BINOP_TEST(ShrU, uint32_t, a >> (b & 0x1F))
WASM_I32_BINOP_TEST(ShrS, int32_t, a >> (b & 0x1F))
WASM_I32_BINOP_TEST(Ror, uint32_t, (a >> (b & 0x1F)) | (a << ((32 - b) & 0x1F)))
WASM_I32_BINOP_TEST(Rol, uint32_t, (a << (b & 0x1F)) | (a >> ((32 - b) & 0x1F)))
WASM_I32_BINOP_TEST(Eq, int32_t, a == b)
WASM_I32_BINOP_TEST(Ne, int32_t, a != b)
WASM_I32_BINOP_TEST(LtS, int32_t, a < b)
WASM_I32_BINOP_TEST(LeS, int32_t, a <= b)
WASM_I32_BINOP_TEST(LtU, uint32_t, a < b)
WASM_I32_BINOP_TEST(LeU, uint32_t, a <= b)
WASM_I32_BINOP_TEST(GtS, int32_t, a > b)
WASM_I32_BINOP_TEST(GeS, int32_t, a >= b)
WASM_I32_BINOP_TEST(GtU, uint32_t, a > b)
WASM_I32_BINOP_TEST(GeU, uint32_t, a >= b)
#undef WASM_I32_BINOP_TEST
void TestInt32Unop(ExecutionTier execution_tier, WasmOpcode opcode,
int32_t expected, int32_t a) {
{
WasmRunner<int32_t> r(execution_tier);
// return op K
BUILD(r, WASM_UNOP(opcode, WASM_I32V(a)));
CHECK_EQ(expected, r.Call());
}
{
WasmRunner<int32_t, int32_t> r(execution_tier);
// return op a
BUILD(r, WASM_UNOP(opcode, WASM_GET_LOCAL(0)));
CHECK_EQ(expected, r.Call(a));
}
}
WASM_EXEC_TEST(Int32Clz) {
TestInt32Unop(execution_tier, kExprI32Clz, 0, 0x80001000);
TestInt32Unop(execution_tier, kExprI32Clz, 1, 0x40000500);
TestInt32Unop(execution_tier, kExprI32Clz, 2, 0x20000300);
TestInt32Unop(execution_tier, kExprI32Clz, 3, 0x10000003);
TestInt32Unop(execution_tier, kExprI32Clz, 4, 0x08050000);
TestInt32Unop(execution_tier, kExprI32Clz, 5, 0x04006000);
TestInt32Unop(execution_tier, kExprI32Clz, 6, 0x02000000);
TestInt32Unop(execution_tier, kExprI32Clz, 7, 0x010000A0);
TestInt32Unop(execution_tier, kExprI32Clz, 8, 0x00800C00);
TestInt32Unop(execution_tier, kExprI32Clz, 9, 0x00400000);
TestInt32Unop(execution_tier, kExprI32Clz, 10, 0x0020000D);
TestInt32Unop(execution_tier, kExprI32Clz, 11, 0x00100F00);
TestInt32Unop(execution_tier, kExprI32Clz, 12, 0x00080000);
TestInt32Unop(execution_tier, kExprI32Clz, 13, 0x00041000);
TestInt32Unop(execution_tier, kExprI32Clz, 14, 0x00020020);
TestInt32Unop(execution_tier, kExprI32Clz, 15, 0x00010300);
TestInt32Unop(execution_tier, kExprI32Clz, 16, 0x00008040);
TestInt32Unop(execution_tier, kExprI32Clz, 17, 0x00004005);
TestInt32Unop(execution_tier, kExprI32Clz, 18, 0x00002050);
TestInt32Unop(execution_tier, kExprI32Clz, 19, 0x00001700);
TestInt32Unop(execution_tier, kExprI32Clz, 20, 0x00000870);
TestInt32Unop(execution_tier, kExprI32Clz, 21, 0x00000405);
TestInt32Unop(execution_tier, kExprI32Clz, 22, 0x00000203);
TestInt32Unop(execution_tier, kExprI32Clz, 23, 0x00000101);
TestInt32Unop(execution_tier, kExprI32Clz, 24, 0x00000089);
TestInt32Unop(execution_tier, kExprI32Clz, 25, 0x00000041);
TestInt32Unop(execution_tier, kExprI32Clz, 26, 0x00000022);
TestInt32Unop(execution_tier, kExprI32Clz, 27, 0x00000013);
TestInt32Unop(execution_tier, kExprI32Clz, 28, 0x00000008);
TestInt32Unop(execution_tier, kExprI32Clz, 29, 0x00000004);
TestInt32Unop(execution_tier, kExprI32Clz, 30, 0x00000002);
TestInt32Unop(execution_tier, kExprI32Clz, 31, 0x00000001);
TestInt32Unop(execution_tier, kExprI32Clz, 32, 0x00000000);
}
WASM_EXEC_TEST(Int32Ctz) {
TestInt32Unop(execution_tier, kExprI32Ctz, 32, 0x00000000);
TestInt32Unop(execution_tier, kExprI32Ctz, 31, 0x80000000);
TestInt32Unop(execution_tier, kExprI32Ctz, 30, 0x40000000);
TestInt32Unop(execution_tier, kExprI32Ctz, 29, 0x20000000);
TestInt32Unop(execution_tier, kExprI32Ctz, 28, 0x10000000);
TestInt32Unop(execution_tier, kExprI32Ctz, 27, 0xA8000000);
TestInt32Unop(execution_tier, kExprI32Ctz, 26, 0xF4000000);
TestInt32Unop(execution_tier, kExprI32Ctz, 25, 0x62000000);
TestInt32Unop(execution_tier, kExprI32Ctz, 24, 0x91000000);
TestInt32Unop(execution_tier, kExprI32Ctz, 23, 0xCD800000);
TestInt32Unop(execution_tier, kExprI32Ctz, 22, 0x09400000);
TestInt32Unop(execution_tier, kExprI32Ctz, 21, 0xAF200000);
TestInt32Unop(execution_tier, kExprI32Ctz, 20, 0xAC100000);
TestInt32Unop(execution_tier, kExprI32Ctz, 19, 0xE0B80000);
TestInt32Unop(execution_tier, kExprI32Ctz, 18, 0x9CE40000);
TestInt32Unop(execution_tier, kExprI32Ctz, 17, 0xC7920000);
TestInt32Unop(execution_tier, kExprI32Ctz, 16, 0xB8F10000);
TestInt32Unop(execution_tier, kExprI32Ctz, 15, 0x3B9F8000);
TestInt32Unop(execution_tier, kExprI32Ctz, 14, 0xDB4C4000);
TestInt32Unop(execution_tier, kExprI32Ctz, 13, 0xE9A32000);
TestInt32Unop(execution_tier, kExprI32Ctz, 12, 0xFCA61000);
TestInt32Unop(execution_tier, kExprI32Ctz, 11, 0x6C8A7800);
TestInt32Unop(execution_tier, kExprI32Ctz, 10, 0x8CE5A400);
TestInt32Unop(execution_tier, kExprI32Ctz, 9, 0xCB7D0200);
TestInt32Unop(execution_tier, kExprI32Ctz, 8, 0xCB4DC100);
TestInt32Unop(execution_tier, kExprI32Ctz, 7, 0xDFBEC580);
TestInt32Unop(execution_tier, kExprI32Ctz, 6, 0x27A9DB40);
TestInt32Unop(execution_tier, kExprI32Ctz, 5, 0xDE3BCB20);
TestInt32Unop(execution_tier, kExprI32Ctz, 4, 0xD7E8A610);
TestInt32Unop(execution_tier, kExprI32Ctz, 3, 0x9AFDBC88);
TestInt32Unop(execution_tier, kExprI32Ctz, 2, 0x9AFDBC84);
TestInt32Unop(execution_tier, kExprI32Ctz, 1, 0x9AFDBC82);
TestInt32Unop(execution_tier, kExprI32Ctz, 0, 0x9AFDBC81);
}
WASM_EXEC_TEST(Int32Popcnt) {
TestInt32Unop(execution_tier, kExprI32Popcnt, 32, 0xFFFFFFFF);
TestInt32Unop(execution_tier, kExprI32Popcnt, 0, 0x00000000);
TestInt32Unop(execution_tier, kExprI32Popcnt, 1, 0x00008000);
TestInt32Unop(execution_tier, kExprI32Popcnt, 13, 0x12345678);
TestInt32Unop(execution_tier, kExprI32Popcnt, 19, 0xFEDCBA09);
}
WASM_EXEC_TEST(I32Eqz) {
TestInt32Unop(execution_tier, kExprI32Eqz, 0, 1);
TestInt32Unop(execution_tier, kExprI32Eqz, 0, -1);
TestInt32Unop(execution_tier, kExprI32Eqz, 0, -827343);
TestInt32Unop(execution_tier, kExprI32Eqz, 0, 8888888);
TestInt32Unop(execution_tier, kExprI32Eqz, 1, 0);
}
WASM_EXEC_TEST(Int32DivS_trap) {
WasmRunner<int32_t, int32_t, int32_t> r(execution_tier);
BUILD(r, WASM_I32_DIVS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
const int32_t kMin = std::numeric_limits<int32_t>::min();
CHECK_EQ(0, r.Call(0, 100));
CHECK_TRAP(r.Call(100, 0));
CHECK_TRAP(r.Call(-1001, 0));
CHECK_TRAP(r.Call(kMin, -1));
CHECK_TRAP(r.Call(kMin, 0));
}
WASM_EXEC_TEST(Int32RemS_trap) {
WasmRunner<int32_t, int32_t, int32_t> r(execution_tier);
BUILD(r, WASM_I32_REMS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
const int32_t kMin = std::numeric_limits<int32_t>::min();
CHECK_EQ(33, r.Call(133, 100));
CHECK_EQ(0, r.Call(kMin, -1));
CHECK_TRAP(r.Call(100, 0));
CHECK_TRAP(r.Call(-1001, 0));
CHECK_TRAP(r.Call(kMin, 0));
}
WASM_EXEC_TEST(Int32DivU_trap) {
WasmRunner<int32_t, int32_t, int32_t> r(execution_tier);
BUILD(r, WASM_I32_DIVU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
const int32_t kMin = std::numeric_limits<int32_t>::min();
CHECK_EQ(0, r.Call(0, 100));
CHECK_EQ(0, r.Call(kMin, -1));
CHECK_TRAP(r.Call(100, 0));
CHECK_TRAP(r.Call(-1001, 0));
CHECK_TRAP(r.Call(kMin, 0));
}
WASM_EXEC_TEST(Int32RemU_trap) {
WasmRunner<int32_t, int32_t, int32_t> r(execution_tier);
BUILD(r, WASM_I32_REMU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
CHECK_EQ(17, r.Call(217, 100));
const int32_t kMin = std::numeric_limits<int32_t>::min();
CHECK_TRAP(r.Call(100, 0));
CHECK_TRAP(r.Call(-1001, 0));
CHECK_TRAP(r.Call(kMin, 0));
CHECK_EQ(kMin, r.Call(kMin, -1));
}
WASM_EXEC_TEST(Int32DivS_byzero_const) {
for (int8_t denom = -2; denom < 8; ++denom) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(r, WASM_I32_DIVS(WASM_GET_LOCAL(0), WASM_I32V_1(denom)));
for (int32_t val = -7; val < 8; ++val) {
if (denom == 0) {
CHECK_TRAP(r.Call(val));
} else {
CHECK_EQ(val / denom, r.Call(val));
}
}
}
}
WASM_EXEC_TEST(Int32DivU_byzero_const) {
for (uint32_t denom = 0xFFFFFFFE; denom < 8; ++denom) {
WasmRunner<uint32_t, uint32_t> r(execution_tier);
BUILD(r, WASM_I32_DIVU(WASM_GET_LOCAL(0), WASM_I32V_1(denom)));
for (uint32_t val = 0xFFFFFFF0; val < 8; ++val) {
if (denom == 0) {
CHECK_TRAP(r.Call(val));
} else {
CHECK_EQ(val / denom, r.Call(val));
}
}
}
}
WASM_EXEC_TEST(Int32DivS_trap_effect) {
WasmRunner<int32_t, int32_t, int32_t> r(execution_tier);
r.builder().AddMemory(kWasmPageSize);
BUILD(r, WASM_IF_ELSE_I(
WASM_GET_LOCAL(0),
WASM_I32_DIVS(
WASM_BLOCK_I(WASM_STORE_MEM(MachineType::Int8(), WASM_ZERO,
WASM_GET_LOCAL(0)),
WASM_GET_LOCAL(0)),
WASM_GET_LOCAL(1)),
WASM_I32_DIVS(
WASM_BLOCK_I(WASM_STORE_MEM(MachineType::Int8(), WASM_ZERO,
WASM_GET_LOCAL(0)),
WASM_GET_LOCAL(0)),
WASM_GET_LOCAL(1))));
CHECK_EQ(0, r.Call(0, 100));
CHECK_TRAP(r.Call(8, 0));
CHECK_TRAP(r.Call(4, 0));
CHECK_TRAP(r.Call(0, 0));
}
void TestFloat32Binop(ExecutionTier execution_tier, WasmOpcode opcode,
int32_t expected, float a, float b) {
{
WasmRunner<int32_t> r(execution_tier);
// return K op K
BUILD(r, WASM_BINOP(opcode, WASM_F32(a), WASM_F32(b)));
CHECK_EQ(expected, r.Call());
}
{
WasmRunner<int32_t, float, float> r(execution_tier);
// return a op b
BUILD(r, WASM_BINOP(opcode, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
CHECK_EQ(expected, r.Call(a, b));
}
}
void TestFloat32BinopWithConvert(ExecutionTier execution_tier,
WasmOpcode opcode, int32_t expected, float a,
float b) {
{
WasmRunner<int32_t> r(execution_tier);
// return int(K op K)
BUILD(r,
WASM_I32_SCONVERT_F32(WASM_BINOP(opcode, WASM_F32(a), WASM_F32(b))));
CHECK_EQ(expected, r.Call());
}
{
WasmRunner<int32_t, float, float> r(execution_tier);
// return int(a op b)
BUILD(r, WASM_I32_SCONVERT_F32(
WASM_BINOP(opcode, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))));
CHECK_EQ(expected, r.Call(a, b));
}
}
void TestFloat32UnopWithConvert(ExecutionTier execution_tier, WasmOpcode opcode,
int32_t expected, float a) {
{
WasmRunner<int32_t> r(execution_tier);
// return int(op(K))
BUILD(r, WASM_I32_SCONVERT_F32(WASM_UNOP(opcode, WASM_F32(a))));
CHECK_EQ(expected, r.Call());
}
{
WasmRunner<int32_t, float> r(execution_tier);
// return int(op(a))
BUILD(r, WASM_I32_SCONVERT_F32(WASM_UNOP(opcode, WASM_GET_LOCAL(0))));
CHECK_EQ(expected, r.Call(a));
}
}
void TestFloat64Binop(ExecutionTier execution_tier, WasmOpcode opcode,
int32_t expected, double a, double b) {
{
WasmRunner<int32_t> r(execution_tier);
// return K op K
BUILD(r, WASM_BINOP(opcode, WASM_F64(a), WASM_F64(b)));
CHECK_EQ(expected, r.Call());
}
{
WasmRunner<int32_t, double, double> r(execution_tier);
// return a op b
BUILD(r, WASM_BINOP(opcode, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
CHECK_EQ(expected, r.Call(a, b));
}
}
void TestFloat64BinopWithConvert(ExecutionTier execution_tier,
WasmOpcode opcode, int32_t expected, double a,
double b) {
{
WasmRunner<int32_t> r(execution_tier);
// return int(K op K)
BUILD(r,
WASM_I32_SCONVERT_F64(WASM_BINOP(opcode, WASM_F64(a), WASM_F64(b))));
CHECK_EQ(expected, r.Call());
}
{
WasmRunner<int32_t, double, double> r(execution_tier);
BUILD(r, WASM_I32_SCONVERT_F64(
WASM_BINOP(opcode, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))));
CHECK_EQ(expected, r.Call(a, b));
}
}
void TestFloat64UnopWithConvert(ExecutionTier execution_tier, WasmOpcode opcode,
int32_t expected, double a) {
{
WasmRunner<int32_t> r(execution_tier);
// return int(op(K))
BUILD(r, WASM_I32_SCONVERT_F64(WASM_UNOP(opcode, WASM_F64(a))));
CHECK_EQ(expected, r.Call());
}
{
WasmRunner<int32_t, double> r(execution_tier);
// return int(op(a))
BUILD(r, WASM_I32_SCONVERT_F64(WASM_UNOP(opcode, WASM_GET_LOCAL(0))));
CHECK_EQ(expected, r.Call(a));
}
}
WASM_EXEC_TEST(Float32Binops) {
TestFloat32Binop(execution_tier, kExprF32Eq, 1, 8.125f, 8.125f);
TestFloat32Binop(execution_tier, kExprF32Ne, 1, 8.125f, 8.127f);
TestFloat32Binop(execution_tier, kExprF32Lt, 1, -9.5f, -9.0f);
TestFloat32Binop(execution_tier, kExprF32Le, 1, -1111.0f, -1111.0f);
TestFloat32Binop(execution_tier, kExprF32Gt, 1, -9.0f, -9.5f);
TestFloat32Binop(execution_tier, kExprF32Ge, 1, -1111.0f, -1111.0f);
TestFloat32BinopWithConvert(execution_tier, kExprF32Add, 10, 3.5f, 6.5f);
TestFloat32BinopWithConvert(execution_tier, kExprF32Sub, 2, 44.5f, 42.5f);
TestFloat32BinopWithConvert(execution_tier, kExprF32Mul, -66, -132.1f, 0.5f);
TestFloat32BinopWithConvert(execution_tier, kExprF32Div, 11, 22.1f, 2.0f);
}
WASM_EXEC_TEST(Float32Unops) {
TestFloat32UnopWithConvert(execution_tier, kExprF32Abs, 8, 8.125f);
TestFloat32UnopWithConvert(execution_tier, kExprF32Abs, 9, -9.125f);
TestFloat32UnopWithConvert(execution_tier, kExprF32Neg, -213, 213.125f);
TestFloat32UnopWithConvert(execution_tier, kExprF32Sqrt, 12, 144.4f);
}
WASM_EXEC_TEST(Float64Binops) {
TestFloat64Binop(execution_tier, kExprF64Eq, 1, 16.25, 16.25);
TestFloat64Binop(execution_tier, kExprF64Ne, 1, 16.25, 16.15);
TestFloat64Binop(execution_tier, kExprF64Lt, 1, -32.4, 11.7);
TestFloat64Binop(execution_tier, kExprF64Le, 1, -88.9, -88.9);
TestFloat64Binop(execution_tier, kExprF64Gt, 1, 11.7, -32.4);
TestFloat64Binop(execution_tier, kExprF64Ge, 1, -88.9, -88.9);
TestFloat64BinopWithConvert(execution_tier, kExprF64Add, 100, 43.5, 56.5);
TestFloat64BinopWithConvert(execution_tier, kExprF64Sub, 200, 12200.1,
12000.1);
TestFloat64BinopWithConvert(execution_tier, kExprF64Mul, -33, 134, -0.25);
TestFloat64BinopWithConvert(execution_tier, kExprF64Div, -1111, -2222.3, 2);
}
WASM_EXEC_TEST(Float64Unops) {
TestFloat64UnopWithConvert(execution_tier, kExprF64Abs, 108, 108.125);
TestFloat64UnopWithConvert(execution_tier, kExprF64Abs, 209, -209.125);
TestFloat64UnopWithConvert(execution_tier, kExprF64Neg, -209, 209.125);
TestFloat64UnopWithConvert(execution_tier, kExprF64Sqrt, 13, 169.4);
}
WASM_EXEC_TEST(Float32Neg) {
WasmRunner<float, float> r(execution_tier);
BUILD(r, WASM_F32_NEG(WASM_GET_LOCAL(0)));
FOR_FLOAT32_INPUTS(i) {
CHECK_EQ(0x80000000, bit_cast<uint32_t>(i) ^ bit_cast<uint32_t>(r.Call(i)));
}
}
WASM_EXEC_TEST(Float64Neg) {
WasmRunner<double, double> r(execution_tier);
BUILD(r, WASM_F64_NEG(WASM_GET_LOCAL(0)));
FOR_FLOAT64_INPUTS(i) {
CHECK_EQ(0x8000000000000000,
bit_cast<uint64_t>(i) ^ bit_cast<uint64_t>(r.Call(i)));
}
}
WASM_EXEC_TEST(IfElse_P) {
WasmRunner<int32_t, int32_t> r(execution_tier);
// if (p0) return 11; else return 22;
BUILD(r, WASM_IF_ELSE_I(WASM_GET_LOCAL(0), // --
WASM_I32V_1(11), // --
WASM_I32V_1(22))); // --
FOR_INT32_INPUTS(i) {
int32_t expected = i ? 11 : 22;
CHECK_EQ(expected, r.Call(i));
}
}
WASM_EXEC_TEST(If_empty1) {
WasmRunner<uint32_t, uint32_t, uint32_t> r(execution_tier);
BUILD(r, WASM_GET_LOCAL(0), kExprIf, kLocalVoid, kExprEnd, WASM_GET_LOCAL(1));
FOR_UINT32_INPUTS(i) { CHECK_EQ(i, r.Call(i - 9, i)); }
}
WASM_EXEC_TEST(IfElse_empty1) {
WasmRunner<uint32_t, uint32_t, uint32_t> r(execution_tier);
BUILD(r, WASM_GET_LOCAL(0), kExprIf, kLocalVoid, kExprElse, kExprEnd,
WASM_GET_LOCAL(1));
FOR_UINT32_INPUTS(i) { CHECK_EQ(i, r.Call(i - 8, i)); }
}
WASM_EXEC_TEST(IfElse_empty2) {
WasmRunner<uint32_t, uint32_t, uint32_t> r(execution_tier);
BUILD(r, WASM_GET_LOCAL(0), kExprIf, kLocalVoid, WASM_NOP, kExprElse,
kExprEnd, WASM_GET_LOCAL(1));
FOR_UINT32_INPUTS(i) { CHECK_EQ(i, r.Call(i - 7, i)); }
}
WASM_EXEC_TEST(IfElse_empty3) {
WasmRunner<uint32_t, uint32_t, uint32_t> r(execution_tier);
BUILD(r, WASM_GET_LOCAL(0), kExprIf, kLocalVoid, kExprElse, WASM_NOP,
kExprEnd, WASM_GET_LOCAL(1));
FOR_UINT32_INPUTS(i) { CHECK_EQ(i, r.Call(i - 6, i)); }
}
WASM_EXEC_TEST(If_chain1) {
WasmRunner<int32_t, int32_t> r(execution_tier);
// if (p0) 13; if (p0) 14; 15
BUILD(r, WASM_IF(WASM_GET_LOCAL(0), WASM_NOP),
WASM_IF(WASM_GET_LOCAL(0), WASM_NOP), WASM_I32V_1(15));
FOR_INT32_INPUTS(i) { CHECK_EQ(15, r.Call(i)); }
}
WASM_EXEC_TEST(If_chain_set) {
WasmRunner<int32_t, int32_t, int32_t> r(execution_tier);
// if (p0) p1 = 73; if (p0) p1 = 74; p1
BUILD(r, WASM_IF(WASM_GET_LOCAL(0), WASM_SET_LOCAL(1, WASM_I32V_2(73))),
WASM_IF(WASM_GET_LOCAL(0), WASM_SET_LOCAL(1, WASM_I32V_2(74))),
WASM_GET_LOCAL(1));
FOR_INT32_INPUTS(i) {
int32_t expected = i ? 74 : i;
CHECK_EQ(expected, r.Call(i, i));
}
}
WASM_EXEC_TEST(IfElse_Unreachable1) {
WasmRunner<int32_t> r(execution_tier);
// 0 ? unreachable : 27
BUILD(r, WASM_IF_ELSE_I(WASM_ZERO, // --
WASM_UNREACHABLE, // --
WASM_I32V_1(27))); // --
CHECK_EQ(27, r.Call());
}
WASM_EXEC_TEST(IfElse_Unreachable2) {
WasmRunner<int32_t> r(execution_tier);
// 1 ? 28 : unreachable
BUILD(r, WASM_IF_ELSE_I(WASM_I32V_1(1), // --
WASM_I32V_1(28), // --
WASM_UNREACHABLE)); // --
CHECK_EQ(28, r.Call());
}
WASM_EXEC_TEST(Return12) {
WasmRunner<int32_t> r(execution_tier);
BUILD(r, RET_I8(12));
CHECK_EQ(12, r.Call());
}
WASM_EXEC_TEST(Return17) {
WasmRunner<int32_t> r(execution_tier);
BUILD(r, WASM_BLOCK(RET_I8(17)), WASM_ZERO);
CHECK_EQ(17, r.Call());
}
WASM_EXEC_TEST(Return_I32) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(r, RET(WASM_GET_LOCAL(0)));
FOR_INT32_INPUTS(i) { CHECK_EQ(i, r.Call(i)); }
}
WASM_EXEC_TEST(Return_F32) {
WasmRunner<float, float> r(execution_tier);
BUILD(r, RET(WASM_GET_LOCAL(0)));
FOR_FLOAT32_INPUTS(i) {
float expect = i;
float result = r.Call(expect);
if (std::isnan(expect)) {
CHECK(std::isnan(result));
} else {
CHECK_EQ(expect, result);
}
}
}
WASM_EXEC_TEST(Return_F64) {
WasmRunner<double, double> r(execution_tier);
BUILD(r, RET(WASM_GET_LOCAL(0)));
FOR_FLOAT64_INPUTS(i) {
double expect = i;
double result = r.Call(expect);
if (std::isnan(expect)) {
CHECK(std::isnan(result));
} else {
CHECK_EQ(expect, result);
}
}
}
WASM_EXEC_TEST(Select_float_parameters) {
WasmRunner<float, float, float, int32_t> r(execution_tier);
BUILD(r,
WASM_SELECT(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1), WASM_GET_LOCAL(2)));
CHECK_FLOAT_EQ(2.0f, r.Call(2.0f, 1.0f, 1));
}
WASM_EXEC_TEST(SelectWithType_float_parameters) {
EXPERIMENTAL_FLAG_SCOPE(anyref);
WasmRunner<float, float, float, int32_t> r(execution_tier);
BUILD(r,
WASM_SELECT_F(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1), WASM_GET_LOCAL(2)));
CHECK_FLOAT_EQ(2.0f, r.Call(2.0f, 1.0f, 1));
}
WASM_EXEC_TEST(Select) {
WasmRunner<int32_t, int32_t> r(execution_tier);
// return select(11, 22, a);
BUILD(r, WASM_SELECT(WASM_I32V_1(11), WASM_I32V_1(22), WASM_GET_LOCAL(0)));
FOR_INT32_INPUTS(i) {
int32_t expected = i ? 11 : 22;
CHECK_EQ(expected, r.Call(i));
}
}
WASM_EXEC_TEST(SelectWithType) {
EXPERIMENTAL_FLAG_SCOPE(anyref);
WasmRunner<int32_t, int32_t> r(execution_tier);
// return select(11, 22, a);
BUILD(r, WASM_SELECT_I(WASM_I32V_1(11), WASM_I32V_1(22), WASM_GET_LOCAL(0)));
FOR_INT32_INPUTS(i) {
int32_t expected = i ? 11 : 22;
CHECK_EQ(expected, r.Call(i));
}
}
WASM_EXEC_TEST(Select_strict1) {
WasmRunner<int32_t, int32_t> r(execution_tier);
// select(a=0, a=1, a=2); return a
BUILD(r, WASM_SELECT(WASM_TEE_LOCAL(0, WASM_ZERO),
WASM_TEE_LOCAL(0, WASM_I32V_1(1)),
WASM_TEE_LOCAL(0, WASM_I32V_1(2))),
WASM_DROP, WASM_GET_LOCAL(0));
FOR_INT32_INPUTS(i) { CHECK_EQ(2, r.Call(i)); }
}
WASM_EXEC_TEST(SelectWithType_strict1) {
EXPERIMENTAL_FLAG_SCOPE(anyref);
WasmRunner<int32_t, int32_t> r(execution_tier);
// select(a=0, a=1, a=2); return a
BUILD(r,
WASM_SELECT_I(WASM_TEE_LOCAL(0, WASM_ZERO),
WASM_TEE_LOCAL(0, WASM_I32V_1(1)),
WASM_TEE_LOCAL(0, WASM_I32V_1(2))),
WASM_DROP, WASM_GET_LOCAL(0));
FOR_INT32_INPUTS(i) { CHECK_EQ(2, r.Call(i)); }
}
WASM_EXEC_TEST(Select_strict2) {
WasmRunner<int32_t, int32_t> r(execution_tier);
r.AllocateLocal(kWasmI32);
r.AllocateLocal(kWasmI32);
// select(b=5, c=6, a)
BUILD(r, WASM_SELECT(WASM_TEE_LOCAL(1, WASM_I32V_1(5)),
WASM_TEE_LOCAL(2, WASM_I32V_1(6)), WASM_GET_LOCAL(0)));
FOR_INT32_INPUTS(i) {
int32_t expected = i ? 5 : 6;
CHECK_EQ(expected, r.Call(i));
}
}
WASM_EXEC_TEST(SelectWithType_strict2) {
EXPERIMENTAL_FLAG_SCOPE(anyref);
WasmRunner<int32_t, int32_t> r(execution_tier);
r.AllocateLocal(kWasmI32);
r.AllocateLocal(kWasmI32);
// select(b=5, c=6, a)
BUILD(r, WASM_SELECT_I(WASM_TEE_LOCAL(1, WASM_I32V_1(5)),
WASM_TEE_LOCAL(2, WASM_I32V_1(6)), WASM_GET_LOCAL(0)));
FOR_INT32_INPUTS(i) {
int32_t expected = i ? 5 : 6;
CHECK_EQ(expected, r.Call(i));
}
}
WASM_EXEC_TEST(Select_strict3) {
WasmRunner<int32_t, int32_t> r(execution_tier);
r.AllocateLocal(kWasmI32);
r.AllocateLocal(kWasmI32);
// select(b=5, c=6, a=b)
BUILD(r, WASM_SELECT(WASM_TEE_LOCAL(1, WASM_I32V_1(5)),
WASM_TEE_LOCAL(2, WASM_I32V_1(6)),
WASM_TEE_LOCAL(0, WASM_GET_LOCAL(1))));
FOR_INT32_INPUTS(i) {
int32_t expected = 5;
CHECK_EQ(expected, r.Call(i));
}
}
WASM_EXEC_TEST(SelectWithType_strict3) {
EXPERIMENTAL_FLAG_SCOPE(anyref);
WasmRunner<int32_t, int32_t> r(execution_tier);
r.AllocateLocal(kWasmI32);
r.AllocateLocal(kWasmI32);
// select(b=5, c=6, a=b)
BUILD(r, WASM_SELECT_I(WASM_TEE_LOCAL(1, WASM_I32V_1(5)),
WASM_TEE_LOCAL(2, WASM_I32V_1(6)),
WASM_TEE_LOCAL(0, WASM_GET_LOCAL(1))));
FOR_INT32_INPUTS(i) {
int32_t expected = 5;
CHECK_EQ(expected, r.Call(i));
}
}
WASM_EXEC_TEST(BrIf_strict) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(r, WASM_BLOCK_I(WASM_BRV_IF(0, WASM_GET_LOCAL(0),
WASM_TEE_LOCAL(0, WASM_I32V_2(99)))));
FOR_INT32_INPUTS(i) { CHECK_EQ(i, r.Call(i)); }
}
WASM_EXEC_TEST(Br_height) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(r, WASM_BLOCK_I(
WASM_BLOCK(WASM_BRV_IFD(0, WASM_GET_LOCAL(0), WASM_GET_LOCAL(0)),
WASM_RETURN1(WASM_I32V_1(9))),
WASM_BRV(0, WASM_I32V_1(8))));
for (int32_t i = 0; i < 5; i++) {
int32_t expected = i != 0 ? 8 : 9;
CHECK_EQ(expected, r.Call(i));
}
}
WASM_EXEC_TEST(Regression_660262) {
WasmRunner<int32_t> r(execution_tier);
r.builder().AddMemory(kWasmPageSize);
BUILD(r, kExprI32Const, 0x00, kExprI32Const, 0x00, kExprI32LoadMem, 0x00,
0x0F, kExprBrTable, 0x00, 0x80, 0x00); // entries=0
r.Call();
}
WASM_EXEC_TEST(BrTable0a) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(r, B1(B1(WASM_BR_TABLE(WASM_GET_LOCAL(0), 0, BR_TARGET(0)))),
WASM_I32V_2(91));
FOR_INT32_INPUTS(i) { CHECK_EQ(91, r.Call(i)); }
}
WASM_EXEC_TEST(BrTable0b) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(r,
B1(B1(WASM_BR_TABLE(WASM_GET_LOCAL(0), 1, BR_TARGET(0), BR_TARGET(0)))),
WASM_I32V_2(92));
FOR_INT32_INPUTS(i) { CHECK_EQ(92, r.Call(i)); }
}
WASM_EXEC_TEST(BrTable0c) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(
r,
B1(B2(B1(WASM_BR_TABLE(WASM_GET_LOCAL(0), 1, BR_TARGET(0), BR_TARGET(1))),
RET_I8(76))),
WASM_I32V_2(77));
FOR_INT32_INPUTS(i) {
int32_t expected = i == 0 ? 76 : 77;
CHECK_EQ(expected, r.Call(i));
}
}
WASM_EXEC_TEST(BrTable1) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(r, B1(WASM_BR_TABLE(WASM_GET_LOCAL(0), 0, BR_TARGET(0))), RET_I8(93));
FOR_INT32_INPUTS(i) { CHECK_EQ(93, r.Call(i)); }
}
WASM_EXEC_TEST(BrTable_loop) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(r,
B2(B1(WASM_LOOP(WASM_BR_TABLE(WASM_INC_LOCAL_BYV(0, 1), 2, BR_TARGET(2),
BR_TARGET(1), BR_TARGET(0)))),
RET_I8(99)),
WASM_I32V_2(98));
CHECK_EQ(99, r.Call(0));
CHECK_EQ(98, r.Call(-1));
CHECK_EQ(98, r.Call(-2));
CHECK_EQ(98, r.Call(-3));
CHECK_EQ(98, r.Call(-100));
}
WASM_EXEC_TEST(BrTable_br) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(r,
B2(B1(WASM_BR_TABLE(WASM_GET_LOCAL(0), 1, BR_TARGET(1), BR_TARGET(0))),
RET_I8(91)),
WASM_I32V_2(99));
CHECK_EQ(99, r.Call(0));
CHECK_EQ(91, r.Call(1));
CHECK_EQ(91, r.Call(2));
CHECK_EQ(91, r.Call(3));
}
WASM_EXEC_TEST(BrTable_br2) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(r, B2(B2(B2(B1(WASM_BR_TABLE(WASM_GET_LOCAL(0), 3, BR_TARGET(1),
BR_TARGET(2), BR_TARGET(3), BR_TARGET(0))),
RET_I8(85)),
RET_I8(86)),
RET_I8(87)),
WASM_I32V_2(88));
CHECK_EQ(86, r.Call(0));
CHECK_EQ(87, r.Call(1));
CHECK_EQ(88, r.Call(2));
CHECK_EQ(85, r.Call(3));
CHECK_EQ(85, r.Call(4));
CHECK_EQ(85, r.Call(5));
}
WASM_EXEC_TEST(BrTable4) {
for (int i = 0; i < 4; ++i) {
for (int t = 0; t < 4; ++t) {
uint32_t cases[] = {0, 1, 2, 3};
cases[i] = t;
byte code[] = {B2(B2(B2(B2(B1(WASM_BR_TABLE(
WASM_GET_LOCAL(0), 3, BR_TARGET(cases[0]),
BR_TARGET(cases[1]), BR_TARGET(cases[2]),
BR_TARGET(cases[3]))),
RET_I8(70)),
RET_I8(71)),
RET_I8(72)),
RET_I8(73)),
WASM_I32V_2(75)};
WasmRunner<int32_t, int32_t> r(execution_tier);
r.Build(code, code + arraysize(code));
for (int x = -3; x < 50; ++x) {
int index = (x > 3 || x < 0) ? 3 : x;
int32_t expected = 70 + cases[index];
CHECK_EQ(expected, r.Call(x));
}
}
}
}
WASM_EXEC_TEST(BrTable4x4) {
for (byte a = 0; a < 4; ++a) {
for (byte b = 0; b < 4; ++b) {
for (byte c = 0; c < 4; ++c) {
for (byte d = 0; d < 4; ++d) {
for (int i = 0; i < 4; ++i) {
uint32_t cases[] = {a, b, c, d};
byte code[] = {
B2(B2(B2(B2(B1(WASM_BR_TABLE(
WASM_GET_LOCAL(0), 3, BR_TARGET(cases[0]),
BR_TARGET(cases[1]), BR_TARGET(cases[2]),
BR_TARGET(cases[3]))),
RET_I8(50)),
RET_I8(51)),
RET_I8(52)),
RET_I8(53)),
WASM_I32V_2(55)};
WasmRunner<int32_t, int32_t> r(execution_tier);
r.Build(code, code + arraysize(code));
for (int x = -6; x < 47; ++x) {
int index = (x > 3 || x < 0) ? 3 : x;
int32_t expected = 50 + cases[index];
CHECK_EQ(expected, r.Call(x));
}
}
}
}
}
}
}
WASM_EXEC_TEST(BrTable4_fallthru) {
byte code[] = {
B2(B2(B2(B2(B1(WASM_BR_TABLE(WASM_GET_LOCAL(0), 3, BR_TARGET(0),
BR_TARGET(1), BR_TARGET(2), BR_TARGET(3))),
WASM_INC_LOCAL_BY(1, 1)),
WASM_INC_LOCAL_BY(1, 2)),
WASM_INC_LOCAL_BY(1, 4)),
WASM_INC_LOCAL_BY(1, 8)),
WASM_GET_LOCAL(1)};
WasmRunner<int32_t, int32_t, int32_t> r(execution_tier);
r.Build(code, code + arraysize(code));
CHECK_EQ(15, r.Call(0, 0));
CHECK_EQ(14, r.Call(1, 0));
CHECK_EQ(12, r.Call(2, 0));
CHECK_EQ(8, r.Call(3, 0));
CHECK_EQ(8, r.Call(4, 0));
CHECK_EQ(115, r.Call(0, 100));
CHECK_EQ(114, r.Call(1, 100));
CHECK_EQ(112, r.Call(2, 100));
CHECK_EQ(108, r.Call(3, 100));
CHECK_EQ(108, r.Call(4, 100));
}
WASM_EXEC_TEST(BrTable_loop_target) {
byte code[] = {
WASM_LOOP_I(
WASM_BLOCK(
WASM_BR_TABLE(WASM_GET_LOCAL(0), 2,
BR_TARGET(0), BR_TARGET(1), BR_TARGET(1))),
WASM_ONE)};
WasmRunner<int32_t, int32_t> r(execution_tier);
r.Build(code, code + arraysize(code));
CHECK_EQ(1, r.Call(0));
}
WASM_EXEC_TEST(BrTableMeetBottom) {
EXPERIMENTAL_FLAG_SCOPE(anyref);
WasmRunner<int32_t> r(execution_tier);
BUILD(r,
WASM_BLOCK_I(WASM_STMTS(
WASM_BLOCK_F(WASM_STMTS(
WASM_UNREACHABLE, WASM_BR_TABLE(WASM_I32V_1(1), 2, BR_TARGET(0),
BR_TARGET(1), BR_TARGET(1)))),
WASM_DROP, WASM_I32V_1(14))));
CHECK_TRAP(r.Call());
}
WASM_EXEC_TEST(F32ReinterpretI32) {
WasmRunner<int32_t> r(execution_tier);
int32_t* memory =
r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t));
BUILD(r, WASM_I32_REINTERPRET_F32(
WASM_LOAD_MEM(MachineType::Float32(), WASM_ZERO)));
FOR_INT32_INPUTS(i) {
int32_t expected = i;
r.builder().WriteMemory(&memory[0], expected);
CHECK_EQ(expected, r.Call());
}
}
WASM_EXEC_TEST(I32ReinterpretF32) {
WasmRunner<int32_t, int32_t> r(execution_tier);
int32_t* memory =
r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t));
BUILD(r, WASM_STORE_MEM(MachineType::Float32(), WASM_ZERO,
WASM_F32_REINTERPRET_I32(WASM_GET_LOCAL(0))),
WASM_I32V_2(107));
FOR_INT32_INPUTS(i) {
int32_t expected = i;
CHECK_EQ(107, r.Call(expected));
CHECK_EQ(expected, r.builder().ReadMemory(&memory[0]));
}
}
// Do not run this test in a simulator because of signalling NaN issues on ia32.
#ifndef USE_SIMULATOR
WASM_EXEC_TEST(SignallingNanSurvivesI32ReinterpretF32) {
WasmRunner<int32_t> r(execution_tier);
BUILD(r, WASM_I32_REINTERPRET_F32(
WASM_SEQ(kExprF32Const, 0x00, 0x00, 0xA0, 0x7F)));
// This is a signalling nan.
CHECK_EQ(0x7FA00000, r.Call());
}
#endif
WASM_EXEC_TEST(LoadMaxUint32Offset) {
WasmRunner<int32_t> r(execution_tier);
r.builder().AddMemory(kWasmPageSize);
BUILD(r, WASM_LOAD_MEM_OFFSET(MachineType::Int32(), // type
U32V_5(0xFFFFFFFF), // offset
WASM_ZERO)); // index
CHECK_TRAP32(r.Call());
}
WASM_EXEC_TEST(LoadStoreLoad) {
WasmRunner<int32_t> r(execution_tier);
int32_t* memory =
r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t));
BUILD(r, WASM_STORE_MEM(MachineType::Int32(), WASM_ZERO,
WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO)),
WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO));
FOR_INT32_INPUTS(i) {
int32_t expected = i;
r.builder().WriteMemory(&memory[0], expected);
CHECK_EQ(expected, r.Call());
}
}
WASM_EXEC_TEST(UnalignedFloat32Load) {
WasmRunner<float> r(execution_tier);
r.builder().AddMemory(kWasmPageSize);
BUILD(r, WASM_LOAD_MEM_ALIGNMENT(MachineType::Float32(), WASM_ONE, 2));
r.Call();
}
WASM_EXEC_TEST(UnalignedFloat64Load) {
WasmRunner<double> r(execution_tier);
r.builder().AddMemory(kWasmPageSize);
BUILD(r, WASM_LOAD_MEM_ALIGNMENT(MachineType::Float64(), WASM_ONE, 3));
r.Call();
}
WASM_EXEC_TEST(UnalignedInt32Load) {
WasmRunner<uint32_t> r(execution_tier);
r.builder().AddMemory(kWasmPageSize);
BUILD(r, WASM_LOAD_MEM_ALIGNMENT(MachineType::Int32(), WASM_ONE, 2));
r.Call();
}
WASM_EXEC_TEST(UnalignedInt32Store) {
WasmRunner<int32_t> r(execution_tier);
r.builder().AddMemory(kWasmPageSize);
BUILD(r, WASM_SEQ(WASM_STORE_MEM_ALIGNMENT(MachineType::Int32(), WASM_ONE, 2,
WASM_I32V_1(1)),
WASM_I32V_1(12)));
r.Call();
}
WASM_EXEC_TEST(UnalignedFloat32Store) {
WasmRunner<int32_t> r(execution_tier);
r.builder().AddMemory(kWasmPageSize);
BUILD(r, WASM_SEQ(WASM_STORE_MEM_ALIGNMENT(MachineType::Float32(), WASM_ONE,
2, WASM_F32(1.0)),
WASM_I32V_1(12)));
r.Call();
}
WASM_EXEC_TEST(UnalignedFloat64Store) {
WasmRunner<int32_t> r(execution_tier);
r.builder().AddMemory(kWasmPageSize);
BUILD(r, WASM_SEQ(WASM_STORE_MEM_ALIGNMENT(MachineType::Float64(), WASM_ONE,
3, WASM_F64(1.0)),
WASM_I32V_1(12)));
r.Call();
}
WASM_EXEC_TEST(VoidReturn1) {
const int32_t kExpected = -414444;
WasmRunner<int32_t> r(execution_tier);
// Build the test function.
WasmFunctionCompiler& test_func = r.NewFunction<void>();
BUILD(test_func, kExprNop);
// Build the calling function.
BUILD(r, WASM_CALL_FUNCTION0(test_func.function_index()),
WASM_I32V_3(kExpected));
// Call and check.
int32_t result = r.Call();
CHECK_EQ(kExpected, result);
}
WASM_EXEC_TEST(VoidReturn2) {
const int32_t kExpected = -414444;
WasmRunner<int32_t> r(execution_tier);
// Build the test function.
WasmFunctionCompiler& test_func = r.NewFunction<void>();
BUILD(test_func, WASM_RETURN0);
// Build the calling function.
BUILD(r, WASM_CALL_FUNCTION0(test_func.function_index()),
WASM_I32V_3(kExpected));
// Call and check.
int32_t result = r.Call();
CHECK_EQ(kExpected, result);
}
WASM_EXEC_TEST(BrEmpty) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(r, WASM_BRV(0, WASM_GET_LOCAL(0)));
FOR_INT32_INPUTS(i) { CHECK_EQ(i, r.Call(i)); }
}
WASM_EXEC_TEST(BrIfEmpty) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(r, WASM_BRV_IF(0, WASM_GET_LOCAL(0), WASM_GET_LOCAL(0)));
FOR_INT32_INPUTS(i) { CHECK_EQ(i, r.Call(i)); }
}
WASM_EXEC_TEST(Block_empty) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(r, kExprBlock, kLocalVoid, kExprEnd, WASM_GET_LOCAL(0));
FOR_INT32_INPUTS(i) { CHECK_EQ(i, r.Call(i)); }
}
WASM_EXEC_TEST(Block_empty_br1) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(r, B1(WASM_BR(0)), WASM_GET_LOCAL(0));
FOR_INT32_INPUTS(i) { CHECK_EQ(i, r.Call(i)); }
}
WASM_EXEC_TEST(Block_empty_brif1) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(r, WASM_BLOCK(WASM_BR_IF(0, WASM_ZERO)), WASM_GET_LOCAL(0));
FOR_INT32_INPUTS(i) { CHECK_EQ(i, r.Call(i)); }
}
WASM_EXEC_TEST(Block_empty_brif2) {
WasmRunner<uint32_t, uint32_t, uint32_t> r(execution_tier);
BUILD(r, WASM_BLOCK(WASM_BR_IF(0, WASM_GET_LOCAL(1))), WASM_GET_LOCAL(0));
FOR_UINT32_INPUTS(i) { CHECK_EQ(i, r.Call(i, i + 1)); }
}
WASM_EXEC_TEST(Block_i) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(r, WASM_BLOCK_I(WASM_GET_LOCAL(0)));
FOR_INT32_INPUTS(i) { CHECK_EQ(i, r.Call(i)); }
}
WASM_EXEC_TEST(Block_f) {
WasmRunner<float, float> r(execution_tier);
BUILD(r, WASM_BLOCK_F(WASM_GET_LOCAL(0)));
FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(i, r.Call(i)); }
}
WASM_EXEC_TEST(Block_d) {
WasmRunner<double, double> r(execution_tier);
BUILD(r, WASM_BLOCK_D(WASM_GET_LOCAL(0)));
FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(i, r.Call(i)); }
}
WASM_EXEC_TEST(Block_br2) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(r, WASM_BLOCK_I(WASM_BRV(0, WASM_GET_LOCAL(0))));
FOR_UINT32_INPUTS(i) { CHECK_EQ(i, static_cast<uint32_t>(r.Call(i))); }
}
WASM_EXEC_TEST(Block_If_P) {
WasmRunner<int32_t, int32_t> r(execution_tier);
// block { if (p0) break 51; 52; }
BUILD(r, WASM_BLOCK_I( // --
WASM_IF(WASM_GET_LOCAL(0), // --
WASM_BRV(1, WASM_I32V_1(51))), // --
WASM_I32V_1(52))); // --
FOR_INT32_INPUTS(i) {
int32_t expected = i ? 51 : 52;
CHECK_EQ(expected, r.Call(i));
}
}
WASM_EXEC_TEST(Loop_empty) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(r, kExprLoop, kLocalVoid, kExprEnd, WASM_GET_LOCAL(0));
FOR_INT32_INPUTS(i) { CHECK_EQ(i, r.Call(i)); }
}
WASM_EXEC_TEST(Loop_i) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(r, WASM_LOOP_I(WASM_GET_LOCAL(0)));
FOR_INT32_INPUTS(i) { CHECK_EQ(i, r.Call(i)); }
}
WASM_EXEC_TEST(Loop_f) {
WasmRunner<float, float> r(execution_tier);
BUILD(r, WASM_LOOP_F(WASM_GET_LOCAL(0)));
FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(i, r.Call(i)); }
}
WASM_EXEC_TEST(Loop_d) {
WasmRunner<double, double> r(execution_tier);
BUILD(r, WASM_LOOP_D(WASM_GET_LOCAL(0)));
FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(i, r.Call(i)); }
}
WASM_EXEC_TEST(Loop_empty_br1) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(r, B1(WASM_LOOP(WASM_BR(1))), WASM_GET_LOCAL(0));
FOR_INT32_INPUTS(i) { CHECK_EQ(i, r.Call(i)); }
}
WASM_EXEC_TEST(Loop_empty_brif1) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(r, B1(WASM_LOOP(WASM_BR_IF(1, WASM_ZERO))), WASM_GET_LOCAL(0));
FOR_INT32_INPUTS(i) { CHECK_EQ(i, r.Call(i)); }
}
WASM_EXEC_TEST(Loop_empty_brif2) {
WasmRunner<uint32_t, uint32_t, uint32_t> r(execution_tier);
BUILD(r, WASM_LOOP_I(WASM_BRV_IF(1, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))));
FOR_UINT32_INPUTS(i) { CHECK_EQ(i, r.Call(i, i + 1)); }
}
WASM_EXEC_TEST(Loop_empty_brif3) {
WasmRunner<uint32_t, uint32_t, uint32_t, uint32_t> r(execution_tier);
BUILD(r, WASM_LOOP(WASM_BRV_IFD(1, WASM_GET_LOCAL(2), WASM_GET_LOCAL(0))),
WASM_GET_LOCAL(1));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
CHECK_EQ(i, r.Call(0, i, j));
CHECK_EQ(j, r.Call(1, i, j));
}
}
}
WASM_EXEC_TEST(Block_BrIf_P) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(r, WASM_BLOCK_I(WASM_BRV_IFD(0, WASM_I32V_1(51), WASM_GET_LOCAL(0)),
WASM_I32V_1(52)));
FOR_INT32_INPUTS(i) {
int32_t expected = i ? 51 : 52;
CHECK_EQ(expected, r.Call(i));
}
}
WASM_EXEC_TEST(Block_IfElse_P_assign) {
WasmRunner<int32_t, int32_t> r(execution_tier);
// { if (p0) p0 = 71; else p0 = 72; return p0; }
BUILD(r, // --
WASM_IF_ELSE(WASM_GET_LOCAL(0), // --
WASM_SET_LOCAL(0, WASM_I32V_2(71)), // --
WASM_SET_LOCAL(0, WASM_I32V_2(72))), // --
WASM_GET_LOCAL(0));
FOR_INT32_INPUTS(i) {
int32_t expected = i ? 71 : 72;
CHECK_EQ(expected, r.Call(i));
}
}
WASM_EXEC_TEST(Block_IfElse_P_return) {
WasmRunner<int32_t, int32_t> r(execution_tier);
// if (p0) return 81; else return 82;
BUILD(r, // --
WASM_IF_ELSE(WASM_GET_LOCAL(0), // --
RET_I8(81), // --
RET_I8(82)), // --
WASM_ZERO); // --
FOR_INT32_INPUTS(i) {
int32_t expected = i ? 81 : 82;
CHECK_EQ(expected, r.Call(i));
}
}
WASM_EXEC_TEST(Block_If_P_assign) {
WasmRunner<int32_t, int32_t> r(execution_tier);
// { if (p0) p0 = 61; p0; }
BUILD(r, WASM_IF(WASM_GET_LOCAL(0), WASM_SET_LOCAL(0, WASM_I32V_1(61))),
WASM_GET_LOCAL(0));
FOR_INT32_INPUTS(i) {
int32_t expected = i ? 61 : i;
CHECK_EQ(expected, r.Call(i));
}
}
WASM_EXEC_TEST(DanglingAssign) {
WasmRunner<int32_t, int32_t> r(execution_tier);
// { return 0; p0 = 0; }
BUILD(r, WASM_BLOCK_I(RET_I8(99), WASM_TEE_LOCAL(0, WASM_ZERO)));
CHECK_EQ(99, r.Call(1));
}
WASM_EXEC_TEST(ExprIf_P) {
WasmRunner<int32_t, int32_t> r(execution_tier);
// p0 ? 11 : 22;
BUILD(r, WASM_IF_ELSE_I(WASM_GET_LOCAL(0), // --
WASM_I32V_1(11), // --
WASM_I32V_1(22))); // --
FOR_INT32_INPUTS(i) {
int32_t expected = i ? 11 : 22;
CHECK_EQ(expected, r.Call(i));
}
}
WASM_EXEC_TEST(CountDown) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(r, WASM_LOOP(WASM_IFB(WASM_GET_LOCAL(0),
WASM_SET_LOCAL(0, WASM_I32_SUB(WASM_GET_LOCAL(0),
WASM_I32V_1(1))),
WASM_BR(1))),
WASM_GET_LOCAL(0));
CHECK_EQ(0, r.Call(1));
CHECK_EQ(0, r.Call(10));
CHECK_EQ(0, r.Call(100));
}
WASM_EXEC_TEST(CountDown_fallthru) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(
r,
WASM_LOOP(
WASM_IF(WASM_NOT(WASM_GET_LOCAL(0)), WASM_BRV(2, WASM_GET_LOCAL(0))),
WASM_SET_LOCAL(0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I32V_1(1))),
WASM_CONTINUE(0)),
WASM_GET_LOCAL(0));
CHECK_EQ(0, r.Call(1));
CHECK_EQ(0, r.Call(10));
CHECK_EQ(0, r.Call(100));
}
WASM_EXEC_TEST(WhileCountDown) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(r, WASM_WHILE(WASM_GET_LOCAL(0),
WASM_SET_LOCAL(
0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I32V_1(1)))),
WASM_GET_LOCAL(0));
CHECK_EQ(0, r.Call(1));
CHECK_EQ(0, r.Call(10));
CHECK_EQ(0, r.Call(100));
}
WASM_EXEC_TEST(Loop_if_break1) {
WasmRunner<int32_t, int32_t, int32_t> r(execution_tier);
BUILD(r, WASM_LOOP(WASM_IF(WASM_GET_LOCAL(0), WASM_BRV(2, WASM_GET_LOCAL(1))),
WASM_SET_LOCAL(0, WASM_I32V_2(99))),
WASM_GET_LOCAL(0));
CHECK_EQ(99, r.Call(0, 11));
CHECK_EQ(65, r.Call(3, 65));
CHECK_EQ(10001, r.Call(10000, 10001));
CHECK_EQ(-29, r.Call(-28, -29));
}
WASM_EXEC_TEST(Loop_if_break2) {
WasmRunner<int32_t, int32_t, int32_t> r(execution_tier);
BUILD(r, WASM_LOOP(WASM_BRV_IF(1, WASM_GET_LOCAL(1), WASM_GET_LOCAL(0)),
WASM_DROP, WASM_SET_LOCAL(0, WASM_I32V_2(99))),
WASM_GET_LOCAL(0));
CHECK_EQ(99, r.Call(0, 33));
CHECK_EQ(3, r.Call(1, 3));
CHECK_EQ(10000, r.Call(99, 10000));
CHECK_EQ(-29, r.Call(-11, -29));
}
WASM_EXEC_TEST(Loop_if_break_fallthru) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(r, B1(WASM_LOOP(WASM_IF(WASM_GET_LOCAL(0), WASM_BR(2)),
WASM_SET_LOCAL(0, WASM_I32V_2(93)))),
WASM_GET_LOCAL(0));
CHECK_EQ(93, r.Call(0));
CHECK_EQ(3, r.Call(3));
CHECK_EQ(10001, r.Call(10001));
CHECK_EQ(-22, r.Call(-22));
}
WASM_EXEC_TEST(Loop_if_break_fallthru2) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(r, B1(B1(WASM_LOOP(WASM_IF(WASM_GET_LOCAL(0), WASM_BR(2)),
WASM_SET_LOCAL(0, WASM_I32V_2(93))))),
WASM_GET_LOCAL(0));
CHECK_EQ(93, r.Call(0));
CHECK_EQ(3, r.Call(3));
CHECK_EQ(10001, r.Call(10001));
CHECK_EQ(-22, r.Call(-22));
}
WASM_EXEC_TEST(IfBreak1) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(r, WASM_IF(WASM_GET_LOCAL(0), WASM_SEQ(WASM_BR(0), WASM_UNREACHABLE)),
WASM_I32V_2(91));
CHECK_EQ(91, r.Call(0));
CHECK_EQ(91, r.Call(1));
CHECK_EQ(91, r.Call(-8734));
}
WASM_EXEC_TEST(IfBreak2) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(r, WASM_IF(WASM_GET_LOCAL(0), WASM_SEQ(WASM_BR(0), RET_I8(77))),
WASM_I32V_2(81));
CHECK_EQ(81, r.Call(0));
CHECK_EQ(81, r.Call(1));
CHECK_EQ(81, r.Call(-8734));
}
WASM_EXEC_TEST(LoadMemI32) {
WasmRunner<int32_t, int32_t> r(execution_tier);
int32_t* memory =
r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t));
r.builder().RandomizeMemory(1111);
BUILD(r, WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO));
r.builder().WriteMemory(&memory[0], 99999999);
CHECK_EQ(99999999, r.Call(0));
r.builder().WriteMemory(&memory[0], 88888888);
CHECK_EQ(88888888, r.Call(0));
r.builder().WriteMemory(&memory[0], 77777777);
CHECK_EQ(77777777, r.Call(0));
}
WASM_EXEC_TEST(LoadMemI32_alignment) {
for (byte alignment = 0; alignment <= 2; ++alignment) {
WasmRunner<int32_t, int32_t> r(execution_tier);
int32_t* memory =
r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t));
r.builder().RandomizeMemory(1111);
BUILD(r,
WASM_LOAD_MEM_ALIGNMENT(MachineType::Int32(), WASM_ZERO, alignment));
r.builder().WriteMemory(&memory[0], 0x1A2B3C4D);
CHECK_EQ(0x1A2B3C4D, r.Call(0));
r.builder().WriteMemory(&memory[0], 0x5E6F7A8B);
CHECK_EQ(0x5E6F7A8B, r.Call(0));
r.builder().WriteMemory(&memory[0], 0x7CA0B1C2);
CHECK_EQ(0x7CA0B1C2, r.Call(0));
}
}
WASM_EXEC_TEST(LoadMemI32_oob) {
WasmRunner<int32_t, uint32_t> r(execution_tier);
int32_t* memory =
r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t));
r.builder().RandomizeMemory(1111);
BUILD(r, WASM_LOAD_MEM(MachineType::Int32(), WASM_GET_LOCAL(0)));
r.builder().WriteMemory(&memory[0], 88888888);
CHECK_EQ(88888888, r.Call(0u));
for (uint32_t offset = kWasmPageSize - 3; offset < kWasmPageSize + 40;
++offset) {
CHECK_TRAP(r.Call(offset));
}
for (uint32_t offset = 0x80000000; offset < 0x80000010; ++offset) {
CHECK_TRAP(r.Call(offset));
}
}
WASM_EXEC_TEST(LoadMem_offset_oob) {
static const MachineType machineTypes[] = {
MachineType::Int8(), MachineType::Uint8(), MachineType::Int16(),
MachineType::Uint16(), MachineType::Int32(), MachineType::Uint32(),
MachineType::Int64(), MachineType::Uint64(), MachineType::Float32(),
MachineType::Float64()};
constexpr size_t num_bytes = kWasmPageSize;
for (size_t m = 0; m < arraysize(machineTypes); ++m) {
WasmRunner<int32_t, uint32_t> r(execution_tier);
r.builder().AddMemoryElems<byte>(num_bytes);
r.builder().RandomizeMemory(1116 + static_cast<int>(m));
constexpr byte offset = 8;
uint32_t boundary =
num_bytes - offset - ValueTypes::MemSize(machineTypes[m]);
BUILD(r, WASM_LOAD_MEM_OFFSET(machineTypes[m], offset, WASM_GET_LOCAL(0)),
WASM_DROP, WASM_ZERO);
CHECK_EQ(0, r.Call(boundary)); // in bounds.
for (uint32_t offset = boundary + 1; offset < boundary + 19; ++offset) {
CHECK_TRAP(r.Call(offset)); // out of bounds.
}
}
}
WASM_EXEC_TEST(LoadMemI32_offset) {
WasmRunner<int32_t, int32_t> r(execution_tier);
int32_t* memory =
r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t));
r.builder().RandomizeMemory(1111);
BUILD(r, WASM_LOAD_MEM_OFFSET(MachineType::Int32(), 4, WASM_GET_LOCAL(0)));
r.builder().WriteMemory(&memory[0], 66666666);
r.builder().WriteMemory(&memory[1], 77777777);
r.builder().WriteMemory(&memory[2], 88888888);
r.builder().WriteMemory(&memory[3], 99999999);
CHECK_EQ(77777777, r.Call(0));
CHECK_EQ(88888888, r.Call(4));
CHECK_EQ(99999999, r.Call(8));
r.builder().WriteMemory(&memory[0], 11111111);
r.builder().WriteMemory(&memory[1], 22222222);
r.builder().WriteMemory(&memory[2], 33333333);
r.builder().WriteMemory(&memory[3], 44444444);
CHECK_EQ(22222222, r.Call(0));
CHECK_EQ(33333333, r.Call(4));
CHECK_EQ(44444444, r.Call(8));
}
WASM_EXEC_TEST(LoadMemI32_const_oob_misaligned) {
// This test accesses memory starting at kRunwayLength bytes before the end of
// the memory until a few bytes beyond.
constexpr byte kRunwayLength = 12;
// TODO(titzer): Fix misaligned accesses on MIPS and re-enable.
for (byte offset = 0; offset < kRunwayLength + 5; ++offset) {
for (uint32_t index = kWasmPageSize - kRunwayLength;
index < kWasmPageSize + 5; ++index) {
WasmRunner<int32_t> r(execution_tier);
r.builder().AddMemoryElems<byte>(kWasmPageSize);
r.builder().RandomizeMemory();
BUILD(r, WASM_LOAD_MEM_OFFSET(MachineType::Int32(), offset,
WASM_I32V_3(index)));
if (offset + index + sizeof(int32_t) <= kWasmPageSize) {
CHECK_EQ(r.builder().raw_val_at<int32_t>(offset + index), r.Call());
} else {
CHECK_TRAP(r.Call());
}
}
}
}
WASM_EXEC_TEST(LoadMemI32_const_oob) {
// This test accesses memory starting at kRunwayLength bytes before the end of
// the memory until a few bytes beyond.
constexpr byte kRunwayLength = 24;
for (byte offset = 0; offset < kRunwayLength + 5; offset += 4) {
for (uint32_t index = kWasmPageSize - kRunwayLength;
index < kWasmPageSize + 5; index += 4) {
WasmRunner<int32_t> r(execution_tier);
r.builder().AddMemoryElems<byte>(kWasmPageSize);
r.builder().RandomizeMemory();
BUILD(r, WASM_LOAD_MEM_OFFSET(MachineType::Int32(), offset,
WASM_I32V_3(index)));
if (offset + index + sizeof(int32_t) <= kWasmPageSize) {
CHECK_EQ(r.builder().raw_val_at<int32_t>(offset + index), r.Call());
} else {
CHECK_TRAP(r.Call());
}
}
}
}
WASM_EXEC_TEST(StoreMemI32_alignment) {
const int32_t kWritten = 0x12345678;
for (byte i = 0; i <= 2; ++i) {
WasmRunner<int32_t, int32_t> r(execution_tier);
int32_t* memory =
r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t));
BUILD(r, WASM_STORE_MEM_ALIGNMENT(MachineType::Int32(), WASM_ZERO, i,
WASM_GET_LOCAL(0)),
WASM_GET_LOCAL(0));
r.builder().RandomizeMemory(1111);
memory[0] = 0;
CHECK_EQ(kWritten, r.Call(kWritten));
CHECK_EQ(kWritten, r.builder().ReadMemory(&memory[0]));
}
}
WASM_EXEC_TEST(StoreMemI32_offset) {
WasmRunner<int32_t, int32_t> r(execution_tier);
int32_t* memory =
r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t));
const int32_t kWritten = 0xAABBCCDD;
BUILD(r, WASM_STORE_MEM_OFFSET(MachineType::Int32(), 4, WASM_GET_LOCAL(0),
WASM_I32V_5(kWritten)),
WASM_I32V_5(kWritten));
for (int i = 0; i < 2; ++i) {
r.builder().RandomizeMemory(1111);
r.builder().WriteMemory(&memory[0], 66666666);
r.builder().WriteMemory(&memory[1], 77777777);
r.builder().WriteMemory(&memory[2], 88888888);
r.builder().WriteMemory(&memory[3], 99999999);
CHECK_EQ(kWritten, r.Call(i * 4));
CHECK_EQ(66666666, r.builder().ReadMemory(&memory[0]));
CHECK_EQ(i == 0 ? kWritten : 77777777, r.builder().ReadMemory(&memory[1]));
CHECK_EQ(i == 1 ? kWritten : 88888888, r.builder().ReadMemory(&memory[2]));
CHECK_EQ(i == 2 ? kWritten : 99999999, r.builder().ReadMemory(&memory[3]));
}
}
WASM_EXEC_TEST(StoreMem_offset_oob) {
// 64-bit cases are handled in test-run-wasm-64.cc
static const MachineType machineTypes[] = {
MachineType::Int8(), MachineType::Uint8(), MachineType::Int16(),
MachineType::Uint16(), MachineType::Int32(), MachineType::Uint32(),
MachineType::Float32(), MachineType::Float64()};
constexpr size_t num_bytes = kWasmPageSize;
for (size_t m = 0; m < arraysize(machineTypes); ++m) {
WasmRunner<int32_t, uint32_t> r(execution_tier);
byte* memory = r.builder().AddMemoryElems<byte>(num_bytes);
r.builder().RandomizeMemory(1119 + static_cast<int>(m));
BUILD(r, WASM_STORE_MEM_OFFSET(machineTypes[m], 8, WASM_GET_LOCAL(0),
WASM_LOAD_MEM(machineTypes[m], WASM_ZERO)),
WASM_ZERO);
byte memsize = ValueTypes::MemSize(machineTypes[m]);
uint32_t boundary = num_bytes - 8 - memsize;
CHECK_EQ(0, r.Call(boundary)); // in bounds.
CHECK_EQ(0, memcmp(&memory[0], &memory[8 + boundary], memsize));
for (uint32_t offset = boundary + 1; offset < boundary + 19; ++offset) {
CHECK_TRAP(r.Call(offset)); // out of bounds.
}
}
}
WASM_EXEC_TEST(Store_i32_narrowed) {
constexpr byte kOpcodes[] = {kExprI32StoreMem8, kExprI32StoreMem16,
kExprI32StoreMem};
int stored_size_in_bytes = 0;
for (auto opcode : kOpcodes) {
stored_size_in_bytes = std::max(1, stored_size_in_bytes * 2);
constexpr int kBytes = 24;
uint8_t expected_memory[kBytes] = {0};
WasmRunner<int32_t, int32_t, int32_t> r(execution_tier);
uint8_t* memory = r.builder().AddMemoryElems<uint8_t>(kWasmPageSize);
constexpr uint32_t kPattern = 0x12345678;
BUILD(r, WASM_GET_LOCAL(0), // index
WASM_GET_LOCAL(1), // value
opcode, ZERO_ALIGNMENT, ZERO_OFFSET, // store
WASM_ZERO); // return value
for (int i = 0; i <= kBytes - stored_size_in_bytes; ++i) {
uint32_t pattern = base::bits::RotateLeft32(kPattern, i % 32);
r.Call(i, pattern);
for (int b = 0; b < stored_size_in_bytes; ++b) {
expected_memory[i + b] = static_cast<uint8_t>(pattern >> (b * 8));
}
for (int w = 0; w < kBytes; ++w) {
CHECK_EQ(expected_memory[w], memory[w]);
}
}
}
}
WASM_EXEC_TEST(LoadMemI32_P) {
const int kNumElems = 8;
WasmRunner<int32_t, int32_t> r(execution_tier);
int32_t* memory =
r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t));
r.builder().RandomizeMemory(2222);
BUILD(r, WASM_LOAD_MEM(MachineType::Int32(), WASM_GET_LOCAL(0)));
for (int i = 0; i < kNumElems; ++i) {
CHECK_EQ(r.builder().ReadMemory(&memory[i]), r.Call(i * 4));
}
}
WASM_EXEC_TEST(MemI32_Sum) {
const int kNumElems = 20;
WasmRunner<uint32_t, int32_t> r(execution_tier);
uint32_t* memory =
r.builder().AddMemoryElems<uint32_t>(kWasmPageSize / sizeof(int32_t));
const byte kSum = r.AllocateLocal(kWasmI32);
BUILD(r, WASM_WHILE(
WASM_GET_LOCAL(0),
WASM_BLOCK(
WASM_SET_LOCAL(
kSum, WASM_I32_ADD(WASM_GET_LOCAL(kSum),
WASM_LOAD_MEM(MachineType::Int32(),
WASM_GET_LOCAL(0)))),
WASM_SET_LOCAL(
0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I32V_1(4))))),
WASM_GET_LOCAL(1));
// Run 4 trials.
for (int i = 0; i < 3; ++i) {
r.builder().RandomizeMemory(i * 33);
uint32_t expected = 0;
for (size_t j = kNumElems - 1; j > 0; --j) {
expected += r.builder().ReadMemory(&memory[j]);
}
uint32_t result = r.Call(4 * (kNumElems - 1));
CHECK_EQ(expected, result);
}
}
WASM_EXEC_TEST(CheckMachIntsZero) {
const int kNumElems = 55;
WasmRunner<uint32_t, int32_t> r(execution_tier);
r.builder().AddMemoryElems<uint32_t>(kWasmPageSize / sizeof(uint32_t));
BUILD(r, // --
/**/ kExprLoop, kLocalVoid, // --
/* */ kExprGetLocal, 0, // --
/* */ kExprIf, kLocalVoid, // --
/* */ kExprGetLocal, 0, // --
/* */ kExprI32LoadMem, 0, 0, // --
/* */ kExprIf, kLocalVoid, // --
/* */ kExprI32Const, 127, // --
/* */ kExprReturn, // --
/* */ kExprEnd, // --
/* */ kExprGetLocal, 0, // --
/* */ kExprI32Const, 4, // --
/* */ kExprI32Sub, // --
/* */ kExprTeeLocal, 0, // --
/* */ kExprBr, DEPTH_0, // --
/* */ kExprEnd, // --
/**/ kExprEnd, // --
/**/ kExprI32Const, 0); // --
r.builder().BlankMemory();
CHECK_EQ(0, r.Call((kNumElems - 1) * 4));
}
WASM_EXEC_TEST(MemF32_Sum) {
const int kSize = 5;
WasmRunner<int32_t, int32_t> r(execution_tier);
r.builder().AddMemoryElems<float>(kWasmPageSize / sizeof(float));
float* buffer = r.builder().raw_mem_start<float>();
r.builder().WriteMemory(&buffer[0], -99.25f);
r.builder().WriteMemory(&buffer[1], -888.25f);
r.builder().WriteMemory(&buffer[2], -77.25f);
r.builder().WriteMemory(&buffer[3], 66666.25f);
r.builder().WriteMemory(&buffer[4], 5555.25f);
const byte kSum = r.AllocateLocal(kWasmF32);
BUILD(r, WASM_WHILE(
WASM_GET_LOCAL(0),
WASM_BLOCK(
WASM_SET_LOCAL(
kSum, WASM_F32_ADD(WASM_GET_LOCAL(kSum),
WASM_LOAD_MEM(MachineType::Float32(),
WASM_GET_LOCAL(0)))),
WASM_SET_LOCAL(
0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I32V_1(4))))),
WASM_STORE_MEM(MachineType::Float32(), WASM_ZERO, WASM_GET_LOCAL(kSum)),
WASM_GET_LOCAL(0));
CHECK_EQ(0, r.Call(4 * (kSize - 1)));
CHECK_NE(-99.25f, r.builder().ReadMemory(&buffer[0]));
CHECK_EQ(71256.0f, r.builder().ReadMemory(&buffer[0]));
}
template <typename T>
T GenerateAndRunFold(ExecutionTier execution_tier, WasmOpcode binop, T* buffer,
uint32_t size, ValueType astType, MachineType memType) {
WasmRunner<int32_t, int32_t> r(execution_tier);
T* memory = r.builder().AddMemoryElems<T>(static_cast<uint32_t>(
RoundUp(size * sizeof(T), kWasmPageSize) / sizeof(sizeof(T))));
for (uint32_t i = 0; i < size; ++i) {
r.builder().WriteMemory(&memory[i], buffer[i]);
}
const byte kAccum = r.AllocateLocal(astType);
BUILD(
r, WASM_SET_LOCAL(kAccum, WASM_LOAD_MEM(memType, WASM_ZERO)),
WASM_WHILE(
WASM_GET_LOCAL(0),
WASM_BLOCK(WASM_SET_LOCAL(
kAccum,
WASM_BINOP(binop, WASM_GET_LOCAL(kAccum),
WASM_LOAD_MEM(memType, WASM_GET_LOCAL(0)))),
WASM_SET_LOCAL(0, WASM_I32_SUB(WASM_GET_LOCAL(0),
WASM_I32V_1(sizeof(T)))))),
WASM_STORE_MEM(memType, WASM_ZERO, WASM_GET_LOCAL(kAccum)),
WASM_GET_LOCAL(0));
r.Call(static_cast<int>(sizeof(T) * (size - 1)));
return r.builder().ReadMemory(&memory[0]);
}
WASM_EXEC_TEST(MemF64_Mul) {
const size_t kSize = 6;
double buffer[kSize] = {1, 2, 2, 2, 2, 2};
double result =
GenerateAndRunFold<double>(execution_tier, kExprF64Mul, buffer, kSize,
kWasmF64, MachineType::Float64());
CHECK_EQ(32, result);
}
WASM_EXEC_TEST(Build_Wasm_Infinite_Loop) {
WasmRunner<int32_t, int32_t> r(execution_tier);
// Only build the graph and compile, don't run.
BUILD(r, WASM_INFINITE_LOOP, WASM_ZERO);
}
WASM_EXEC_TEST(Build_Wasm_Infinite_Loop_effect) {
WasmRunner<int32_t, int32_t> r(execution_tier);
r.builder().AddMemory(kWasmPageSize);
// Only build the graph and compile, don't run.
BUILD(r, WASM_LOOP(WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO), WASM_DROP),
WASM_ZERO);
}
WASM_EXEC_TEST(Unreachable0a) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(r, WASM_BLOCK_I(WASM_BRV(0, WASM_I32V_1(9)), RET(WASM_GET_LOCAL(0))));
CHECK_EQ(9, r.Call(0));
CHECK_EQ(9, r.Call(1));
}
WASM_EXEC_TEST(Unreachable0b) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(r, WASM_BLOCK_I(WASM_BRV(0, WASM_I32V_1(7)), WASM_UNREACHABLE));
CHECK_EQ(7, r.Call(0));
CHECK_EQ(7, r.Call(1));
}
WASM_COMPILED_EXEC_TEST(Build_Wasm_Unreachable1) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(r, WASM_UNREACHABLE);
}
WASM_COMPILED_EXEC_TEST(Build_Wasm_Unreachable2) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(r, WASM_UNREACHABLE, WASM_UNREACHABLE);
}
WASM_COMPILED_EXEC_TEST(Build_Wasm_Unreachable3) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(r, WASM_UNREACHABLE, WASM_UNREACHABLE, WASM_UNREACHABLE);
}
WASM_COMPILED_EXEC_TEST(Build_Wasm_UnreachableIf1) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(r, WASM_UNREACHABLE,
WASM_IF(WASM_GET_LOCAL(0), WASM_SEQ(WASM_GET_LOCAL(0), WASM_DROP)),
WASM_ZERO);
}
WASM_COMPILED_EXEC_TEST(Build_Wasm_UnreachableIf2) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(r, WASM_UNREACHABLE,
WASM_IF_ELSE_I(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0), WASM_UNREACHABLE));
}
WASM_EXEC_TEST(Unreachable_Load) {
WasmRunner<int32_t, int32_t> r(execution_tier);
r.builder().AddMemory(kWasmPageSize);
BUILD(r, WASM_BLOCK_I(WASM_BRV(0, WASM_GET_LOCAL(0)),
WASM_LOAD_MEM(MachineType::Int8(), WASM_GET_LOCAL(0))));
CHECK_EQ(11, r.Call(11));
CHECK_EQ(21, r.Call(21));
}
WASM_EXEC_TEST(BrV_Fallthrough) {
WasmRunner<int32_t> r(execution_tier);
BUILD(r, WASM_BLOCK_I(WASM_BLOCK(WASM_BRV(1, WASM_I32V_1(42))),
WASM_I32V_1(22)));
CHECK_EQ(42, r.Call());
}
WASM_EXEC_TEST(Infinite_Loop_not_taken1) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(r, WASM_IF(WASM_GET_LOCAL(0), WASM_INFINITE_LOOP), WASM_I32V_1(45));
// Run the code, but don't go into the infinite loop.
CHECK_EQ(45, r.Call(0));
}
WASM_EXEC_TEST(Infinite_Loop_not_taken2) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(r, WASM_BLOCK_I(
WASM_IF_ELSE(WASM_GET_LOCAL(0), WASM_BRV(1, WASM_I32V_1(45)),
WASM_INFINITE_LOOP),
WASM_ZERO));
// Run the code, but don't go into the infinite loop.
CHECK_EQ(45, r.Call(1));
}
WASM_EXEC_TEST(Infinite_Loop_not_taken2_brif) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(r, WASM_BLOCK_I(WASM_BRV_IF(0, WASM_I32V_1(45), WASM_GET_LOCAL(0)),
WASM_INFINITE_LOOP));
// Run the code, but don't go into the infinite loop.
CHECK_EQ(45, r.Call(1));
}
static void TestBuildGraphForSimpleExpression(WasmOpcode opcode) {
Isolate* isolate = CcTest::InitIsolateOnce();
Zone zone(isolate->allocator(), ZONE_NAME);
HandleScope scope(isolate);
// TODO(ahaas): Enable this test for anyref opcodes when code generation for
// them is implemented.
if (WasmOpcodes::IsAnyRefOpcode(opcode)) return;
// Enable all optional operators.
compiler::CommonOperatorBuilder common(&zone);
compiler::MachineOperatorBuilder machine(
&zone, MachineType::PointerRepresentation(),
compiler::MachineOperatorBuilder::kAllOptionalOps);
compiler::Graph graph(&zone);
compiler::JSGraph jsgraph(isolate, &graph, &common, nullptr, nullptr,
&machine);
FunctionSig* sig = WasmOpcodes::Signature(opcode);
if (sig->parameter_count() == 1) {
byte code[] = {WASM_NO_LOCALS, kExprGetLocal, 0, static_cast<byte>(opcode),
WASM_END};
TestBuildingGraph(&zone, &jsgraph, nullptr, sig, nullptr, code,
code + arraysize(code));
} else {
CHECK_EQ(2, sig->parameter_count());
byte code[] = {WASM_NO_LOCALS,
kExprGetLocal,
0,
kExprGetLocal,
1,
static_cast<byte>(opcode),
WASM_END};
TestBuildingGraph(&zone, &jsgraph, nullptr, sig, nullptr, code,
code + arraysize(code));
}
}
TEST(Build_Wasm_SimpleExprs) {
// Test that the decoder can build a graph for all supported simple expressions.
#define GRAPH_BUILD_TEST(name, opcode, sig) \
TestBuildGraphForSimpleExpression(kExpr##name);
FOREACH_SIMPLE_OPCODE(GRAPH_BUILD_TEST);
#undef GRAPH_BUILD_TEST
}
WASM_EXEC_TEST(Int32LoadInt8_signext) {
WasmRunner<int32_t, int32_t> r(execution_tier);
const int kNumElems = kWasmPageSize;
int8_t* memory = r.builder().AddMemoryElems<int8_t>(kNumElems);
r.builder().RandomizeMemory();
memory[0] = -1;
BUILD(r, WASM_LOAD_MEM(MachineType::Int8(), WASM_GET_LOCAL(0)));
for (int i = 0; i < kNumElems; ++i) {
CHECK_EQ(memory[i], r.Call(i));
}
}
WASM_EXEC_TEST(Int32LoadInt8_zeroext) {
WasmRunner<int32_t, int32_t> r(execution_tier);
const int kNumElems = kWasmPageSize;
byte* memory = r.builder().AddMemory(kNumElems);
r.builder().RandomizeMemory(77);
memory[0] = 255;
BUILD(r, WASM_LOAD_MEM(MachineType::Uint8(), WASM_GET_LOCAL(0)));
for (int i = 0; i < kNumElems; ++i) {
CHECK_EQ(memory[i], r.Call(i));
}
}
WASM_EXEC_TEST(Int32LoadInt16_signext) {
WasmRunner<int32_t, int32_t> r(execution_tier);
const int kNumBytes = kWasmPageSize;
byte* memory = r.builder().AddMemory(kNumBytes);
r.builder().RandomizeMemory(888);
memory[1] = 200;
BUILD(r, WASM_LOAD_MEM(MachineType::Int16(), WASM_GET_LOCAL(0)));
for (int i = 0; i < kNumBytes; i += 2) {
int32_t expected = static_cast<int16_t>(memory[i] | (memory[i + 1] << 8));
CHECK_EQ(expected, r.Call(i));
}
}
WASM_EXEC_TEST(Int32LoadInt16_zeroext) {
WasmRunner<int32_t, int32_t> r(execution_tier);
const int kNumBytes = kWasmPageSize;
byte* memory = r.builder().AddMemory(kNumBytes);
r.builder().RandomizeMemory(9999);
memory[1] = 204;
BUILD(r, WASM_LOAD_MEM(MachineType::Uint16(), WASM_GET_LOCAL(0)));
for (int i = 0; i < kNumBytes; i += 2) {
int32_t expected = memory[i] | (memory[i + 1] << 8);
CHECK_EQ(expected, r.Call(i));
}
}
WASM_EXEC_TEST(Int32Global) {
WasmRunner<int32_t, int32_t> r(execution_tier);
int32_t* global = r.builder().AddGlobal<int32_t>();
// global = global + p0
BUILD(r,
WASM_SET_GLOBAL(0, WASM_I32_ADD(WASM_GET_GLOBAL(0), WASM_GET_LOCAL(0))),
WASM_ZERO);
WriteLittleEndianValue<int32_t>(global, 116);
for (int i = 9; i < 444444; i += 111111) {
int32_t expected = ReadLittleEndianValue<int32_t>(global) + i;
r.Call(i);
CHECK_EQ(expected, ReadLittleEndianValue<int32_t>(global));
}
}
WASM_EXEC_TEST(Int32Globals_DontAlias) {
const int kNumGlobals = 3;
for (int g = 0; g < kNumGlobals; ++g) {
// global = global + p0
WasmRunner<int32_t, int32_t> r(execution_tier);
int32_t* globals[] = {r.builder().AddGlobal<int32_t>(),
r.builder().AddGlobal<int32_t>(),
r.builder().AddGlobal<int32_t>()};
BUILD(r, WASM_SET_GLOBAL(
g, WASM_I32_ADD(WASM_GET_GLOBAL(g), WASM_GET_LOCAL(0))),
WASM_GET_GLOBAL(g));
// Check that reading/writing global number {g} doesn't alter the others.
WriteLittleEndianValue<int32_t>(globals[g], 116 * g);
int32_t before[kNumGlobals];
for (int i = 9; i < 444444; i += 111113) {
int32_t sum = ReadLittleEndianValue<int32_t>(globals[g]) + i;
for (int j = 0; j < kNumGlobals; ++j)
before[j] = ReadLittleEndianValue<int32_t>(globals[j]);
int32_t result = r.Call(i);
CHECK_EQ(sum, result);
for (int j = 0; j < kNumGlobals; ++j) {
int32_t expected = j == g ? sum : before[j];
CHECK_EQ(expected, ReadLittleEndianValue<int32_t>(globals[j]));
}
}
}
}
WASM_EXEC_TEST(Float32Global) {
WasmRunner<int32_t, int32_t> r(execution_tier);
float* global = r.builder().AddGlobal<float>();
// global = global + p0
BUILD(r, WASM_SET_GLOBAL(
0, WASM_F32_ADD(WASM_GET_GLOBAL(0),
WASM_F32_SCONVERT_I32(WASM_GET_LOCAL(0)))),
WASM_ZERO);
WriteLittleEndianValue<float>(global, 1.25);
for (int i = 9; i < 4444; i += 1111) {
volatile float expected = ReadLittleEndianValue<float>(global) + i;
r.Call(i);
CHECK_EQ(expected, ReadLittleEndianValue<float>(global));
}
}
WASM_EXEC_TEST(Float64Global) {
WasmRunner<int32_t, int32_t> r(execution_tier);
double* global = r.builder().AddGlobal<double>();
// global = global + p0
BUILD(r, WASM_SET_GLOBAL(
0, WASM_F64_ADD(WASM_GET_GLOBAL(0),
WASM_F64_SCONVERT_I32(WASM_GET_LOCAL(0)))),
WASM_ZERO);
WriteLittleEndianValue<double>(global, 1.25);
for (int i = 9; i < 4444; i += 1111) {
volatile double expected = ReadLittleEndianValue<double>(global) + i;
r.Call(i);
CHECK_EQ(expected, ReadLittleEndianValue<double>(global));
}
}
WASM_EXEC_TEST(MixedGlobals) {
WasmRunner<int32_t, int32_t> r(execution_tier);
int32_t* unused = r.builder().AddGlobal<int32_t>();
byte* memory = r.builder().AddMemory(kWasmPageSize);
int32_t* var_int32 = r.builder().AddGlobal<int32_t>();
uint32_t* var_uint32 = r.builder().AddGlobal<uint32_t>();
float* var_float = r.builder().AddGlobal<float>();
double* var_double = r.builder().AddGlobal<double>();
BUILD(r, WASM_SET_GLOBAL(1, WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO)),
WASM_SET_GLOBAL(2, WASM_LOAD_MEM(MachineType::Uint32(), WASM_ZERO)),
WASM_SET_GLOBAL(3, WASM_LOAD_MEM(MachineType::Float32(), WASM_ZERO)),
WASM_SET_GLOBAL(4, WASM_LOAD_MEM(MachineType::Float64(), WASM_ZERO)),
WASM_ZERO);
memory[0] = 0xAA;
memory[1] = 0xCC;
memory[2] = 0x55;
memory[3] = 0xEE;
memory[4] = 0x33;
memory[5] = 0x22;
memory[6] = 0x11;
memory[7] = 0x99;
r.Call(1);
CHECK(static_cast<int32_t>(0xEE55CCAA) ==
ReadLittleEndianValue<int32_t>(var_int32));
CHECK(static_cast<uint32_t>(0xEE55CCAA) ==
ReadLittleEndianValue<uint32_t>(var_uint32));
CHECK(bit_cast<float>(0xEE55CCAA) == ReadLittleEndianValue<float>(var_float));
CHECK(bit_cast<double>(0x99112233EE55CCAAULL) ==
ReadLittleEndianValue<double>(var_double));
USE(unused);
}
WASM_EXEC_TEST(CallEmpty) {
const int32_t kExpected = -414444;
WasmRunner<int32_t> r(execution_tier);
// Build the target function.
WasmFunctionCompiler& target_func = r.NewFunction<int>();
BUILD(target_func, WASM_I32V_3(kExpected));
// Build the calling function.
BUILD(r, WASM_CALL_FUNCTION0(target_func.function_index()));
int32_t result = r.Call();
CHECK_EQ(kExpected, result);
}
WASM_EXEC_TEST(CallF32StackParameter) {
WasmRunner<float> r(execution_tier);
// Build the target function.
ValueType param_types[20];
for (int i = 0; i < 20; ++i) param_types[i] = kWasmF32;
FunctionSig sig(1, 19, param_types);
WasmFunctionCompiler& t = r.NewFunction(&sig);
BUILD(t, WASM_GET_LOCAL(17));
// Build the calling function.
BUILD(r, WASM_CALL_FUNCTION(
t.function_index(), WASM_F32(1.0f), WASM_F32(2.0f),
WASM_F32(4.0f), WASM_F32(8.0f), WASM_F32(16.0f), WASM_F32(32.0f),
WASM_F32(64.0f), WASM_F32(128.0f), WASM_F32(256.0f),
WASM_F32(1.5f), WASM_F32(2.5f), WASM_F32(4.5f), WASM_F32(8.5f),
WASM_F32(16.5f), WASM_F32(32.5f), WASM_F32(64.5f),
WASM_F32(128.5f), WASM_F32(256.5f), WASM_F32(512.5f)));
float result = r.Call();
CHECK_EQ(256.5f, result);
}
WASM_EXEC_TEST(CallF64StackParameter) {
WasmRunner<double> r(execution_tier);
// Build the target function.
ValueType param_types[20];
for (int i = 0; i < 20; ++i) param_types[i] = kWasmF64;
FunctionSig sig(1, 19, param_types);
WasmFunctionCompiler& t = r.NewFunction(&sig);
BUILD(t, WASM_GET_LOCAL(17));
// Build the calling function.
BUILD(r, WASM_CALL_FUNCTION(t.function_index(), WASM_F64(1.0), WASM_F64(2.0),
WASM_F64(4.0), WASM_F64(8.0), WASM_F64(16.0),
WASM_F64(32.0), WASM_F64(64.0), WASM_F64(128.0),
WASM_F64(256.0), WASM_F64(1.5), WASM_F64(2.5),
WASM_F64(4.5), WASM_F64(8.5), WASM_F64(16.5),
WASM_F64(32.5), WASM_F64(64.5), WASM_F64(128.5),
WASM_F64(256.5), WASM_F64(512.5)));
float result = r.Call();
CHECK_EQ(256.5, result);
}
WASM_EXEC_TEST(CallVoid) {
WasmRunner<int32_t> r(execution_tier);
const byte kMemOffset = 8;
const int32_t kElemNum = kMemOffset / sizeof(int32_t);
const int32_t kExpected = 414444;
// Build the target function.
TestSignatures sigs;
int32_t* memory =
r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t));
r.builder().RandomizeMemory();
WasmFunctionCompiler& t = r.NewFunction(sigs.v_v());
BUILD(t, WASM_STORE_MEM(MachineType::Int32(), WASM_I32V_1(kMemOffset),
WASM_I32V_3(kExpected)));
// Build the calling function.
BUILD(r, WASM_CALL_FUNCTION0(t.function_index()),
WASM_LOAD_MEM(MachineType::Int32(), WASM_I32V_1(kMemOffset)));
int32_t result = r.Call();
CHECK_EQ(kExpected, result);
CHECK_EQ(static_cast<int64_t>(kExpected),
static_cast<int64_t>(r.builder().ReadMemory(&memory[kElemNum])));
}
WASM_EXEC_TEST(Call_Int32Add) {
WasmRunner<int32_t, int32_t, int32_t> r(execution_tier);
// Build the target function.
WasmFunctionCompiler& t = r.NewFunction<int32_t, int32_t, int32_t>();
BUILD(t, WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
// Build the caller function.
BUILD(r, WASM_CALL_FUNCTION(t.function_index(), WASM_GET_LOCAL(0),
WASM_GET_LOCAL(1)));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int32_t expected = static_cast<int32_t>(static_cast<uint32_t>(i) +
static_cast<uint32_t>(j));
CHECK_EQ(expected, r.Call(i, j));
}
}
}
WASM_EXEC_TEST(Call_Float32Sub) {
WasmRunner<float, float, float> r(execution_tier);
// Build the target function.
WasmFunctionCompiler& target_func = r.NewFunction<float, float, float>();
BUILD(target_func, WASM_F32_SUB(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
// Build the caller function.
BUILD(r, WASM_CALL_FUNCTION(target_func.function_index(), WASM_GET_LOCAL(0),
WASM_GET_LOCAL(1)));
FOR_FLOAT32_INPUTS(i) {
FOR_FLOAT32_INPUTS(j) { CHECK_FLOAT_EQ(i - j, r.Call(i, j)); }
}
}
WASM_EXEC_TEST(Call_Float64Sub) {
WasmRunner<int32_t> r(execution_tier);
double* memory =
r.builder().AddMemoryElems<double>(kWasmPageSize / sizeof(double));
BUILD(r, WASM_STORE_MEM(
MachineType::Float64(), WASM_ZERO,
WASM_F64_SUB(
WASM_LOAD_MEM(MachineType::Float64(), WASM_ZERO),
WASM_LOAD_MEM(MachineType::Float64(), WASM_I32V_1(8)))),
WASM_I32V_2(107));
FOR_FLOAT64_INPUTS(i) {
FOR_FLOAT64_INPUTS(j) {
r.builder().WriteMemory(&memory[0], i);
r.builder().WriteMemory(&memory[1], j);
double expected = i - j;
CHECK_EQ(107, r.Call());
if (expected != expected) {
CHECK(r.builder().ReadMemory(&memory[0]) !=
r.builder().ReadMemory(&memory[0]));
} else {
CHECK_EQ(expected, r.builder().ReadMemory(&memory[0]));
}
}
}
}
template <typename T>
static T factorial(T v) {
T expected = 1;
for (T i = v; i > 1; i--) {
expected *= i;
}
return expected;
}
template <typename T>
static T sum_1_to_n(T v) {
return v * (v + 1) / 2;
}
// We use unsigned arithmetic because of ubsan validation.
WASM_EXEC_TEST(Regular_Factorial) {
WasmRunner<uint32_t, uint32_t> r(execution_tier);
WasmFunctionCompiler& fact_aux_fn =
r.NewFunction<uint32_t, uint32_t, uint32_t>("fact_aux");
BUILD(r, WASM_CALL_FUNCTION(fact_aux_fn.function_index(), WASM_GET_LOCAL(0),
WASM_I32V(1)));
BUILD(fact_aux_fn,
WASM_IF_ELSE_I(
WASM_I32_LES(WASM_GET_LOCAL(0), WASM_I32V(1)), WASM_GET_LOCAL(1),
WASM_CALL_FUNCTION(
fact_aux_fn.function_index(),
WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I32V(1)),
WASM_I32_MUL(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)))));
uint32_t test_values[] = {1, 2, 5, 10, 20};
for (uint32_t v : test_values) {
CHECK_EQ(factorial(v), r.Call(v));
}
}
// Tail-recursive variation on factorial:
// fact(N) => f(N,1).
//
// f(N,X) where N=<1 => X
// f(N,X) => f(N-1,X*N).
WASM_EXEC_TEST(ReturnCall_Factorial) {
EXPERIMENTAL_FLAG_SCOPE(return_call);
// Run in bounded amount of stack - 8kb.
FlagScope<int32_t> stack_size(&v8::internal::FLAG_stack_size, 8);
WasmRunner<uint32_t, uint32_t> r(execution_tier);
WasmFunctionCompiler& fact_aux_fn =
r.NewFunction<uint32_t, uint32_t, uint32_t>("fact_aux");
BUILD(r, WASM_RETURN_CALL_FUNCTION(fact_aux_fn.function_index(),
WASM_GET_LOCAL(0), WASM_I32V(1)));
BUILD(fact_aux_fn,
WASM_IF_ELSE_I(
WASM_I32_LES(WASM_GET_LOCAL(0), WASM_I32V(1)), WASM_GET_LOCAL(1),
WASM_RETURN_CALL_FUNCTION(
fact_aux_fn.function_index(),
WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I32V(1)),
WASM_I32_MUL(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)))));
uint32_t test_values[] = {1, 2, 5, 10, 20, 2000};
for (uint32_t v : test_values) {
CHECK_EQ(factorial<uint32_t>(v), r.Call(v));
}
}
// Mutually recursive factorial mixing it up
// f(0,X)=>X
// f(N,X) => g(X*N,N-1)
// g(X,0) => X.
// g(X,N) => f(N-1,X*N).
WASM_EXEC_TEST(ReturnCall_MutualFactorial) {
EXPERIMENTAL_FLAG_SCOPE(return_call);
// Run in bounded amount of stack - 8kb.
FlagScope<int32_t> stack_size(&v8::internal::FLAG_stack_size, 8);
WasmRunner<uint32_t, uint32_t> r(execution_tier);
WasmFunctionCompiler& f_fn = r.NewFunction<uint32_t, uint32_t, uint32_t>("f");
WasmFunctionCompiler& g_fn = r.NewFunction<uint32_t, uint32_t, uint32_t>("g");
BUILD(r, WASM_RETURN_CALL_FUNCTION(f_fn.function_index(), WASM_GET_LOCAL(0),
WASM_I32V(1)));
BUILD(f_fn,
WASM_IF_ELSE_I(WASM_I32_LES(WASM_GET_LOCAL(0), WASM_I32V(1)),
WASM_GET_LOCAL(1),
WASM_RETURN_CALL_FUNCTION(
g_fn.function_index(),
WASM_I32_MUL(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)),
WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I32V(1)))));
BUILD(g_fn,
WASM_IF_ELSE_I(
WASM_I32_LES(WASM_GET_LOCAL(1), WASM_I32V(1)), WASM_GET_LOCAL(0),
WASM_RETURN_CALL_FUNCTION(
f_fn.function_index(),
WASM_I32_SUB(WASM_GET_LOCAL(1), WASM_I32V(1)),
WASM_I32_MUL(WASM_GET_LOCAL(1), WASM_GET_LOCAL(0)))));
uint32_t test_values[] = {1, 2, 5, 10, 20, 2000};
for (uint32_t v : test_values) {
CHECK_EQ(factorial(v), r.Call(v));
}
}
// Indirect variant of factorial. Pass the function ID as an argument:
// fact(N) => f(N,1,f).
//
// f(N,X,_) where N=<1 => X
// f(N,X,F) => F(N-1,X*N,F).
WASM_EXEC_TEST(ReturnCall_IndirectFactorial) {
EXPERIMENTAL_FLAG_SCOPE(return_call);
// Run in bounded amount of stack - 8kb.
FlagScope<int32_t> stack_size(&v8::internal::FLAG_stack_size, 8);
WasmRunner<uint32_t, uint32_t> r(execution_tier);
TestSignatures sigs;
WasmFunctionCompiler& f_ind_fn = r.NewFunction(sigs.i_iii(), "f_ind");
uint32_t sig_index = r.builder().AddSignature(sigs.i_iii());
f_ind_fn.SetSigIndex(sig_index);
// Function table.
uint16_t indirect_function_table[] = {
static_cast<uint16_t>(f_ind_fn.function_index())};
const int f_ind_index = 0;
r.builder().AddIndirectFunctionTable(indirect_function_table,
arraysize(indirect_function_table));
BUILD(r,
WASM_RETURN_CALL_FUNCTION(f_ind_fn.function_index(), WASM_GET_LOCAL(0),
WASM_I32V(1), WASM_I32V(f_ind_index)));
BUILD(f_ind_fn,
WASM_IF_ELSE_I(WASM_I32_LES(WASM_GET_LOCAL(0), WASM_I32V(1)),
WASM_GET_LOCAL(1),
WASM_RETURN_CALL_INDIRECT(
sig_index, WASM_GET_LOCAL(2),
WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I32V(1)),
WASM_I32_MUL(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)),
WASM_GET_LOCAL(2))));
uint32_t test_values[] = {1, 2, 5, 10, 10000};
for (uint32_t v : test_values) {
CHECK_EQ(factorial(v), r.Call(v));
}
}
// This is 'more stable' (does not degenerate so quickly) than factorial
// sum(N,k) where N<1 =>k.
// sum(N,k) => sum(N-1,k+N).
WASM_EXEC_TEST(ReturnCall_Sum) {
EXPERIMENTAL_FLAG_SCOPE(return_call);
// Run in bounded amount of stack - 8kb.
FlagScope<int32_t> stack_size(&v8::internal::FLAG_stack_size, 8);
WasmRunner<int32_t, int32_t> r(execution_tier);
TestSignatures sigs;
WasmFunctionCompiler& sum_aux_fn = r.NewFunction(sigs.i_ii(), "sum_aux");
BUILD(r, WASM_RETURN_CALL_FUNCTION(sum_aux_fn.function_index(),
WASM_GET_LOCAL(0), WASM_I32V(0)));
BUILD(sum_aux_fn,
WASM_IF_ELSE_I(
WASM_I32_LTS(WASM_GET_LOCAL(0), WASM_I32V(1)), WASM_GET_LOCAL(1),
WASM_RETURN_CALL_FUNCTION(
sum_aux_fn.function_index(),
WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I32V(1)),
WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)))));
int32_t test_values[] = {1, 2, 5, 10, 1000};
for (int32_t v : test_values) {
CHECK_EQ(sum_1_to_n(v), r.Call(v));
}
}
// 'Bouncing' mutual recursive sum with different #s of arguments
// b1(N,k) where N<1 =>k.
// b1(N,k) => b2(N-1,N,k+N).
// b2(N,_,k) where N<1 =>k.
// b2(N,l,k) => b3(N-1,N,l,k+N).
// b3(N,_,_,k) where N<1 =>k.
// b3(N,_,_,k) => b1(N-1,k+N).
WASM_EXEC_TEST(ReturnCall_Bounce_Sum) {
EXPERIMENTAL_FLAG_SCOPE(return_call);
// Run in bounded amount of stack - 8kb.
FlagScope<int32_t> stack_size(&v8::internal::FLAG_stack_size, 8);
WasmRunner<int32_t, int32_t> r(execution_tier);
TestSignatures sigs;
WasmFunctionCompiler& b1_fn = r.NewFunction(sigs.i_ii(), "b1");
WasmFunctionCompiler& b2_fn = r.NewFunction(sigs.i_iii(), "b2");
WasmFunctionCompiler& b3_fn =
r.NewFunction<int32_t, int32_t, int32_t, int32_t, int32_t>("b3");
BUILD(r, WASM_RETURN_CALL_FUNCTION(b1_fn.function_index(), WASM_GET_LOCAL(0),
WASM_I32V(0)));
BUILD(
b1_fn,
WASM_IF_ELSE_I(
WASM_I32_LTS(WASM_GET_LOCAL(0), WASM_I32V(1)), WASM_GET_LOCAL(1),
WASM_RETURN_CALL_FUNCTION(
b2_fn.function_index(),
WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I32V(1)), WASM_GET_LOCAL(0),
WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)))));
BUILD(b2_fn,
WASM_IF_ELSE_I(
WASM_I32_LTS(WASM_GET_LOCAL(0), WASM_I32V(1)), WASM_GET_LOCAL(2),
WASM_RETURN_CALL_FUNCTION(
b3_fn.function_index(),
WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I32V(1)),
WASM_GET_LOCAL(0), WASM_GET_LOCAL(1),
WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(2)))));
BUILD(b3_fn,
WASM_IF_ELSE_I(
WASM_I32_LTS(WASM_GET_LOCAL(0), WASM_I32V(1)), WASM_GET_LOCAL(3),
WASM_RETURN_CALL_FUNCTION(
b1_fn.function_index(),
WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I32V(1)),
WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(3)))));
int32_t test_values[] = {1, 2, 5, 10, 1000};
for (int32_t v : test_values) {
CHECK_EQ(sum_1_to_n(v), r.Call(v));
}
}
#define ADD_CODE(vec, ...) \
do { \
byte __buf[] = {__VA_ARGS__}; \
for (size_t i = 0; i < sizeof(__buf); ++i) vec.push_back(__buf[i]); \
} while (false)
static void Run_WasmMixedCall_N(ExecutionTier execution_tier, int start) {
const int kExpected = 6333;
const int kElemSize = 8;
TestSignatures sigs;
// 64-bit cases handled in test-run-wasm-64.cc.
static MachineType mixed[] = {
MachineType::Int32(), MachineType::Float32(), MachineType::Float64(),
MachineType::Float32(), MachineType::Int32(), MachineType::Float64(),
MachineType::Float32(), MachineType::Float64(), MachineType::Int32(),
MachineType::Int32(), MachineType::Int32()};
int num_params = static_cast<int>(arraysize(mixed)) - start;
for (int which = 0; which < num_params; ++which) {
v8::internal::AccountingAllocator allocator;
Zone zone(&allocator, ZONE_NAME);
WasmRunner<int32_t> r(execution_tier);
r.builder().AddMemory(kWasmPageSize);
MachineType* memtypes = &mixed[start];
MachineType result = memtypes[which];
// =========================================================================
// Build the selector function.
// =========================================================================
FunctionSig::Builder b(&zone, 1, num_params);
b.AddReturn(ValueTypes::ValueTypeFor(result));
for (int i = 0; i < num_params; ++i) {
b.AddParam(ValueTypes::ValueTypeFor(memtypes[i]));
}
WasmFunctionCompiler& t = r.NewFunction(b.Build());
BUILD(t, WASM_GET_LOCAL(which));
// =========================================================================
// Build the calling function.
// =========================================================================
std::vector<byte> code;
// Load the arguments.
for (int i = 0; i < num_params; ++i) {
int offset = (i + 1) * kElemSize;
ADD_CODE(code, WASM_LOAD_MEM(memtypes[i], WASM_I32V_2(offset)));
}
// Call the selector function.
ADD_CODE(code, WASM_CALL_FUNCTION0(t.function_index()));
// Store the result in a local.
byte local_index = r.AllocateLocal(ValueTypes::ValueTypeFor(result));
ADD_CODE(code, kExprSetLocal, local_index);
// Store the result in memory.
ADD_CODE(code,
WASM_STORE_MEM(result, WASM_ZERO, WASM_GET_LOCAL(local_index)));
// Return the expected value.
ADD_CODE(code, WASM_I32V_2(kExpected));
r.Build(&code[0], &code[0] + code.size());
// Run the code.
for (int t = 0; t < 10; ++t) {
r.builder().RandomizeMemory();
CHECK_EQ(kExpected, r.Call());
int size = ValueTypes::MemSize(result);
for (int i = 0; i < size; ++i) {
int base = (which + 1) * kElemSize;
byte expected = r.builder().raw_mem_at<byte>(base + i);
byte result = r.builder().raw_mem_at<byte>(i);
CHECK_EQ(expected, result);
}
}
}
}
WASM_EXEC_TEST(MixedCall_0) { Run_WasmMixedCall_N(execution_tier, 0); }
WASM_EXEC_TEST(MixedCall_1) { Run_WasmMixedCall_N(execution_tier, 1); }
WASM_EXEC_TEST(MixedCall_2) { Run_WasmMixedCall_N(execution_tier, 2); }
WASM_EXEC_TEST(MixedCall_3) { Run_WasmMixedCall_N(execution_tier, 3); }
WASM_EXEC_TEST(AddCall) {
WasmRunner<int32_t, int32_t> r(execution_tier);
WasmFunctionCompiler& t1 = r.NewFunction<int32_t, int32_t, int32_t>();
BUILD(t1, WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
byte local = r.AllocateLocal(kWasmI32);
BUILD(r, WASM_SET_LOCAL(local, WASM_I32V_2(99)),
WASM_I32_ADD(
WASM_CALL_FUNCTION(t1.function_index(), WASM_GET_LOCAL(0),
WASM_GET_LOCAL(0)),
WASM_CALL_FUNCTION(t1.function_index(), WASM_GET_LOCAL(local),
WASM_GET_LOCAL(local))));
CHECK_EQ(198, r.Call(0));
CHECK_EQ(200, r.Call(1));
CHECK_EQ(100, r.Call(-49));
}
WASM_EXEC_TEST(MultiReturnSub) {
EXPERIMENTAL_FLAG_SCOPE(mv);
WasmRunner<int32_t, int32_t, int32_t> r(execution_tier);
ValueType storage[] = {kWasmI32, kWasmI32, kWasmI32, kWasmI32};
FunctionSig sig_ii_ii(2, 2, storage);
WasmFunctionCompiler& t1 = r.NewFunction(&sig_ii_ii);
BUILD(t1, WASM_GET_LOCAL(1), WASM_GET_LOCAL(0));
BUILD(r, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1),
WASM_CALL_FUNCTION0(t1.function_index()), kExprI32Sub);
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int32_t expected = static_cast<int32_t>(static_cast<uint32_t>(j) -
static_cast<uint32_t>(i));
CHECK_EQ(expected, r.Call(i, j));
}
}
}
template <typename T>
void RunMultiReturnSelect(ExecutionTier execution_tier, const T* inputs) {
EXPERIMENTAL_FLAG_SCOPE(mv);
ValueType type = ValueTypes::ValueTypeFor(MachineTypeForC<T>());
ValueType storage[] = {type, type, type, type, type, type};
const size_t kNumReturns = 2;
const size_t kNumParams = arraysize(storage) - kNumReturns;
FunctionSig sig(kNumReturns, kNumParams, storage);
for (size_t i = 0; i < kNumParams; i++) {
for (size_t j = 0; j < kNumParams; j++) {
for (int k = 0; k < 2; k++) {
WasmRunner<T, T, T, T, T> r(execution_tier);
WasmFunctionCompiler& r1 = r.NewFunction(&sig);
BUILD(r1, WASM_GET_LOCAL(i), WASM_GET_LOCAL(j));
if (k == 0) {
BUILD(r, WASM_CALL_FUNCTION(r1.function_index(), WASM_GET_LOCAL(0),
WASM_GET_LOCAL(1), WASM_GET_LOCAL(2),
WASM_GET_LOCAL(3)),
WASM_DROP);
} else {
BUILD(r, WASM_CALL_FUNCTION(r1.function_index(), WASM_GET_LOCAL(0),
WASM_GET_LOCAL(1), WASM_GET_LOCAL(2),
WASM_GET_LOCAL(3)),
kExprSetLocal, 0, WASM_DROP, WASM_GET_LOCAL(0));
}
T expected = inputs[k == 0 ? i : j];
CHECK_EQ(expected, r.Call(inputs[0], inputs[1], inputs[2], inputs[3]));
}
}
}
}
WASM_EXEC_TEST(MultiReturnSelect_i32) {
static const int32_t inputs[] = {3333333, 4444444, -55555555, -7777777};
RunMultiReturnSelect<int32_t>(execution_tier, inputs);
}
WASM_EXEC_TEST(MultiReturnSelect_f32) {
static const float inputs[] = {33.33333f, 444.4444f, -55555.555f, -77777.77f};
RunMultiReturnSelect<float>(execution_tier, inputs);
}
WASM_EXEC_TEST(MultiReturnSelect_i64) {
#if !V8_TARGET_ARCH_32_BIT || V8_TARGET_ARCH_X64
// TODO(titzer): implement int64-lowering for multiple return values
static const int64_t inputs[] = {33333338888, 44444446666, -555555553333,
-77777771111};
RunMultiReturnSelect<int64_t>(execution_tier, inputs);
#endif
}
WASM_EXEC_TEST(MultiReturnSelect_f64) {
static const double inputs[] = {3.333333, 44444.44, -55.555555, -7777.777};
RunMultiReturnSelect<double>(execution_tier, inputs);
}
WASM_EXEC_TEST(ExprBlock2a) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(r, WASM_BLOCK_I(WASM_IF(WASM_GET_LOCAL(0), WASM_BRV(1, WASM_I32V_1(1))),
WASM_I32V_1(1)));
CHECK_EQ(1, r.Call(0));
CHECK_EQ(1, r.Call(1));
}
WASM_EXEC_TEST(ExprBlock2b) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(r, WASM_BLOCK_I(WASM_IF(WASM_GET_LOCAL(0), WASM_BRV(1, WASM_I32V_1(1))),
WASM_I32V_1(2)));
CHECK_EQ(2, r.Call(0));
CHECK_EQ(1, r.Call(1));
}
WASM_EXEC_TEST(ExprBlock2c) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(r, WASM_BLOCK_I(WASM_BRV_IFD(0, WASM_I32V_1(1), WASM_GET_LOCAL(0)),
WASM_I32V_1(1)));
CHECK_EQ(1, r.Call(0));
CHECK_EQ(1, r.Call(1));
}
WASM_EXEC_TEST(ExprBlock2d) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(r, WASM_BLOCK_I(WASM_BRV_IFD(0, WASM_I32V_1(1), WASM_GET_LOCAL(0)),
WASM_I32V_1(2)));
CHECK_EQ(2, r.Call(0));
CHECK_EQ(1, r.Call(1));
}
WASM_EXEC_TEST(ExprBlock_ManualSwitch) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(r, WASM_BLOCK_I(WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I32V_1(1)),
WASM_BRV(1, WASM_I32V_1(11))),
WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I32V_1(2)),
WASM_BRV(1, WASM_I32V_1(12))),
WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I32V_1(3)),
WASM_BRV(1, WASM_I32V_1(13))),
WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I32V_1(4)),
WASM_BRV(1, WASM_I32V_1(14))),
WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I32V_1(5)),
WASM_BRV(1, WASM_I32V_1(15))),
WASM_I32V_2(99)));
CHECK_EQ(99, r.Call(0));
CHECK_EQ(11, r.Call(1));
CHECK_EQ(12, r.Call(2));
CHECK_EQ(13, r.Call(3));
CHECK_EQ(14, r.Call(4));
CHECK_EQ(15, r.Call(5));
CHECK_EQ(99, r.Call(6));
}
WASM_EXEC_TEST(ExprBlock_ManualSwitch_brif) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(r, WASM_BLOCK_I(
WASM_BRV_IFD(0, WASM_I32V_1(11),
WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I32V_1(1))),
WASM_BRV_IFD(0, WASM_I32V_1(12),
WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I32V_1(2))),
WASM_BRV_IFD(0, WASM_I32V_1(13),
WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I32V_1(3))),
WASM_BRV_IFD(0, WASM_I32V_1(14),
WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I32V_1(4))),
WASM_BRV_IFD(0, WASM_I32V_1(15),
WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I32V_1(5))),
WASM_I32V_2(99)));
CHECK_EQ(99, r.Call(0));
CHECK_EQ(11, r.Call(1));
CHECK_EQ(12, r.Call(2));
CHECK_EQ(13, r.Call(3));
CHECK_EQ(14, r.Call(4));
CHECK_EQ(15, r.Call(5));
CHECK_EQ(99, r.Call(6));
}
WASM_EXEC_TEST(If_nested) {
WasmRunner<int32_t, int32_t, int32_t> r(execution_tier);
BUILD(
r,
WASM_IF_ELSE_I(
WASM_GET_LOCAL(0),
WASM_IF_ELSE_I(WASM_GET_LOCAL(1), WASM_I32V_1(11), WASM_I32V_1(12)),
WASM_IF_ELSE_I(WASM_GET_LOCAL(1), WASM_I32V_1(13), WASM_I32V_1(14))));
CHECK_EQ(11, r.Call(1, 1));
CHECK_EQ(12, r.Call(1, 0));
CHECK_EQ(13, r.Call(0, 1));
CHECK_EQ(14, r.Call(0, 0));
}
WASM_EXEC_TEST(ExprBlock_if) {
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(r, WASM_BLOCK_I(WASM_IF_ELSE_I(WASM_GET_LOCAL(0),
WASM_BRV(0, WASM_I32V_1(11)),
WASM_BRV(1, WASM_I32V_1(14)))));
CHECK_EQ(11, r.Call(1));
CHECK_EQ(14, r.Call(0));
}
WASM_EXEC_TEST(ExprBlock_nested_ifs) {
WasmRunner<int32_t, int32_t, int32_t> r(execution_tier);
BUILD(r, WASM_BLOCK_I(WASM_IF_ELSE_I(
WASM_GET_LOCAL(0),
WASM_IF_ELSE_I(WASM_GET_LOCAL(1), WASM_BRV(0, WASM_I32V_1(11)),
WASM_BRV(1, WASM_I32V_1(12))),
WASM_IF_ELSE_I(WASM_GET_LOCAL(1), WASM_BRV(0, WASM_I32V_1(13)),
WASM_BRV(1, WASM_I32V_1(14))))));
CHECK_EQ(11, r.Call(1, 1));
CHECK_EQ(12, r.Call(1, 0));
CHECK_EQ(13, r.Call(0, 1));
CHECK_EQ(14, r.Call(0, 0));
}
WASM_EXEC_TEST(SimpleCallIndirect) {
TestSignatures sigs;
WasmRunner<int32_t, int32_t> r(execution_tier);
WasmFunctionCompiler& t1 = r.NewFunction(sigs.i_ii());
BUILD(t1, WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
t1.SetSigIndex(1);
WasmFunctionCompiler& t2 = r.NewFunction(sigs.i_ii());
BUILD(t2, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
t2.SetSigIndex(1);
// Signature table.
r.builder().AddSignature(sigs.f_ff());
r.builder().AddSignature(sigs.i_ii());
r.builder().AddSignature(sigs.d_dd());
// Function table.
uint16_t indirect_function_table[] = {
static_cast<uint16_t>(t1.function_index()),
static_cast<uint16_t>(t2.function_index())};
r.builder().AddIndirectFunctionTable(indirect_function_table,
arraysize(indirect_function_table));
// Build the caller function.
BUILD(r, WASM_CALL_INDIRECT2(1, WASM_GET_LOCAL(0), WASM_I32V_2(66),
WASM_I32V_1(22)));
CHECK_EQ(88, r.Call(0));
CHECK_EQ(44, r.Call(1));
CHECK_TRAP(r.Call(2));
}
WASM_EXEC_TEST(MultipleCallIndirect) {
TestSignatures sigs;
WasmRunner<int32_t, int32_t, int32_t, int32_t> r(execution_tier);
WasmFunctionCompiler& t1 = r.NewFunction(sigs.i_ii());
BUILD(t1, WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
t1.SetSigIndex(1);
WasmFunctionCompiler& t2 = r.NewFunction(sigs.i_ii());
BUILD(t2, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
t2.SetSigIndex(1);
// Signature table.
r.builder().AddSignature(sigs.f_ff());
r.builder().AddSignature(sigs.i_ii());
r.builder().AddSignature(sigs.d_dd());
// Function table.
uint16_t indirect_function_table[] = {
static_cast<uint16_t>(t1.function_index()),
static_cast<uint16_t>(t2.function_index())};
r.builder().AddIndirectFunctionTable(indirect_function_table,
arraysize(indirect_function_table));
// Build the caller function.
BUILD(r, WASM_I32_ADD(
WASM_CALL_INDIRECT2(1, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1),
WASM_GET_LOCAL(2)),
WASM_CALL_INDIRECT2(1, WASM_GET_LOCAL(1), WASM_GET_LOCAL(2),
WASM_GET_LOCAL(0))));
CHECK_EQ(5, r.Call(0, 1, 2));
CHECK_EQ(19, r.Call(0, 1, 9));
CHECK_EQ(1, r.Call(1, 0, 2));
CHECK_EQ(1, r.Call(1, 0, 9));
CHECK_TRAP(r.Call(0, 2, 1));
CHECK_TRAP(r.Call(1, 2, 0));
CHECK_TRAP(r.Call(2, 0, 1));
CHECK_TRAP(r.Call(2, 1, 0));
}
WASM_EXEC_TEST(CallIndirect_EmptyTable) {
TestSignatures sigs;
WasmRunner<int32_t, int32_t> r(execution_tier);
// One function.
WasmFunctionCompiler& t1 = r.NewFunction(sigs.i_ii());
BUILD(t1, WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
t1.SetSigIndex(1);
// Signature table.
r.builder().AddSignature(sigs.f_ff());
r.builder().AddSignature(sigs.i_ii());
r.builder().AddIndirectFunctionTable(nullptr, 0);
// Build the caller function.
BUILD(r, WASM_CALL_INDIRECT2(1, WASM_GET_LOCAL(0), WASM_I32V_2(66),
WASM_I32V_1(22)));
CHECK_TRAP(r.Call(0));
CHECK_TRAP(r.Call(1));
CHECK_TRAP(r.Call(2));
}
WASM_EXEC_TEST(CallIndirect_canonical) {
TestSignatures sigs;
WasmRunner<int32_t, int32_t> r(execution_tier);
WasmFunctionCompiler& t1 = r.NewFunction(sigs.i_ii());
BUILD(t1, WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
t1.SetSigIndex(0);
WasmFunctionCompiler& t2 = r.NewFunction(sigs.i_ii());
BUILD(t2, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
t2.SetSigIndex(1);
WasmFunctionCompiler& t3 = r.NewFunction(sigs.f_ff());
BUILD(t3, WASM_F32_SUB(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
t3.SetSigIndex(2);
// Signature table.
r.builder().AddSignature(sigs.i_ii());
r.builder().AddSignature(sigs.i_ii());
r.builder().AddSignature(sigs.f_ff());
// Function table.
uint16_t i1 = static_cast<uint16_t>(t1.function_index());
uint16_t i2 = static_cast<uint16_t>(t2.function_index());
uint16_t i3 = static_cast<uint16_t>(t3.function_index());
uint16_t indirect_function_table[] = {i1, i2, i3, i1, i2};
r.builder().AddIndirectFunctionTable(indirect_function_table,
arraysize(indirect_function_table));
// Build the caller function.
BUILD(r, WASM_CALL_INDIRECT2(1, WASM_GET_LOCAL(0), WASM_I32V_2(77),
WASM_I32V_1(11)));
CHECK_EQ(88, r.Call(0));
CHECK_EQ(66, r.Call(1));
CHECK_TRAP(r.Call(2));
CHECK_EQ(88, r.Call(3));
CHECK_EQ(66, r.Call(4));
CHECK_TRAP(r.Call(5));
}
WASM_EXEC_TEST(F32Floor) {
WasmRunner<float, float> r(execution_tier);
BUILD(r, WASM_F32_FLOOR(WASM_GET_LOCAL(0)));
FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(floorf(i), r.Call(i)); }
}
WASM_EXEC_TEST(F32Ceil) {
WasmRunner<float, float> r(execution_tier);
BUILD(r, WASM_F32_CEIL(WASM_GET_LOCAL(0)));
FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(ceilf(i), r.Call(i)); }
}
WASM_EXEC_TEST(F32Trunc) {
WasmRunner<float, float> r(execution_tier);
BUILD(r, WASM_F32_TRUNC(WASM_GET_LOCAL(0)));
FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(truncf(i), r.Call(i)); }
}
WASM_EXEC_TEST(F32NearestInt) {
WasmRunner<float, float> r(execution_tier);
BUILD(r, WASM_F32_NEARESTINT(WASM_GET_LOCAL(0)));
FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(nearbyintf(i), r.Call(i)); }
}
WASM_EXEC_TEST(F64Floor) {
WasmRunner<double, double> r(execution_tier);
BUILD(r, WASM_F64_FLOOR(WASM_GET_LOCAL(0)));
FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(floor(i), r.Call(i)); }
}
WASM_EXEC_TEST(F64Ceil) {
WasmRunner<double, double> r(execution_tier);
BUILD(r, WASM_F64_CEIL(WASM_GET_LOCAL(0)));
FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(ceil(i), r.Call(i)); }
}
WASM_EXEC_TEST(F64Trunc) {
WasmRunner<double, double> r(execution_tier);
BUILD(r, WASM_F64_TRUNC(WASM_GET_LOCAL(0)));
FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(trunc(i), r.Call(i)); }
}
WASM_EXEC_TEST(F64NearestInt) {
WasmRunner<double, double> r(execution_tier);
BUILD(r, WASM_F64_NEARESTINT(WASM_GET_LOCAL(0)));
FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(nearbyint(i), r.Call(i)); }
}
WASM_EXEC_TEST(F32Min) {
WasmRunner<float, float, float> r(execution_tier);
BUILD(r, WASM_F32_MIN(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_FLOAT32_INPUTS(i) {
FOR_FLOAT32_INPUTS(j) { CHECK_DOUBLE_EQ(JSMin(i, j), r.Call(i, j)); }
}
}
WASM_EXEC_TEST(F32MinSameValue) {
WasmRunner<float, float> r(execution_tier);
BUILD(r, WASM_F32_MIN(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0)));
float result = r.Call(5.0f);
CHECK_FLOAT_EQ(5.0f, result);
}
WASM_EXEC_TEST(F64Min) {
WasmRunner<double, double, double> r(execution_tier);
BUILD(r, WASM_F64_MIN(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_FLOAT64_INPUTS(i) {
FOR_FLOAT64_INPUTS(j) { CHECK_DOUBLE_EQ(JSMin(i, j), r.Call(i, j)); }
}
}
WASM_EXEC_TEST(F64MinSameValue) {
WasmRunner<double, double> r(execution_tier);
BUILD(r, WASM_F64_MIN(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0)));
double result = r.Call(5.0);
CHECK_DOUBLE_EQ(5.0, result);
}
WASM_EXEC_TEST(F32Max) {
WasmRunner<float, float, float> r(execution_tier);
BUILD(r, WASM_F32_MAX(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_FLOAT32_INPUTS(i) {
FOR_FLOAT32_INPUTS(j) { CHECK_FLOAT_EQ(JSMax(i, j), r.Call(i, j)); }
}
}
WASM_EXEC_TEST(F32MaxSameValue) {
WasmRunner<float, float> r(execution_tier);
BUILD(r, WASM_F32_MAX(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0)));
float result = r.Call(5.0f);
CHECK_FLOAT_EQ(5.0f, result);
}
WASM_EXEC_TEST(F64Max) {
WasmRunner<double, double, double> r(execution_tier);
BUILD(r, WASM_F64_MAX(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_FLOAT64_INPUTS(i) {
FOR_FLOAT64_INPUTS(j) {
double result = r.Call(i, j);
CHECK_DOUBLE_EQ(JSMax(i, j), result);
}
}
}
WASM_EXEC_TEST(F64MaxSameValue) {
WasmRunner<double, double> r(execution_tier);
BUILD(r, WASM_F64_MAX(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0)));
double result = r.Call(5.0);
CHECK_DOUBLE_EQ(5.0, result);
}
WASM_EXEC_TEST(I32SConvertF32) {
WasmRunner<int32_t, float> r(execution_tier);
BUILD(r, WASM_I32_SCONVERT_F32(WASM_GET_LOCAL(0)));
FOR_FLOAT32_INPUTS(i) {
if (is_inbounds<int32_t>(i)) {
CHECK_EQ(static_cast<int32_t>(i), r.Call(i));
} else {
CHECK_TRAP32(r.Call(i));
}
}
}
WASM_EXEC_TEST(I32SConvertSatF32) {
EXPERIMENTAL_FLAG_SCOPE(sat_f2i_conversions);
WasmRunner<int32_t, float> r(execution_tier);
BUILD(r, WASM_I32_SCONVERT_SAT_F32(WASM_GET_LOCAL(0)));
FOR_FLOAT32_INPUTS(i) {
int32_t expected =
is_inbounds<int32_t>(i)
? static_cast<int32_t>(i)
: std::isnan(i) ? 0
: i < 0.0 ? std::numeric_limits<int32_t>::min()
: std::numeric_limits<int32_t>::max();
int32_t found = r.Call(i);
CHECK_EQ(expected, found);
}
}
WASM_EXEC_TEST(I32SConvertF64) {
WasmRunner<int32_t, double> r(execution_tier);
BUILD(r, WASM_I32_SCONVERT_F64(WASM_GET_LOCAL(0)));
FOR_FLOAT64_INPUTS(i) {
if (is_inbounds<int32_t>(i)) {
CHECK_EQ(static_cast<int32_t>(i), r.Call(i));
} else {
CHECK_TRAP32(r.Call(i));
}
}
}
WASM_EXEC_TEST(I32SConvertSatF64) {
EXPERIMENTAL_FLAG_SCOPE(sat_f2i_conversions);
WasmRunner<int32_t, double> r(execution_tier);
BUILD(r, WASM_I32_SCONVERT_SAT_F64(WASM_GET_LOCAL(0)));
FOR_FLOAT64_INPUTS(i) {
int32_t expected =
is_inbounds<int32_t>(i)
? static_cast<int32_t>(i)
: std::isnan(i) ? 0
: i < 0.0 ? std::numeric_limits<int32_t>::min()
: std::numeric_limits<int32_t>::max();
int32_t found = r.Call(i);
CHECK_EQ(expected, found);
}
}
WASM_EXEC_TEST(I32UConvertF32) {
WasmRunner<uint32_t, float> r(execution_tier);
BUILD(r, WASM_I32_UCONVERT_F32(WASM_GET_LOCAL(0)));
FOR_FLOAT32_INPUTS(i) {
if (is_inbounds<uint32_t>(i)) {
CHECK_EQ(static_cast<uint32_t>(i), r.Call(i));
} else {
CHECK_TRAP32(r.Call(i));
}
}
}
WASM_EXEC_TEST(I32UConvertSatF32) {
EXPERIMENTAL_FLAG_SCOPE(sat_f2i_conversions);
WasmRunner<uint32_t, float> r(execution_tier);
BUILD(r, WASM_I32_UCONVERT_SAT_F32(WASM_GET_LOCAL(0)));
FOR_FLOAT32_INPUTS(i) {
int32_t expected =
is_inbounds<uint32_t>(i)
? static_cast<uint32_t>(i)
: std::isnan(i) ? 0
: i < 0.0 ? std::numeric_limits<uint32_t>::min()
: std::numeric_limits<uint32_t>::max();
int32_t found = r.Call(i);
CHECK_EQ(expected, found);
}
}
WASM_EXEC_TEST(I32UConvertF64) {
WasmRunner<uint32_t, double> r(execution_tier);
BUILD(r, WASM_I32_UCONVERT_F64(WASM_GET_LOCAL(0)));
FOR_FLOAT64_INPUTS(i) {
if (is_inbounds<uint32_t>(i)) {
CHECK_EQ(static_cast<uint32_t>(i), r.Call(i));
} else {
CHECK_TRAP32(r.Call(i));
}
}
}
WASM_EXEC_TEST(I32UConvertSatF64) {
EXPERIMENTAL_FLAG_SCOPE(sat_f2i_conversions);
WasmRunner<uint32_t, double> r(execution_tier);
BUILD(r, WASM_I32_UCONVERT_SAT_F64(WASM_GET_LOCAL(0)));
FOR_FLOAT64_INPUTS(i) {
int32_t expected =
is_inbounds<uint32_t>(i)
? static_cast<uint32_t>(i)
: std::isnan(i) ? 0
: i < 0.0 ? std::numeric_limits<uint32_t>::min()
: std::numeric_limits<uint32_t>::max();
int32_t found = r.Call(i);
CHECK_EQ(expected, found);
}
}
WASM_EXEC_TEST(F64CopySign) {
WasmRunner<double, double, double> r(execution_tier);
BUILD(r, WASM_F64_COPYSIGN(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_FLOAT64_INPUTS(i) {
FOR_FLOAT64_INPUTS(j) { CHECK_DOUBLE_EQ(copysign(i, j), r.Call(i, j)); }
}
}
WASM_EXEC_TEST(F32CopySign) {
WasmRunner<float, float, float> r(execution_tier);
BUILD(r, WASM_F32_COPYSIGN(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_FLOAT32_INPUTS(i) {
FOR_FLOAT32_INPUTS(j) { CHECK_FLOAT_EQ(copysignf(i, j), r.Call(i, j)); }
}
}
static void CompileCallIndirectMany(ExecutionTier tier, ValueType param) {
// Make sure we don't run out of registers when compiling indirect calls
// with many many parameters.
TestSignatures sigs;
for (byte num_params = 0; num_params < 40; ++num_params) {
WasmRunner<void> r(tier);
FunctionSig* sig = sigs.many(r.zone(), kWasmStmt, param, num_params);
r.builder().AddSignature(sig);
r.builder().AddSignature(sig);
r.builder().AddIndirectFunctionTable(nullptr, 0);
WasmFunctionCompiler& t = r.NewFunction(sig);
std::vector<byte> code;
for (byte p = 0; p < num_params; ++p) {
ADD_CODE(code, kExprGetLocal, p);
}
ADD_CODE(code, kExprI32Const, 0);
ADD_CODE(code, kExprCallIndirect, 1, TABLE_ZERO);
t.Build(&code[0], &code[0] + code.size());
}
}
WASM_COMPILED_EXEC_TEST(Compile_Wasm_CallIndirect_Many_i32) {
CompileCallIndirectMany(execution_tier, kWasmI32);
}
WASM_COMPILED_EXEC_TEST(Compile_Wasm_CallIndirect_Many_f32) {
CompileCallIndirectMany(execution_tier, kWasmF32);
}
WASM_COMPILED_EXEC_TEST(Compile_Wasm_CallIndirect_Many_f64) {
CompileCallIndirectMany(execution_tier, kWasmF64);
}
WASM_EXEC_TEST(Int32RemS_dead) {
WasmRunner<int32_t, int32_t, int32_t> r(execution_tier);
BUILD(r, WASM_I32_REMS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)), WASM_DROP,
WASM_ZERO);
const int32_t kMin = std::numeric_limits<int32_t>::min();
CHECK_EQ(0, r.Call(133, 100));
CHECK_EQ(0, r.Call(kMin, -1));
CHECK_EQ(0, r.Call(0, 1));
CHECK_TRAP(r.Call(100, 0));
CHECK_TRAP(r.Call(-1001, 0));
CHECK_TRAP(r.Call(kMin, 0));
}
WASM_EXEC_TEST(BrToLoopWithValue) {
WasmRunner<int32_t, int32_t, int32_t> r(execution_tier);
// Subtracts <1> times 3 from <0> and returns the result.
BUILD(r,
// loop i32
kExprLoop, kLocalI32,
// decrement <0> by 3.
WASM_SET_LOCAL(0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I32V_1(3))),
// decrement <1> by 1.
WASM_SET_LOCAL(1, WASM_I32_SUB(WASM_GET_LOCAL(1), WASM_ONE)),
// load return value <0>, br_if will drop if if the branch is taken.
WASM_GET_LOCAL(0),
// continue loop if <1> is != 0.
WASM_BR_IF(0, WASM_GET_LOCAL(1)),
// end of loop, value loaded above is the return value.
kExprEnd);
CHECK_EQ(12, r.Call(27, 5));
}
WASM_EXEC_TEST(BrToLoopWithoutValue) {
// This was broken in the interpreter, see http://crbug.com/715454
WasmRunner<int32_t, int32_t> r(execution_tier);
BUILD(
r, kExprLoop, kLocalI32, // loop i32
WASM_SET_LOCAL(0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_ONE)), // dec <0>
WASM_BR_IF(0, WASM_GET_LOCAL(0)), // br_if <0> != 0
kExprUnreachable, // unreachable
kExprEnd); // end
CHECK_TRAP32(r.Call(2));
}
WASM_EXEC_TEST(LoopsWithValues) {
WasmRunner<int32_t> r(execution_tier);
BUILD(r, WASM_LOOP_I(WASM_LOOP_I(WASM_ONE), WASM_ONE, kExprI32Add));
CHECK_EQ(2, r.Call());
}
WASM_EXEC_TEST(InvalidStackAfterUnreachable) {
WasmRunner<int32_t> r(execution_tier);
BUILD(r, kExprUnreachable, kExprI32Add);
CHECK_TRAP32(r.Call());
}
WASM_EXEC_TEST(InvalidStackAfterBr) {
WasmRunner<int32_t> r(execution_tier);
BUILD(r, WASM_BRV(0, WASM_I32V_1(27)), kExprI32Add);
CHECK_EQ(27, r.Call());
}
WASM_EXEC_TEST(InvalidStackAfterReturn) {
WasmRunner<int32_t> r(execution_tier);
BUILD(r, WASM_RETURN1(WASM_I32V_1(17)), kExprI32Add);
CHECK_EQ(17, r.Call());
}
WASM_EXEC_TEST(BranchOverUnreachableCode) {
WasmRunner<int32_t> r(execution_tier);
BUILD(r,
// Start a block which breaks in the middle (hence unreachable code
// afterwards) and continue execution after this block.
WASM_BLOCK_I(WASM_BRV(0, WASM_I32V_1(17)), kExprI32Add),
// Add one to the 17 returned from the block.
WASM_ONE, kExprI32Add);
CHECK_EQ(18, r.Call());
}
WASM_EXEC_TEST(BranchOverUnreachableCodeInLoop0) {
WasmRunner<int32_t> r(execution_tier);
BUILD(r,
WASM_BLOCK_I(
// Start a loop which breaks in the middle (hence unreachable code
// afterwards) and continue execution after this loop.
// This should validate even though there is no value on the stack
// at the end of the loop.
WASM_LOOP_I(WASM_BRV(1, WASM_I32V_1(17)))),
// Add one to the 17 returned from the block.
WASM_ONE, kExprI32Add);
CHECK_EQ(18, r.Call());
}
WASM_EXEC_TEST(BranchOverUnreachableCodeInLoop1) {
WasmRunner<int32_t> r(execution_tier);
BUILD(r,
WASM_BLOCK_I(
// Start a loop which breaks in the middle (hence unreachable code
// afterwards) and continue execution after this loop.
// Even though unreachable, the loop leaves one value on the stack.
WASM_LOOP_I(WASM_BRV(1, WASM_I32V_1(17)), WASM_ONE)),
// Add one to the 17 returned from the block.
WASM_ONE, kExprI32Add);
CHECK_EQ(18, r.Call());
}
WASM_EXEC_TEST(BranchOverUnreachableCodeInLoop2) {
WasmRunner<int32_t> r(execution_tier);
BUILD(r,
WASM_BLOCK_I(
// Start a loop which breaks in the middle (hence unreachable code
// afterwards) and continue execution after this loop.
// The unreachable code is allowed to pop non-existing values off
// the stack and push back the result.
WASM_LOOP_I(WASM_BRV(1, WASM_I32V_1(17)), kExprI32Add)),
// Add one to the 17 returned from the block.
WASM_ONE, kExprI32Add);
CHECK_EQ(18, r.Call());
}
WASM_EXEC_TEST(BlockInsideUnreachable) {
WasmRunner<int32_t> r(execution_tier);
BUILD(r, WASM_RETURN1(WASM_I32V_1(17)), WASM_BLOCK(WASM_BR(0)));
CHECK_EQ(17, r.Call());
}
WASM_EXEC_TEST(IfInsideUnreachable) {
WasmRunner<int32_t> r(execution_tier);
BUILD(
r, WASM_RETURN1(WASM_I32V_1(17)),
WASM_IF_ELSE_I(WASM_ONE, WASM_BRV(0, WASM_ONE), WASM_RETURN1(WASM_ONE)));
CHECK_EQ(17, r.Call());
}
// This test targets binops in Liftoff.
// Initialize a number of local variables to force them into different
// registers, then perform a binary operation on two of the locals.
// Afterwards, write back all locals to memory, to check that their value was
// not overwritten.
template <typename ctype>
void BinOpOnDifferentRegisters(
ExecutionTier execution_tier, ValueType type, Vector<const ctype> inputs,
WasmOpcode opcode, std::function<ctype(ctype, ctype, bool*)> expect_fn) {
static constexpr int kMaxNumLocals = 8;
for (int num_locals = 1; num_locals < kMaxNumLocals; ++num_locals) {
// {init_locals_code} is shared by all code generated in the loop below.
std::vector<byte> init_locals_code;
// Load from memory into the locals.
for (int i = 0; i < num_locals; ++i) {
ADD_CODE(
init_locals_code,
WASM_SET_LOCAL(i, WASM_LOAD_MEM(ValueTypes::MachineTypeFor(type),
WASM_I32V_2(sizeof(ctype) * i))));
}
// {write_locals_code} is shared by all code generated in the loop below.
std::vector<byte> write_locals_code;
// Write locals back into memory, shifted by one element to the right.
for (int i = 0; i < num_locals; ++i) {
ADD_CODE(write_locals_code,
WASM_STORE_MEM(ValueTypes::MachineTypeFor(type),
WASM_I32V_2(sizeof(ctype) * (i + 1)),
WASM_GET_LOCAL(i)));
}
for (int lhs = 0; lhs < num_locals; ++lhs) {
for (int rhs = 0; rhs < num_locals; ++rhs) {
WasmRunner<int32_t> r(execution_tier);
ctype* memory =
r.builder().AddMemoryElems<ctype>(kWasmPageSize / sizeof(ctype));
for (int i = 0; i < num_locals; ++i) {
r.AllocateLocal(type);
}
std::vector<byte> code(init_locals_code);
ADD_CODE(code,
// Store the result of the binary operation at memory[0].
WASM_STORE_MEM(ValueTypes::MachineTypeFor(type), WASM_ZERO,
WASM_BINOP(opcode, WASM_GET_LOCAL(lhs),
WASM_GET_LOCAL(rhs))),
// Return 0.
WASM_ZERO);
code.insert(code.end(), write_locals_code.begin(),
write_locals_code.end());
r.Build(code.data(), code.data() + code.size());
for (ctype lhs_value : inputs) {
for (ctype rhs_value : inputs) {
if (lhs == rhs) lhs_value = rhs_value;
for (int i = 0; i < num_locals; ++i) {
ctype value =
i == lhs ? lhs_value
: i == rhs ? rhs_value : static_cast<ctype>(i + 47);
WriteLittleEndianValue<ctype>(&memory[i], value);
}
bool trap = false;
int64_t expect = expect_fn(lhs_value, rhs_value, &trap);
if (trap) {
CHECK_TRAP(r.Call());
continue;
}
CHECK_EQ(0, r.Call());
CHECK_EQ(expect, ReadLittleEndianValue<ctype>(&memory[0]));
for (int i = 0; i < num_locals; ++i) {
ctype value =
i == lhs ? lhs_value
: i == rhs ? rhs_value : static_cast<ctype>(i + 47);
CHECK_EQ(value, ReadLittleEndianValue<ctype>(&memory[i + 1]));
}
}
}
}
}
}
}
// Keep this list small, the BinOpOnDifferentRegisters test is running long
// enough already.
static constexpr int32_t kSome32BitInputs[] = {0, 1, -1, 31, 0xff112233};
static constexpr int64_t kSome64BitInputs[] = {
0, 1, -1, 31, 63, 0x100000000, 0xff11223344556677};
WASM_EXEC_TEST(I32AddOnDifferentRegisters) {
BinOpOnDifferentRegisters<int32_t>(
execution_tier, kWasmI32, ArrayVector(kSome32BitInputs), kExprI32Add,
[](int32_t lhs, int32_t rhs, bool* trap) { return lhs + rhs; });
}
WASM_EXEC_TEST(I32SubOnDifferentRegisters) {
BinOpOnDifferentRegisters<int32_t>(
execution_tier, kWasmI32, ArrayVector(kSome32BitInputs), kExprI32Sub,
[](int32_t lhs, int32_t rhs, bool* trap) { return lhs - rhs; });
}
WASM_EXEC_TEST(I32MulOnDifferentRegisters) {
BinOpOnDifferentRegisters<int32_t>(execution_tier, kWasmI32,
ArrayVector(kSome32BitInputs), kExprI32Mul,
[](int32_t lhs, int32_t rhs, bool* trap) {
return base::MulWithWraparound(lhs, rhs);
});
}
WASM_EXEC_TEST(I32ShlOnDifferentRegisters) {
BinOpOnDifferentRegisters<int32_t>(execution_tier, kWasmI32,
ArrayVector(kSome32BitInputs), kExprI32Shl,
[](int32_t lhs, int32_t rhs, bool* trap) {
return base::ShlWithWraparound(lhs, rhs);
});
}
WASM_EXEC_TEST(I32ShrSOnDifferentRegisters) {
BinOpOnDifferentRegisters<int32_t>(
execution_tier, kWasmI32, ArrayVector(kSome32BitInputs), kExprI32ShrS,
[](int32_t lhs, int32_t rhs, bool* trap) { return lhs >> (rhs & 31); });
}
WASM_EXEC_TEST(I32ShrUOnDifferentRegisters) {
BinOpOnDifferentRegisters<int32_t>(
execution_tier, kWasmI32, ArrayVector(kSome32BitInputs), kExprI32ShrU,
[](int32_t lhs, int32_t rhs, bool* trap) {
return static_cast<uint32_t>(lhs) >> (rhs & 31);
});
}
WASM_EXEC_TEST(I32DivSOnDifferentRegisters) {
BinOpOnDifferentRegisters<int32_t>(
execution_tier, kWasmI32, ArrayVector(kSome32BitInputs), kExprI32DivS,
[](int32_t lhs, int32_t rhs, bool* trap) {
*trap = rhs == 0;
return *trap ? 0 : lhs / rhs;
});
}
WASM_EXEC_TEST(I32DivUOnDifferentRegisters) {
BinOpOnDifferentRegisters<int32_t>(
execution_tier, kWasmI32, ArrayVector(kSome32BitInputs), kExprI32DivU,
[](uint32_t lhs, uint32_t rhs, bool* trap) {
*trap = rhs == 0;
return *trap ? 0 : lhs / rhs;
});
}
WASM_EXEC_TEST(I32RemSOnDifferentRegisters) {
BinOpOnDifferentRegisters<int32_t>(
execution_tier, kWasmI32, ArrayVector(kSome32BitInputs), kExprI32RemS,
[](int32_t lhs, int32_t rhs, bool* trap) {
*trap = rhs == 0;
return *trap || rhs == -1 ? 0 : lhs % rhs;
});
}
WASM_EXEC_TEST(I32RemUOnDifferentRegisters) {
BinOpOnDifferentRegisters<int32_t>(
execution_tier, kWasmI32, ArrayVector(kSome32BitInputs), kExprI32RemU,
[](uint32_t lhs, uint32_t rhs, bool* trap) {
*trap = rhs == 0;
return *trap ? 0 : lhs % rhs;
});
}
WASM_EXEC_TEST(I64AddOnDifferentRegisters) {
BinOpOnDifferentRegisters<int64_t>(
execution_tier, kWasmI64, ArrayVector(kSome64BitInputs), kExprI64Add,
[](int64_t lhs, int64_t rhs, bool* trap) { return lhs + rhs; });
}
WASM_EXEC_TEST(I64SubOnDifferentRegisters) {
BinOpOnDifferentRegisters<int64_t>(
execution_tier, kWasmI64, ArrayVector(kSome64BitInputs), kExprI64Sub,
[](int64_t lhs, int64_t rhs, bool* trap) { return lhs - rhs; });
}
WASM_EXEC_TEST(I64MulOnDifferentRegisters) {
BinOpOnDifferentRegisters<int64_t>(execution_tier, kWasmI64,
ArrayVector(kSome64BitInputs), kExprI64Mul,
[](int64_t lhs, int64_t rhs, bool* trap) {
return base::MulWithWraparound(lhs, rhs);
});
}
WASM_EXEC_TEST(I64ShlOnDifferentRegisters) {
BinOpOnDifferentRegisters<int64_t>(execution_tier, kWasmI64,
ArrayVector(kSome64BitInputs), kExprI64Shl,
[](int64_t lhs, int64_t rhs, bool* trap) {
return base::ShlWithWraparound(lhs, rhs);
});
}
WASM_EXEC_TEST(I64ShrSOnDifferentRegisters) {
BinOpOnDifferentRegisters<int64_t>(
execution_tier, kWasmI64, ArrayVector(kSome64BitInputs), kExprI64ShrS,
[](int64_t lhs, int64_t rhs, bool* trap) { return lhs >> (rhs & 63); });
}
WASM_EXEC_TEST(I64ShrUOnDifferentRegisters) {
BinOpOnDifferentRegisters<int64_t>(
execution_tier, kWasmI64, ArrayVector(kSome64BitInputs), kExprI64ShrU,
[](int64_t lhs, int64_t rhs, bool* trap) {
return static_cast<uint64_t>(lhs) >> (rhs & 63);
});
}
WASM_EXEC_TEST(I64DivSOnDifferentRegisters) {
BinOpOnDifferentRegisters<int64_t>(
execution_tier, kWasmI64, ArrayVector(kSome64BitInputs), kExprI64DivS,
[](int64_t lhs, int64_t rhs, bool* trap) {
*trap = rhs == 0 ||
(rhs == -1 && lhs == std::numeric_limits<int64_t>::min());
return *trap ? 0 : lhs / rhs;
});
}
WASM_EXEC_TEST(I64DivUOnDifferentRegisters) {
BinOpOnDifferentRegisters<int64_t>(
execution_tier, kWasmI64, ArrayVector(kSome64BitInputs), kExprI64DivU,
[](uint64_t lhs, uint64_t rhs, bool* trap) {
*trap = rhs == 0;
return *trap ? 0 : lhs / rhs;
});
}
WASM_EXEC_TEST(I64RemSOnDifferentRegisters) {
BinOpOnDifferentRegisters<int64_t>(
execution_tier, kWasmI64, ArrayVector(kSome64BitInputs), kExprI64RemS,
[](int64_t lhs, int64_t rhs, bool* trap) {
*trap = rhs == 0;
return *trap || rhs == -1 ? 0 : lhs % rhs;
});
}
WASM_EXEC_TEST(I64RemUOnDifferentRegisters) {
BinOpOnDifferentRegisters<int64_t>(
execution_tier, kWasmI64, ArrayVector(kSome64BitInputs), kExprI64RemU,
[](uint64_t lhs, uint64_t rhs, bool* trap) {
*trap = rhs == 0;
return *trap ? 0 : lhs % rhs;
});
}
TEST(Liftoff_tier_up) {
WasmRunner<int32_t, int32_t, int32_t> r(ExecutionTier::kLiftoff);
WasmFunctionCompiler& add = r.NewFunction<int32_t, int32_t, int32_t>("add");
BUILD(add, WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
WasmFunctionCompiler& sub = r.NewFunction<int32_t, int32_t, int32_t>("sub");
BUILD(sub, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
// Create the main function, which shall call {add}.
BUILD(r, WASM_CALL_FUNCTION(add.function_index(), WASM_GET_LOCAL(0),
WASM_GET_LOCAL(1)));
NativeModule* native_module =
r.builder().instance_object()->module_object().native_module();
// This test only works if we managed to compile with Liftoff.
if (native_module->GetCode(add.function_index())->is_liftoff()) {
// First run should execute {add}.
CHECK_EQ(18, r.Call(11, 7));
// Now make a copy of the {sub} function, and add it to the native module at
// the index of {add}.
CodeDesc desc;
memset(&desc, 0, sizeof(CodeDesc));
WasmCode* sub_code = native_module->GetCode(sub.function_index());
size_t sub_size = sub_code->instructions().size();
std::unique_ptr<byte[]> buffer(new byte[sub_code->instructions().size()]);
memcpy(buffer.get(), sub_code->instructions().begin(), sub_size);
desc.buffer = buffer.get();
desc.instr_size = static_cast<int>(sub_size);
std::unique_ptr<WasmCode> new_code = native_module->AddCode(
add.function_index(), desc, 0, 0, {}, OwnedVector<byte>(),
WasmCode::kFunction, ExecutionTier::kTurbofan);
native_module->PublishCode(std::move(new_code));
// Second run should now execute {sub}.
CHECK_EQ(4, r.Call(11, 7));
}
}
#undef B1
#undef B2
#undef RET
#undef RET_I8
#undef ADD_CODE
} // namespace test_run_wasm
} // namespace wasm
} // namespace internal
} // namespace v8