| // Copyright 2015 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include <stdint.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include "src/api/api-inl.h" |
| #include "src/base/overflowing-math.h" |
| #include "src/base/platform/elapsed-timer.h" |
| #include "src/codegen/assembler-inl.h" |
| #include "src/utils/utils.h" |
| #include "test/cctest/cctest.h" |
| #include "test/cctest/compiler/value-helper.h" |
| #include "test/cctest/wasm/wasm-run-utils.h" |
| #include "test/common/wasm/test-signatures.h" |
| #include "test/common/wasm/wasm-macro-gen.h" |
| |
| namespace v8 { |
| namespace internal { |
| namespace wasm { |
| namespace test_run_wasm { |
| |
| // for even shorter tests. |
| #define B1(a) WASM_BLOCK(a) |
| #define B2(a, b) WASM_BLOCK(a, b) |
| #define RET(x) x, kExprReturn |
| #define RET_I8(x) WASM_I32V_2(x), kExprReturn |
| |
| WASM_EXEC_TEST(Int32Const) { |
| WasmRunner<int32_t> r(execution_tier); |
| const int32_t kExpectedValue = 0x11223344; |
| // return(kExpectedValue) |
| BUILD(r, WASM_I32V_5(kExpectedValue)); |
| CHECK_EQ(kExpectedValue, r.Call()); |
| } |
| |
| WASM_EXEC_TEST(Int32Const_many) { |
| FOR_INT32_INPUTS(i) { |
| WasmRunner<int32_t> r(execution_tier); |
| const int32_t kExpectedValue = i; |
| // return(kExpectedValue) |
| BUILD(r, WASM_I32V(kExpectedValue)); |
| CHECK_EQ(kExpectedValue, r.Call()); |
| } |
| } |
| |
| WASM_EXEC_TEST(GraphTrimming) { |
| // This WebAssembly code requires graph trimming in the TurboFan compiler. |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| BUILD(r, kExprGetLocal, 0, kExprGetLocal, 0, kExprGetLocal, 0, kExprI32RemS, |
| kExprI32Eq, kExprGetLocal, 0, kExprI32DivS, kExprUnreachable); |
| r.Call(1); |
| } |
| |
| WASM_EXEC_TEST(Int32Param0) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| // return(local[0]) |
| BUILD(r, WASM_GET_LOCAL(0)); |
| FOR_INT32_INPUTS(i) { CHECK_EQ(i, r.Call(i)); } |
| } |
| |
| WASM_EXEC_TEST(Int32Param0_fallthru) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| // local[0] |
| BUILD(r, WASM_GET_LOCAL(0)); |
| FOR_INT32_INPUTS(i) { CHECK_EQ(i, r.Call(i)); } |
| } |
| |
| WASM_EXEC_TEST(Int32Param1) { |
| WasmRunner<int32_t, int32_t, int32_t> r(execution_tier); |
| // local[1] |
| BUILD(r, WASM_GET_LOCAL(1)); |
| FOR_INT32_INPUTS(i) { CHECK_EQ(i, r.Call(-111, i)); } |
| } |
| |
| WASM_EXEC_TEST(Int32Add) { |
| WasmRunner<int32_t> r(execution_tier); |
| // 11 + 44 |
| BUILD(r, WASM_I32_ADD(WASM_I32V_1(11), WASM_I32V_1(44))); |
| CHECK_EQ(55, r.Call()); |
| } |
| |
| WASM_EXEC_TEST(Int32Add_P) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| // p0 + 13 |
| BUILD(r, WASM_I32_ADD(WASM_I32V_1(13), WASM_GET_LOCAL(0))); |
| FOR_INT32_INPUTS(i) { CHECK_EQ(base::AddWithWraparound(i, 13), r.Call(i)); } |
| } |
| |
| WASM_EXEC_TEST(Int32Add_P_fallthru) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| // p0 + 13 |
| BUILD(r, WASM_I32_ADD(WASM_I32V_1(13), WASM_GET_LOCAL(0))); |
| FOR_INT32_INPUTS(i) { CHECK_EQ(base::AddWithWraparound(i, 13), r.Call(i)); } |
| } |
| |
| static void RunInt32AddTest(ExecutionTier execution_tier, const byte* code, |
| size_t size) { |
| TestSignatures sigs; |
| WasmRunner<int32_t, int32_t, int32_t> r(execution_tier); |
| r.builder().AddSignature(sigs.ii_v()); |
| r.builder().AddSignature(sigs.iii_v()); |
| r.Build(code, code + size); |
| FOR_INT32_INPUTS(i) { |
| FOR_INT32_INPUTS(j) { |
| int32_t expected = static_cast<int32_t>(static_cast<uint32_t>(i) + |
| static_cast<uint32_t>(j)); |
| CHECK_EQ(expected, r.Call(i, j)); |
| } |
| } |
| } |
| |
| WASM_EXEC_TEST(Int32Add_P2) { |
| EXPERIMENTAL_FLAG_SCOPE(mv); |
| static const byte code[] = { |
| WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))}; |
| RunInt32AddTest(execution_tier, code, sizeof(code)); |
| } |
| |
| WASM_EXEC_TEST(Int32Add_block1) { |
| EXPERIMENTAL_FLAG_SCOPE(mv); |
| static const byte code[] = { |
| WASM_BLOCK_X(1, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)), kExprI32Add}; |
| RunInt32AddTest(execution_tier, code, sizeof(code)); |
| } |
| |
| WASM_EXEC_TEST(Int32Add_block2) { |
| EXPERIMENTAL_FLAG_SCOPE(mv); |
| static const byte code[] = { |
| WASM_BLOCK_X(1, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1), kExprBr, DEPTH_0), |
| kExprI32Add}; |
| RunInt32AddTest(execution_tier, code, sizeof(code)); |
| } |
| |
| WASM_EXEC_TEST(Int32Add_multi_if) { |
| EXPERIMENTAL_FLAG_SCOPE(mv); |
| static const byte code[] = { |
| WASM_IF_ELSE_X(1, WASM_GET_LOCAL(0), |
| WASM_SEQ(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)), |
| WASM_SEQ(WASM_GET_LOCAL(1), WASM_GET_LOCAL(0))), |
| kExprI32Add}; |
| RunInt32AddTest(execution_tier, code, sizeof(code)); |
| } |
| |
| WASM_EXEC_TEST(Float32Add) { |
| WasmRunner<int32_t> r(execution_tier); |
| // int(11.5f + 44.5f) |
| BUILD(r, |
| WASM_I32_SCONVERT_F32(WASM_F32_ADD(WASM_F32(11.5f), WASM_F32(44.5f)))); |
| CHECK_EQ(56, r.Call()); |
| } |
| |
| WASM_EXEC_TEST(Float64Add) { |
| WasmRunner<int32_t> r(execution_tier); |
| // return int(13.5d + 43.5d) |
| BUILD(r, WASM_I32_SCONVERT_F64(WASM_F64_ADD(WASM_F64(13.5), WASM_F64(43.5)))); |
| CHECK_EQ(57, r.Call()); |
| } |
| |
| // clang-format messes up the FOR_INT32_INPUTS macros. |
| // clang-format off |
| template<typename ctype> |
| static void TestInt32Binop(ExecutionTier execution_tier, WasmOpcode opcode, |
| ctype(*expected)(ctype, ctype)) { |
| FOR_INT32_INPUTS(i) { |
| FOR_INT32_INPUTS(j) { |
| WasmRunner<ctype> r(execution_tier); |
| // Apply {opcode} on two constants. |
| BUILD(r, WASM_BINOP(opcode, WASM_I32V(i), WASM_I32V(j))); |
| CHECK_EQ(expected(i, j), r.Call()); |
| } |
| } |
| { |
| WasmRunner<ctype, ctype, ctype> r(execution_tier); |
| // Apply {opcode} on two parameters. |
| BUILD(r, WASM_BINOP(opcode, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); |
| FOR_INT32_INPUTS(i) { |
| FOR_INT32_INPUTS(j) { |
| CHECK_EQ(expected(i, j), r.Call(i, j)); |
| } |
| } |
| } |
| } |
| // clang-format on |
| |
| #define WASM_I32_BINOP_TEST(expr, ctype, expected) \ |
| WASM_EXEC_TEST(I32Binop_##expr) { \ |
| TestInt32Binop<ctype>(execution_tier, kExprI32##expr, \ |
| [](ctype a, ctype b) -> ctype { return expected; }); \ |
| } |
| |
| WASM_I32_BINOP_TEST(Add, int32_t, base::AddWithWraparound(a, b)) |
| WASM_I32_BINOP_TEST(Sub, int32_t, base::SubWithWraparound(a, b)) |
| WASM_I32_BINOP_TEST(Mul, int32_t, base::MulWithWraparound(a, b)) |
| WASM_I32_BINOP_TEST(DivS, int32_t, |
| (a == kMinInt && b == -1) || b == 0 |
| ? static_cast<int32_t>(0xDEADBEEF) |
| : a / b) |
| WASM_I32_BINOP_TEST(DivU, uint32_t, b == 0 ? 0xDEADBEEF : a / b) |
| WASM_I32_BINOP_TEST(RemS, int32_t, b == 0 ? 0xDEADBEEF : b == -1 ? 0 : a % b) |
| WASM_I32_BINOP_TEST(RemU, uint32_t, b == 0 ? 0xDEADBEEF : a % b) |
| WASM_I32_BINOP_TEST(And, int32_t, a& b) |
| WASM_I32_BINOP_TEST(Ior, int32_t, a | b) |
| WASM_I32_BINOP_TEST(Xor, int32_t, a ^ b) |
| WASM_I32_BINOP_TEST(Shl, int32_t, base::ShlWithWraparound(a, b)) |
| WASM_I32_BINOP_TEST(ShrU, uint32_t, a >> (b & 0x1F)) |
| WASM_I32_BINOP_TEST(ShrS, int32_t, a >> (b & 0x1F)) |
| WASM_I32_BINOP_TEST(Ror, uint32_t, (a >> (b & 0x1F)) | (a << ((32 - b) & 0x1F))) |
| WASM_I32_BINOP_TEST(Rol, uint32_t, (a << (b & 0x1F)) | (a >> ((32 - b) & 0x1F))) |
| WASM_I32_BINOP_TEST(Eq, int32_t, a == b) |
| WASM_I32_BINOP_TEST(Ne, int32_t, a != b) |
| WASM_I32_BINOP_TEST(LtS, int32_t, a < b) |
| WASM_I32_BINOP_TEST(LeS, int32_t, a <= b) |
| WASM_I32_BINOP_TEST(LtU, uint32_t, a < b) |
| WASM_I32_BINOP_TEST(LeU, uint32_t, a <= b) |
| WASM_I32_BINOP_TEST(GtS, int32_t, a > b) |
| WASM_I32_BINOP_TEST(GeS, int32_t, a >= b) |
| WASM_I32_BINOP_TEST(GtU, uint32_t, a > b) |
| WASM_I32_BINOP_TEST(GeU, uint32_t, a >= b) |
| |
| #undef WASM_I32_BINOP_TEST |
| |
| void TestInt32Unop(ExecutionTier execution_tier, WasmOpcode opcode, |
| int32_t expected, int32_t a) { |
| { |
| WasmRunner<int32_t> r(execution_tier); |
| // return op K |
| BUILD(r, WASM_UNOP(opcode, WASM_I32V(a))); |
| CHECK_EQ(expected, r.Call()); |
| } |
| { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| // return op a |
| BUILD(r, WASM_UNOP(opcode, WASM_GET_LOCAL(0))); |
| CHECK_EQ(expected, r.Call(a)); |
| } |
| } |
| |
| WASM_EXEC_TEST(Int32Clz) { |
| TestInt32Unop(execution_tier, kExprI32Clz, 0, 0x80001000); |
| TestInt32Unop(execution_tier, kExprI32Clz, 1, 0x40000500); |
| TestInt32Unop(execution_tier, kExprI32Clz, 2, 0x20000300); |
| TestInt32Unop(execution_tier, kExprI32Clz, 3, 0x10000003); |
| TestInt32Unop(execution_tier, kExprI32Clz, 4, 0x08050000); |
| TestInt32Unop(execution_tier, kExprI32Clz, 5, 0x04006000); |
| TestInt32Unop(execution_tier, kExprI32Clz, 6, 0x02000000); |
| TestInt32Unop(execution_tier, kExprI32Clz, 7, 0x010000A0); |
| TestInt32Unop(execution_tier, kExprI32Clz, 8, 0x00800C00); |
| TestInt32Unop(execution_tier, kExprI32Clz, 9, 0x00400000); |
| TestInt32Unop(execution_tier, kExprI32Clz, 10, 0x0020000D); |
| TestInt32Unop(execution_tier, kExprI32Clz, 11, 0x00100F00); |
| TestInt32Unop(execution_tier, kExprI32Clz, 12, 0x00080000); |
| TestInt32Unop(execution_tier, kExprI32Clz, 13, 0x00041000); |
| TestInt32Unop(execution_tier, kExprI32Clz, 14, 0x00020020); |
| TestInt32Unop(execution_tier, kExprI32Clz, 15, 0x00010300); |
| TestInt32Unop(execution_tier, kExprI32Clz, 16, 0x00008040); |
| TestInt32Unop(execution_tier, kExprI32Clz, 17, 0x00004005); |
| TestInt32Unop(execution_tier, kExprI32Clz, 18, 0x00002050); |
| TestInt32Unop(execution_tier, kExprI32Clz, 19, 0x00001700); |
| TestInt32Unop(execution_tier, kExprI32Clz, 20, 0x00000870); |
| TestInt32Unop(execution_tier, kExprI32Clz, 21, 0x00000405); |
| TestInt32Unop(execution_tier, kExprI32Clz, 22, 0x00000203); |
| TestInt32Unop(execution_tier, kExprI32Clz, 23, 0x00000101); |
| TestInt32Unop(execution_tier, kExprI32Clz, 24, 0x00000089); |
| TestInt32Unop(execution_tier, kExprI32Clz, 25, 0x00000041); |
| TestInt32Unop(execution_tier, kExprI32Clz, 26, 0x00000022); |
| TestInt32Unop(execution_tier, kExprI32Clz, 27, 0x00000013); |
| TestInt32Unop(execution_tier, kExprI32Clz, 28, 0x00000008); |
| TestInt32Unop(execution_tier, kExprI32Clz, 29, 0x00000004); |
| TestInt32Unop(execution_tier, kExprI32Clz, 30, 0x00000002); |
| TestInt32Unop(execution_tier, kExprI32Clz, 31, 0x00000001); |
| TestInt32Unop(execution_tier, kExprI32Clz, 32, 0x00000000); |
| } |
| |
| WASM_EXEC_TEST(Int32Ctz) { |
| TestInt32Unop(execution_tier, kExprI32Ctz, 32, 0x00000000); |
| TestInt32Unop(execution_tier, kExprI32Ctz, 31, 0x80000000); |
| TestInt32Unop(execution_tier, kExprI32Ctz, 30, 0x40000000); |
| TestInt32Unop(execution_tier, kExprI32Ctz, 29, 0x20000000); |
| TestInt32Unop(execution_tier, kExprI32Ctz, 28, 0x10000000); |
| TestInt32Unop(execution_tier, kExprI32Ctz, 27, 0xA8000000); |
| TestInt32Unop(execution_tier, kExprI32Ctz, 26, 0xF4000000); |
| TestInt32Unop(execution_tier, kExprI32Ctz, 25, 0x62000000); |
| TestInt32Unop(execution_tier, kExprI32Ctz, 24, 0x91000000); |
| TestInt32Unop(execution_tier, kExprI32Ctz, 23, 0xCD800000); |
| TestInt32Unop(execution_tier, kExprI32Ctz, 22, 0x09400000); |
| TestInt32Unop(execution_tier, kExprI32Ctz, 21, 0xAF200000); |
| TestInt32Unop(execution_tier, kExprI32Ctz, 20, 0xAC100000); |
| TestInt32Unop(execution_tier, kExprI32Ctz, 19, 0xE0B80000); |
| TestInt32Unop(execution_tier, kExprI32Ctz, 18, 0x9CE40000); |
| TestInt32Unop(execution_tier, kExprI32Ctz, 17, 0xC7920000); |
| TestInt32Unop(execution_tier, kExprI32Ctz, 16, 0xB8F10000); |
| TestInt32Unop(execution_tier, kExprI32Ctz, 15, 0x3B9F8000); |
| TestInt32Unop(execution_tier, kExprI32Ctz, 14, 0xDB4C4000); |
| TestInt32Unop(execution_tier, kExprI32Ctz, 13, 0xE9A32000); |
| TestInt32Unop(execution_tier, kExprI32Ctz, 12, 0xFCA61000); |
| TestInt32Unop(execution_tier, kExprI32Ctz, 11, 0x6C8A7800); |
| TestInt32Unop(execution_tier, kExprI32Ctz, 10, 0x8CE5A400); |
| TestInt32Unop(execution_tier, kExprI32Ctz, 9, 0xCB7D0200); |
| TestInt32Unop(execution_tier, kExprI32Ctz, 8, 0xCB4DC100); |
| TestInt32Unop(execution_tier, kExprI32Ctz, 7, 0xDFBEC580); |
| TestInt32Unop(execution_tier, kExprI32Ctz, 6, 0x27A9DB40); |
| TestInt32Unop(execution_tier, kExprI32Ctz, 5, 0xDE3BCB20); |
| TestInt32Unop(execution_tier, kExprI32Ctz, 4, 0xD7E8A610); |
| TestInt32Unop(execution_tier, kExprI32Ctz, 3, 0x9AFDBC88); |
| TestInt32Unop(execution_tier, kExprI32Ctz, 2, 0x9AFDBC84); |
| TestInt32Unop(execution_tier, kExprI32Ctz, 1, 0x9AFDBC82); |
| TestInt32Unop(execution_tier, kExprI32Ctz, 0, 0x9AFDBC81); |
| } |
| |
| WASM_EXEC_TEST(Int32Popcnt) { |
| TestInt32Unop(execution_tier, kExprI32Popcnt, 32, 0xFFFFFFFF); |
| TestInt32Unop(execution_tier, kExprI32Popcnt, 0, 0x00000000); |
| TestInt32Unop(execution_tier, kExprI32Popcnt, 1, 0x00008000); |
| TestInt32Unop(execution_tier, kExprI32Popcnt, 13, 0x12345678); |
| TestInt32Unop(execution_tier, kExprI32Popcnt, 19, 0xFEDCBA09); |
| } |
| |
| WASM_EXEC_TEST(I32Eqz) { |
| TestInt32Unop(execution_tier, kExprI32Eqz, 0, 1); |
| TestInt32Unop(execution_tier, kExprI32Eqz, 0, -1); |
| TestInt32Unop(execution_tier, kExprI32Eqz, 0, -827343); |
| TestInt32Unop(execution_tier, kExprI32Eqz, 0, 8888888); |
| TestInt32Unop(execution_tier, kExprI32Eqz, 1, 0); |
| } |
| |
| |
| WASM_EXEC_TEST(Int32DivS_trap) { |
| WasmRunner<int32_t, int32_t, int32_t> r(execution_tier); |
| BUILD(r, WASM_I32_DIVS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); |
| const int32_t kMin = std::numeric_limits<int32_t>::min(); |
| CHECK_EQ(0, r.Call(0, 100)); |
| CHECK_TRAP(r.Call(100, 0)); |
| CHECK_TRAP(r.Call(-1001, 0)); |
| CHECK_TRAP(r.Call(kMin, -1)); |
| CHECK_TRAP(r.Call(kMin, 0)); |
| } |
| |
| WASM_EXEC_TEST(Int32RemS_trap) { |
| WasmRunner<int32_t, int32_t, int32_t> r(execution_tier); |
| BUILD(r, WASM_I32_REMS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); |
| const int32_t kMin = std::numeric_limits<int32_t>::min(); |
| CHECK_EQ(33, r.Call(133, 100)); |
| CHECK_EQ(0, r.Call(kMin, -1)); |
| CHECK_TRAP(r.Call(100, 0)); |
| CHECK_TRAP(r.Call(-1001, 0)); |
| CHECK_TRAP(r.Call(kMin, 0)); |
| } |
| |
| WASM_EXEC_TEST(Int32DivU_trap) { |
| WasmRunner<int32_t, int32_t, int32_t> r(execution_tier); |
| BUILD(r, WASM_I32_DIVU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); |
| const int32_t kMin = std::numeric_limits<int32_t>::min(); |
| CHECK_EQ(0, r.Call(0, 100)); |
| CHECK_EQ(0, r.Call(kMin, -1)); |
| CHECK_TRAP(r.Call(100, 0)); |
| CHECK_TRAP(r.Call(-1001, 0)); |
| CHECK_TRAP(r.Call(kMin, 0)); |
| } |
| |
| WASM_EXEC_TEST(Int32RemU_trap) { |
| WasmRunner<int32_t, int32_t, int32_t> r(execution_tier); |
| BUILD(r, WASM_I32_REMU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); |
| CHECK_EQ(17, r.Call(217, 100)); |
| const int32_t kMin = std::numeric_limits<int32_t>::min(); |
| CHECK_TRAP(r.Call(100, 0)); |
| CHECK_TRAP(r.Call(-1001, 0)); |
| CHECK_TRAP(r.Call(kMin, 0)); |
| CHECK_EQ(kMin, r.Call(kMin, -1)); |
| } |
| |
| WASM_EXEC_TEST(Int32DivS_byzero_const) { |
| for (int8_t denom = -2; denom < 8; ++denom) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| BUILD(r, WASM_I32_DIVS(WASM_GET_LOCAL(0), WASM_I32V_1(denom))); |
| for (int32_t val = -7; val < 8; ++val) { |
| if (denom == 0) { |
| CHECK_TRAP(r.Call(val)); |
| } else { |
| CHECK_EQ(val / denom, r.Call(val)); |
| } |
| } |
| } |
| } |
| |
| WASM_EXEC_TEST(Int32DivU_byzero_const) { |
| for (uint32_t denom = 0xFFFFFFFE; denom < 8; ++denom) { |
| WasmRunner<uint32_t, uint32_t> r(execution_tier); |
| BUILD(r, WASM_I32_DIVU(WASM_GET_LOCAL(0), WASM_I32V_1(denom))); |
| |
| for (uint32_t val = 0xFFFFFFF0; val < 8; ++val) { |
| if (denom == 0) { |
| CHECK_TRAP(r.Call(val)); |
| } else { |
| CHECK_EQ(val / denom, r.Call(val)); |
| } |
| } |
| } |
| } |
| |
| WASM_EXEC_TEST(Int32DivS_trap_effect) { |
| WasmRunner<int32_t, int32_t, int32_t> r(execution_tier); |
| r.builder().AddMemory(kWasmPageSize); |
| |
| BUILD(r, WASM_IF_ELSE_I( |
| WASM_GET_LOCAL(0), |
| WASM_I32_DIVS( |
| WASM_BLOCK_I(WASM_STORE_MEM(MachineType::Int8(), WASM_ZERO, |
| WASM_GET_LOCAL(0)), |
| WASM_GET_LOCAL(0)), |
| WASM_GET_LOCAL(1)), |
| WASM_I32_DIVS( |
| WASM_BLOCK_I(WASM_STORE_MEM(MachineType::Int8(), WASM_ZERO, |
| WASM_GET_LOCAL(0)), |
| WASM_GET_LOCAL(0)), |
| WASM_GET_LOCAL(1)))); |
| CHECK_EQ(0, r.Call(0, 100)); |
| CHECK_TRAP(r.Call(8, 0)); |
| CHECK_TRAP(r.Call(4, 0)); |
| CHECK_TRAP(r.Call(0, 0)); |
| } |
| |
| void TestFloat32Binop(ExecutionTier execution_tier, WasmOpcode opcode, |
| int32_t expected, float a, float b) { |
| { |
| WasmRunner<int32_t> r(execution_tier); |
| // return K op K |
| BUILD(r, WASM_BINOP(opcode, WASM_F32(a), WASM_F32(b))); |
| CHECK_EQ(expected, r.Call()); |
| } |
| { |
| WasmRunner<int32_t, float, float> r(execution_tier); |
| // return a op b |
| BUILD(r, WASM_BINOP(opcode, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); |
| CHECK_EQ(expected, r.Call(a, b)); |
| } |
| } |
| |
| void TestFloat32BinopWithConvert(ExecutionTier execution_tier, |
| WasmOpcode opcode, int32_t expected, float a, |
| float b) { |
| { |
| WasmRunner<int32_t> r(execution_tier); |
| // return int(K op K) |
| BUILD(r, |
| WASM_I32_SCONVERT_F32(WASM_BINOP(opcode, WASM_F32(a), WASM_F32(b)))); |
| CHECK_EQ(expected, r.Call()); |
| } |
| { |
| WasmRunner<int32_t, float, float> r(execution_tier); |
| // return int(a op b) |
| BUILD(r, WASM_I32_SCONVERT_F32( |
| WASM_BINOP(opcode, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)))); |
| CHECK_EQ(expected, r.Call(a, b)); |
| } |
| } |
| |
| void TestFloat32UnopWithConvert(ExecutionTier execution_tier, WasmOpcode opcode, |
| int32_t expected, float a) { |
| { |
| WasmRunner<int32_t> r(execution_tier); |
| // return int(op(K)) |
| BUILD(r, WASM_I32_SCONVERT_F32(WASM_UNOP(opcode, WASM_F32(a)))); |
| CHECK_EQ(expected, r.Call()); |
| } |
| { |
| WasmRunner<int32_t, float> r(execution_tier); |
| // return int(op(a)) |
| BUILD(r, WASM_I32_SCONVERT_F32(WASM_UNOP(opcode, WASM_GET_LOCAL(0)))); |
| CHECK_EQ(expected, r.Call(a)); |
| } |
| } |
| |
| void TestFloat64Binop(ExecutionTier execution_tier, WasmOpcode opcode, |
| int32_t expected, double a, double b) { |
| { |
| WasmRunner<int32_t> r(execution_tier); |
| // return K op K |
| BUILD(r, WASM_BINOP(opcode, WASM_F64(a), WASM_F64(b))); |
| CHECK_EQ(expected, r.Call()); |
| } |
| { |
| WasmRunner<int32_t, double, double> r(execution_tier); |
| // return a op b |
| BUILD(r, WASM_BINOP(opcode, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); |
| CHECK_EQ(expected, r.Call(a, b)); |
| } |
| } |
| |
| void TestFloat64BinopWithConvert(ExecutionTier execution_tier, |
| WasmOpcode opcode, int32_t expected, double a, |
| double b) { |
| { |
| WasmRunner<int32_t> r(execution_tier); |
| // return int(K op K) |
| BUILD(r, |
| WASM_I32_SCONVERT_F64(WASM_BINOP(opcode, WASM_F64(a), WASM_F64(b)))); |
| CHECK_EQ(expected, r.Call()); |
| } |
| { |
| WasmRunner<int32_t, double, double> r(execution_tier); |
| BUILD(r, WASM_I32_SCONVERT_F64( |
| WASM_BINOP(opcode, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)))); |
| CHECK_EQ(expected, r.Call(a, b)); |
| } |
| } |
| |
| void TestFloat64UnopWithConvert(ExecutionTier execution_tier, WasmOpcode opcode, |
| int32_t expected, double a) { |
| { |
| WasmRunner<int32_t> r(execution_tier); |
| // return int(op(K)) |
| BUILD(r, WASM_I32_SCONVERT_F64(WASM_UNOP(opcode, WASM_F64(a)))); |
| CHECK_EQ(expected, r.Call()); |
| } |
| { |
| WasmRunner<int32_t, double> r(execution_tier); |
| // return int(op(a)) |
| BUILD(r, WASM_I32_SCONVERT_F64(WASM_UNOP(opcode, WASM_GET_LOCAL(0)))); |
| CHECK_EQ(expected, r.Call(a)); |
| } |
| } |
| |
| WASM_EXEC_TEST(Float32Binops) { |
| TestFloat32Binop(execution_tier, kExprF32Eq, 1, 8.125f, 8.125f); |
| TestFloat32Binop(execution_tier, kExprF32Ne, 1, 8.125f, 8.127f); |
| TestFloat32Binop(execution_tier, kExprF32Lt, 1, -9.5f, -9.0f); |
| TestFloat32Binop(execution_tier, kExprF32Le, 1, -1111.0f, -1111.0f); |
| TestFloat32Binop(execution_tier, kExprF32Gt, 1, -9.0f, -9.5f); |
| TestFloat32Binop(execution_tier, kExprF32Ge, 1, -1111.0f, -1111.0f); |
| |
| TestFloat32BinopWithConvert(execution_tier, kExprF32Add, 10, 3.5f, 6.5f); |
| TestFloat32BinopWithConvert(execution_tier, kExprF32Sub, 2, 44.5f, 42.5f); |
| TestFloat32BinopWithConvert(execution_tier, kExprF32Mul, -66, -132.1f, 0.5f); |
| TestFloat32BinopWithConvert(execution_tier, kExprF32Div, 11, 22.1f, 2.0f); |
| } |
| |
| WASM_EXEC_TEST(Float32Unops) { |
| TestFloat32UnopWithConvert(execution_tier, kExprF32Abs, 8, 8.125f); |
| TestFloat32UnopWithConvert(execution_tier, kExprF32Abs, 9, -9.125f); |
| TestFloat32UnopWithConvert(execution_tier, kExprF32Neg, -213, 213.125f); |
| TestFloat32UnopWithConvert(execution_tier, kExprF32Sqrt, 12, 144.4f); |
| } |
| |
| WASM_EXEC_TEST(Float64Binops) { |
| TestFloat64Binop(execution_tier, kExprF64Eq, 1, 16.25, 16.25); |
| TestFloat64Binop(execution_tier, kExprF64Ne, 1, 16.25, 16.15); |
| TestFloat64Binop(execution_tier, kExprF64Lt, 1, -32.4, 11.7); |
| TestFloat64Binop(execution_tier, kExprF64Le, 1, -88.9, -88.9); |
| TestFloat64Binop(execution_tier, kExprF64Gt, 1, 11.7, -32.4); |
| TestFloat64Binop(execution_tier, kExprF64Ge, 1, -88.9, -88.9); |
| |
| TestFloat64BinopWithConvert(execution_tier, kExprF64Add, 100, 43.5, 56.5); |
| TestFloat64BinopWithConvert(execution_tier, kExprF64Sub, 200, 12200.1, |
| 12000.1); |
| TestFloat64BinopWithConvert(execution_tier, kExprF64Mul, -33, 134, -0.25); |
| TestFloat64BinopWithConvert(execution_tier, kExprF64Div, -1111, -2222.3, 2); |
| } |
| |
| WASM_EXEC_TEST(Float64Unops) { |
| TestFloat64UnopWithConvert(execution_tier, kExprF64Abs, 108, 108.125); |
| TestFloat64UnopWithConvert(execution_tier, kExprF64Abs, 209, -209.125); |
| TestFloat64UnopWithConvert(execution_tier, kExprF64Neg, -209, 209.125); |
| TestFloat64UnopWithConvert(execution_tier, kExprF64Sqrt, 13, 169.4); |
| } |
| |
| WASM_EXEC_TEST(Float32Neg) { |
| WasmRunner<float, float> r(execution_tier); |
| BUILD(r, WASM_F32_NEG(WASM_GET_LOCAL(0))); |
| |
| FOR_FLOAT32_INPUTS(i) { |
| CHECK_EQ(0x80000000, bit_cast<uint32_t>(i) ^ bit_cast<uint32_t>(r.Call(i))); |
| } |
| } |
| |
| WASM_EXEC_TEST(Float64Neg) { |
| WasmRunner<double, double> r(execution_tier); |
| BUILD(r, WASM_F64_NEG(WASM_GET_LOCAL(0))); |
| |
| FOR_FLOAT64_INPUTS(i) { |
| CHECK_EQ(0x8000000000000000, |
| bit_cast<uint64_t>(i) ^ bit_cast<uint64_t>(r.Call(i))); |
| } |
| } |
| |
| WASM_EXEC_TEST(IfElse_P) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| // if (p0) return 11; else return 22; |
| BUILD(r, WASM_IF_ELSE_I(WASM_GET_LOCAL(0), // -- |
| WASM_I32V_1(11), // -- |
| WASM_I32V_1(22))); // -- |
| FOR_INT32_INPUTS(i) { |
| int32_t expected = i ? 11 : 22; |
| CHECK_EQ(expected, r.Call(i)); |
| } |
| } |
| |
| WASM_EXEC_TEST(If_empty1) { |
| WasmRunner<uint32_t, uint32_t, uint32_t> r(execution_tier); |
| BUILD(r, WASM_GET_LOCAL(0), kExprIf, kLocalVoid, kExprEnd, WASM_GET_LOCAL(1)); |
| FOR_UINT32_INPUTS(i) { CHECK_EQ(i, r.Call(i - 9, i)); } |
| } |
| |
| WASM_EXEC_TEST(IfElse_empty1) { |
| WasmRunner<uint32_t, uint32_t, uint32_t> r(execution_tier); |
| BUILD(r, WASM_GET_LOCAL(0), kExprIf, kLocalVoid, kExprElse, kExprEnd, |
| WASM_GET_LOCAL(1)); |
| FOR_UINT32_INPUTS(i) { CHECK_EQ(i, r.Call(i - 8, i)); } |
| } |
| |
| WASM_EXEC_TEST(IfElse_empty2) { |
| WasmRunner<uint32_t, uint32_t, uint32_t> r(execution_tier); |
| BUILD(r, WASM_GET_LOCAL(0), kExprIf, kLocalVoid, WASM_NOP, kExprElse, |
| kExprEnd, WASM_GET_LOCAL(1)); |
| FOR_UINT32_INPUTS(i) { CHECK_EQ(i, r.Call(i - 7, i)); } |
| } |
| |
| WASM_EXEC_TEST(IfElse_empty3) { |
| WasmRunner<uint32_t, uint32_t, uint32_t> r(execution_tier); |
| BUILD(r, WASM_GET_LOCAL(0), kExprIf, kLocalVoid, kExprElse, WASM_NOP, |
| kExprEnd, WASM_GET_LOCAL(1)); |
| FOR_UINT32_INPUTS(i) { CHECK_EQ(i, r.Call(i - 6, i)); } |
| } |
| |
| WASM_EXEC_TEST(If_chain1) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| // if (p0) 13; if (p0) 14; 15 |
| BUILD(r, WASM_IF(WASM_GET_LOCAL(0), WASM_NOP), |
| WASM_IF(WASM_GET_LOCAL(0), WASM_NOP), WASM_I32V_1(15)); |
| FOR_INT32_INPUTS(i) { CHECK_EQ(15, r.Call(i)); } |
| } |
| |
| WASM_EXEC_TEST(If_chain_set) { |
| WasmRunner<int32_t, int32_t, int32_t> r(execution_tier); |
| // if (p0) p1 = 73; if (p0) p1 = 74; p1 |
| BUILD(r, WASM_IF(WASM_GET_LOCAL(0), WASM_SET_LOCAL(1, WASM_I32V_2(73))), |
| WASM_IF(WASM_GET_LOCAL(0), WASM_SET_LOCAL(1, WASM_I32V_2(74))), |
| WASM_GET_LOCAL(1)); |
| FOR_INT32_INPUTS(i) { |
| int32_t expected = i ? 74 : i; |
| CHECK_EQ(expected, r.Call(i, i)); |
| } |
| } |
| |
| WASM_EXEC_TEST(IfElse_Unreachable1) { |
| WasmRunner<int32_t> r(execution_tier); |
| // 0 ? unreachable : 27 |
| BUILD(r, WASM_IF_ELSE_I(WASM_ZERO, // -- |
| WASM_UNREACHABLE, // -- |
| WASM_I32V_1(27))); // -- |
| CHECK_EQ(27, r.Call()); |
| } |
| |
| WASM_EXEC_TEST(IfElse_Unreachable2) { |
| WasmRunner<int32_t> r(execution_tier); |
| // 1 ? 28 : unreachable |
| BUILD(r, WASM_IF_ELSE_I(WASM_I32V_1(1), // -- |
| WASM_I32V_1(28), // -- |
| WASM_UNREACHABLE)); // -- |
| CHECK_EQ(28, r.Call()); |
| } |
| |
| WASM_EXEC_TEST(Return12) { |
| WasmRunner<int32_t> r(execution_tier); |
| |
| BUILD(r, RET_I8(12)); |
| CHECK_EQ(12, r.Call()); |
| } |
| |
| WASM_EXEC_TEST(Return17) { |
| WasmRunner<int32_t> r(execution_tier); |
| |
| BUILD(r, WASM_BLOCK(RET_I8(17)), WASM_ZERO); |
| CHECK_EQ(17, r.Call()); |
| } |
| |
| WASM_EXEC_TEST(Return_I32) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| |
| BUILD(r, RET(WASM_GET_LOCAL(0))); |
| |
| FOR_INT32_INPUTS(i) { CHECK_EQ(i, r.Call(i)); } |
| } |
| |
| WASM_EXEC_TEST(Return_F32) { |
| WasmRunner<float, float> r(execution_tier); |
| |
| BUILD(r, RET(WASM_GET_LOCAL(0))); |
| |
| FOR_FLOAT32_INPUTS(i) { |
| float expect = i; |
| float result = r.Call(expect); |
| if (std::isnan(expect)) { |
| CHECK(std::isnan(result)); |
| } else { |
| CHECK_EQ(expect, result); |
| } |
| } |
| } |
| |
| WASM_EXEC_TEST(Return_F64) { |
| WasmRunner<double, double> r(execution_tier); |
| |
| BUILD(r, RET(WASM_GET_LOCAL(0))); |
| |
| FOR_FLOAT64_INPUTS(i) { |
| double expect = i; |
| double result = r.Call(expect); |
| if (std::isnan(expect)) { |
| CHECK(std::isnan(result)); |
| } else { |
| CHECK_EQ(expect, result); |
| } |
| } |
| } |
| |
| WASM_EXEC_TEST(Select_float_parameters) { |
| WasmRunner<float, float, float, int32_t> r(execution_tier); |
| BUILD(r, |
| WASM_SELECT(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1), WASM_GET_LOCAL(2))); |
| CHECK_FLOAT_EQ(2.0f, r.Call(2.0f, 1.0f, 1)); |
| } |
| |
| WASM_EXEC_TEST(SelectWithType_float_parameters) { |
| EXPERIMENTAL_FLAG_SCOPE(anyref); |
| WasmRunner<float, float, float, int32_t> r(execution_tier); |
| BUILD(r, |
| WASM_SELECT_F(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1), WASM_GET_LOCAL(2))); |
| CHECK_FLOAT_EQ(2.0f, r.Call(2.0f, 1.0f, 1)); |
| } |
| |
| WASM_EXEC_TEST(Select) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| // return select(11, 22, a); |
| BUILD(r, WASM_SELECT(WASM_I32V_1(11), WASM_I32V_1(22), WASM_GET_LOCAL(0))); |
| FOR_INT32_INPUTS(i) { |
| int32_t expected = i ? 11 : 22; |
| CHECK_EQ(expected, r.Call(i)); |
| } |
| } |
| |
| WASM_EXEC_TEST(SelectWithType) { |
| EXPERIMENTAL_FLAG_SCOPE(anyref); |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| // return select(11, 22, a); |
| BUILD(r, WASM_SELECT_I(WASM_I32V_1(11), WASM_I32V_1(22), WASM_GET_LOCAL(0))); |
| FOR_INT32_INPUTS(i) { |
| int32_t expected = i ? 11 : 22; |
| CHECK_EQ(expected, r.Call(i)); |
| } |
| } |
| |
| WASM_EXEC_TEST(Select_strict1) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| // select(a=0, a=1, a=2); return a |
| BUILD(r, WASM_SELECT(WASM_TEE_LOCAL(0, WASM_ZERO), |
| WASM_TEE_LOCAL(0, WASM_I32V_1(1)), |
| WASM_TEE_LOCAL(0, WASM_I32V_1(2))), |
| WASM_DROP, WASM_GET_LOCAL(0)); |
| FOR_INT32_INPUTS(i) { CHECK_EQ(2, r.Call(i)); } |
| } |
| |
| WASM_EXEC_TEST(SelectWithType_strict1) { |
| EXPERIMENTAL_FLAG_SCOPE(anyref); |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| // select(a=0, a=1, a=2); return a |
| BUILD(r, |
| WASM_SELECT_I(WASM_TEE_LOCAL(0, WASM_ZERO), |
| WASM_TEE_LOCAL(0, WASM_I32V_1(1)), |
| WASM_TEE_LOCAL(0, WASM_I32V_1(2))), |
| WASM_DROP, WASM_GET_LOCAL(0)); |
| FOR_INT32_INPUTS(i) { CHECK_EQ(2, r.Call(i)); } |
| } |
| |
| WASM_EXEC_TEST(Select_strict2) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| r.AllocateLocal(kWasmI32); |
| r.AllocateLocal(kWasmI32); |
| // select(b=5, c=6, a) |
| BUILD(r, WASM_SELECT(WASM_TEE_LOCAL(1, WASM_I32V_1(5)), |
| WASM_TEE_LOCAL(2, WASM_I32V_1(6)), WASM_GET_LOCAL(0))); |
| FOR_INT32_INPUTS(i) { |
| int32_t expected = i ? 5 : 6; |
| CHECK_EQ(expected, r.Call(i)); |
| } |
| } |
| |
| WASM_EXEC_TEST(SelectWithType_strict2) { |
| EXPERIMENTAL_FLAG_SCOPE(anyref); |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| r.AllocateLocal(kWasmI32); |
| r.AllocateLocal(kWasmI32); |
| // select(b=5, c=6, a) |
| BUILD(r, WASM_SELECT_I(WASM_TEE_LOCAL(1, WASM_I32V_1(5)), |
| WASM_TEE_LOCAL(2, WASM_I32V_1(6)), WASM_GET_LOCAL(0))); |
| FOR_INT32_INPUTS(i) { |
| int32_t expected = i ? 5 : 6; |
| CHECK_EQ(expected, r.Call(i)); |
| } |
| } |
| |
| WASM_EXEC_TEST(Select_strict3) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| r.AllocateLocal(kWasmI32); |
| r.AllocateLocal(kWasmI32); |
| // select(b=5, c=6, a=b) |
| BUILD(r, WASM_SELECT(WASM_TEE_LOCAL(1, WASM_I32V_1(5)), |
| WASM_TEE_LOCAL(2, WASM_I32V_1(6)), |
| WASM_TEE_LOCAL(0, WASM_GET_LOCAL(1)))); |
| FOR_INT32_INPUTS(i) { |
| int32_t expected = 5; |
| CHECK_EQ(expected, r.Call(i)); |
| } |
| } |
| |
| WASM_EXEC_TEST(SelectWithType_strict3) { |
| EXPERIMENTAL_FLAG_SCOPE(anyref); |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| r.AllocateLocal(kWasmI32); |
| r.AllocateLocal(kWasmI32); |
| // select(b=5, c=6, a=b) |
| BUILD(r, WASM_SELECT_I(WASM_TEE_LOCAL(1, WASM_I32V_1(5)), |
| WASM_TEE_LOCAL(2, WASM_I32V_1(6)), |
| WASM_TEE_LOCAL(0, WASM_GET_LOCAL(1)))); |
| FOR_INT32_INPUTS(i) { |
| int32_t expected = 5; |
| CHECK_EQ(expected, r.Call(i)); |
| } |
| } |
| |
| WASM_EXEC_TEST(BrIf_strict) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| BUILD(r, WASM_BLOCK_I(WASM_BRV_IF(0, WASM_GET_LOCAL(0), |
| WASM_TEE_LOCAL(0, WASM_I32V_2(99))))); |
| |
| FOR_INT32_INPUTS(i) { CHECK_EQ(i, r.Call(i)); } |
| } |
| |
| WASM_EXEC_TEST(Br_height) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| BUILD(r, WASM_BLOCK_I( |
| WASM_BLOCK(WASM_BRV_IFD(0, WASM_GET_LOCAL(0), WASM_GET_LOCAL(0)), |
| WASM_RETURN1(WASM_I32V_1(9))), |
| WASM_BRV(0, WASM_I32V_1(8)))); |
| |
| for (int32_t i = 0; i < 5; i++) { |
| int32_t expected = i != 0 ? 8 : 9; |
| CHECK_EQ(expected, r.Call(i)); |
| } |
| } |
| |
| WASM_EXEC_TEST(Regression_660262) { |
| WasmRunner<int32_t> r(execution_tier); |
| r.builder().AddMemory(kWasmPageSize); |
| BUILD(r, kExprI32Const, 0x00, kExprI32Const, 0x00, kExprI32LoadMem, 0x00, |
| 0x0F, kExprBrTable, 0x00, 0x80, 0x00); // entries=0 |
| r.Call(); |
| } |
| |
| WASM_EXEC_TEST(BrTable0a) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| BUILD(r, B1(B1(WASM_BR_TABLE(WASM_GET_LOCAL(0), 0, BR_TARGET(0)))), |
| WASM_I32V_2(91)); |
| FOR_INT32_INPUTS(i) { CHECK_EQ(91, r.Call(i)); } |
| } |
| |
| WASM_EXEC_TEST(BrTable0b) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| BUILD(r, |
| B1(B1(WASM_BR_TABLE(WASM_GET_LOCAL(0), 1, BR_TARGET(0), BR_TARGET(0)))), |
| WASM_I32V_2(92)); |
| FOR_INT32_INPUTS(i) { CHECK_EQ(92, r.Call(i)); } |
| } |
| |
| WASM_EXEC_TEST(BrTable0c) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| BUILD( |
| r, |
| B1(B2(B1(WASM_BR_TABLE(WASM_GET_LOCAL(0), 1, BR_TARGET(0), BR_TARGET(1))), |
| RET_I8(76))), |
| WASM_I32V_2(77)); |
| FOR_INT32_INPUTS(i) { |
| int32_t expected = i == 0 ? 76 : 77; |
| CHECK_EQ(expected, r.Call(i)); |
| } |
| } |
| |
| WASM_EXEC_TEST(BrTable1) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| BUILD(r, B1(WASM_BR_TABLE(WASM_GET_LOCAL(0), 0, BR_TARGET(0))), RET_I8(93)); |
| FOR_INT32_INPUTS(i) { CHECK_EQ(93, r.Call(i)); } |
| } |
| |
| WASM_EXEC_TEST(BrTable_loop) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| BUILD(r, |
| B2(B1(WASM_LOOP(WASM_BR_TABLE(WASM_INC_LOCAL_BYV(0, 1), 2, BR_TARGET(2), |
| BR_TARGET(1), BR_TARGET(0)))), |
| RET_I8(99)), |
| WASM_I32V_2(98)); |
| CHECK_EQ(99, r.Call(0)); |
| CHECK_EQ(98, r.Call(-1)); |
| CHECK_EQ(98, r.Call(-2)); |
| CHECK_EQ(98, r.Call(-3)); |
| CHECK_EQ(98, r.Call(-100)); |
| } |
| |
| WASM_EXEC_TEST(BrTable_br) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| BUILD(r, |
| B2(B1(WASM_BR_TABLE(WASM_GET_LOCAL(0), 1, BR_TARGET(1), BR_TARGET(0))), |
| RET_I8(91)), |
| WASM_I32V_2(99)); |
| CHECK_EQ(99, r.Call(0)); |
| CHECK_EQ(91, r.Call(1)); |
| CHECK_EQ(91, r.Call(2)); |
| CHECK_EQ(91, r.Call(3)); |
| } |
| |
| WASM_EXEC_TEST(BrTable_br2) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| |
| BUILD(r, B2(B2(B2(B1(WASM_BR_TABLE(WASM_GET_LOCAL(0), 3, BR_TARGET(1), |
| BR_TARGET(2), BR_TARGET(3), BR_TARGET(0))), |
| RET_I8(85)), |
| RET_I8(86)), |
| RET_I8(87)), |
| WASM_I32V_2(88)); |
| CHECK_EQ(86, r.Call(0)); |
| CHECK_EQ(87, r.Call(1)); |
| CHECK_EQ(88, r.Call(2)); |
| CHECK_EQ(85, r.Call(3)); |
| CHECK_EQ(85, r.Call(4)); |
| CHECK_EQ(85, r.Call(5)); |
| } |
| |
| WASM_EXEC_TEST(BrTable4) { |
| for (int i = 0; i < 4; ++i) { |
| for (int t = 0; t < 4; ++t) { |
| uint32_t cases[] = {0, 1, 2, 3}; |
| cases[i] = t; |
| byte code[] = {B2(B2(B2(B2(B1(WASM_BR_TABLE( |
| WASM_GET_LOCAL(0), 3, BR_TARGET(cases[0]), |
| BR_TARGET(cases[1]), BR_TARGET(cases[2]), |
| BR_TARGET(cases[3]))), |
| RET_I8(70)), |
| RET_I8(71)), |
| RET_I8(72)), |
| RET_I8(73)), |
| WASM_I32V_2(75)}; |
| |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| r.Build(code, code + arraysize(code)); |
| |
| for (int x = -3; x < 50; ++x) { |
| int index = (x > 3 || x < 0) ? 3 : x; |
| int32_t expected = 70 + cases[index]; |
| CHECK_EQ(expected, r.Call(x)); |
| } |
| } |
| } |
| } |
| |
| WASM_EXEC_TEST(BrTable4x4) { |
| for (byte a = 0; a < 4; ++a) { |
| for (byte b = 0; b < 4; ++b) { |
| for (byte c = 0; c < 4; ++c) { |
| for (byte d = 0; d < 4; ++d) { |
| for (int i = 0; i < 4; ++i) { |
| uint32_t cases[] = {a, b, c, d}; |
| byte code[] = { |
| B2(B2(B2(B2(B1(WASM_BR_TABLE( |
| WASM_GET_LOCAL(0), 3, BR_TARGET(cases[0]), |
| BR_TARGET(cases[1]), BR_TARGET(cases[2]), |
| BR_TARGET(cases[3]))), |
| RET_I8(50)), |
| RET_I8(51)), |
| RET_I8(52)), |
| RET_I8(53)), |
| WASM_I32V_2(55)}; |
| |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| r.Build(code, code + arraysize(code)); |
| |
| for (int x = -6; x < 47; ++x) { |
| int index = (x > 3 || x < 0) ? 3 : x; |
| int32_t expected = 50 + cases[index]; |
| CHECK_EQ(expected, r.Call(x)); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| WASM_EXEC_TEST(BrTable4_fallthru) { |
| byte code[] = { |
| B2(B2(B2(B2(B1(WASM_BR_TABLE(WASM_GET_LOCAL(0), 3, BR_TARGET(0), |
| BR_TARGET(1), BR_TARGET(2), BR_TARGET(3))), |
| WASM_INC_LOCAL_BY(1, 1)), |
| WASM_INC_LOCAL_BY(1, 2)), |
| WASM_INC_LOCAL_BY(1, 4)), |
| WASM_INC_LOCAL_BY(1, 8)), |
| WASM_GET_LOCAL(1)}; |
| |
| WasmRunner<int32_t, int32_t, int32_t> r(execution_tier); |
| r.Build(code, code + arraysize(code)); |
| |
| CHECK_EQ(15, r.Call(0, 0)); |
| CHECK_EQ(14, r.Call(1, 0)); |
| CHECK_EQ(12, r.Call(2, 0)); |
| CHECK_EQ(8, r.Call(3, 0)); |
| CHECK_EQ(8, r.Call(4, 0)); |
| |
| CHECK_EQ(115, r.Call(0, 100)); |
| CHECK_EQ(114, r.Call(1, 100)); |
| CHECK_EQ(112, r.Call(2, 100)); |
| CHECK_EQ(108, r.Call(3, 100)); |
| CHECK_EQ(108, r.Call(4, 100)); |
| } |
| |
| WASM_EXEC_TEST(BrTable_loop_target) { |
| byte code[] = { |
| WASM_LOOP_I( |
| WASM_BLOCK( |
| WASM_BR_TABLE(WASM_GET_LOCAL(0), 2, |
| BR_TARGET(0), BR_TARGET(1), BR_TARGET(1))), |
| WASM_ONE)}; |
| |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| r.Build(code, code + arraysize(code)); |
| |
| CHECK_EQ(1, r.Call(0)); |
| } |
| |
| WASM_EXEC_TEST(BrTableMeetBottom) { |
| EXPERIMENTAL_FLAG_SCOPE(anyref); |
| WasmRunner<int32_t> r(execution_tier); |
| BUILD(r, |
| WASM_BLOCK_I(WASM_STMTS( |
| WASM_BLOCK_F(WASM_STMTS( |
| WASM_UNREACHABLE, WASM_BR_TABLE(WASM_I32V_1(1), 2, BR_TARGET(0), |
| BR_TARGET(1), BR_TARGET(1)))), |
| WASM_DROP, WASM_I32V_1(14)))); |
| CHECK_TRAP(r.Call()); |
| } |
| |
| WASM_EXEC_TEST(F32ReinterpretI32) { |
| WasmRunner<int32_t> r(execution_tier); |
| int32_t* memory = |
| r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t)); |
| |
| BUILD(r, WASM_I32_REINTERPRET_F32( |
| WASM_LOAD_MEM(MachineType::Float32(), WASM_ZERO))); |
| |
| FOR_INT32_INPUTS(i) { |
| int32_t expected = i; |
| r.builder().WriteMemory(&memory[0], expected); |
| CHECK_EQ(expected, r.Call()); |
| } |
| } |
| |
| WASM_EXEC_TEST(I32ReinterpretF32) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| int32_t* memory = |
| r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t)); |
| |
| BUILD(r, WASM_STORE_MEM(MachineType::Float32(), WASM_ZERO, |
| WASM_F32_REINTERPRET_I32(WASM_GET_LOCAL(0))), |
| WASM_I32V_2(107)); |
| |
| FOR_INT32_INPUTS(i) { |
| int32_t expected = i; |
| CHECK_EQ(107, r.Call(expected)); |
| CHECK_EQ(expected, r.builder().ReadMemory(&memory[0])); |
| } |
| } |
| |
| // Do not run this test in a simulator because of signalling NaN issues on ia32. |
| #ifndef USE_SIMULATOR |
| |
| WASM_EXEC_TEST(SignallingNanSurvivesI32ReinterpretF32) { |
| WasmRunner<int32_t> r(execution_tier); |
| |
| BUILD(r, WASM_I32_REINTERPRET_F32( |
| WASM_SEQ(kExprF32Const, 0x00, 0x00, 0xA0, 0x7F))); |
| |
| // This is a signalling nan. |
| CHECK_EQ(0x7FA00000, r.Call()); |
| } |
| |
| #endif |
| |
| WASM_EXEC_TEST(LoadMaxUint32Offset) { |
| WasmRunner<int32_t> r(execution_tier); |
| r.builder().AddMemory(kWasmPageSize); |
| |
| BUILD(r, WASM_LOAD_MEM_OFFSET(MachineType::Int32(), // type |
| U32V_5(0xFFFFFFFF), // offset |
| WASM_ZERO)); // index |
| |
| CHECK_TRAP32(r.Call()); |
| } |
| |
| WASM_EXEC_TEST(LoadStoreLoad) { |
| WasmRunner<int32_t> r(execution_tier); |
| int32_t* memory = |
| r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t)); |
| |
| BUILD(r, WASM_STORE_MEM(MachineType::Int32(), WASM_ZERO, |
| WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO)), |
| WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO)); |
| |
| FOR_INT32_INPUTS(i) { |
| int32_t expected = i; |
| r.builder().WriteMemory(&memory[0], expected); |
| CHECK_EQ(expected, r.Call()); |
| } |
| } |
| |
| WASM_EXEC_TEST(UnalignedFloat32Load) { |
| WasmRunner<float> r(execution_tier); |
| r.builder().AddMemory(kWasmPageSize); |
| BUILD(r, WASM_LOAD_MEM_ALIGNMENT(MachineType::Float32(), WASM_ONE, 2)); |
| r.Call(); |
| } |
| |
| WASM_EXEC_TEST(UnalignedFloat64Load) { |
| WasmRunner<double> r(execution_tier); |
| r.builder().AddMemory(kWasmPageSize); |
| BUILD(r, WASM_LOAD_MEM_ALIGNMENT(MachineType::Float64(), WASM_ONE, 3)); |
| r.Call(); |
| } |
| |
| WASM_EXEC_TEST(UnalignedInt32Load) { |
| WasmRunner<uint32_t> r(execution_tier); |
| r.builder().AddMemory(kWasmPageSize); |
| BUILD(r, WASM_LOAD_MEM_ALIGNMENT(MachineType::Int32(), WASM_ONE, 2)); |
| r.Call(); |
| } |
| |
| WASM_EXEC_TEST(UnalignedInt32Store) { |
| WasmRunner<int32_t> r(execution_tier); |
| r.builder().AddMemory(kWasmPageSize); |
| BUILD(r, WASM_SEQ(WASM_STORE_MEM_ALIGNMENT(MachineType::Int32(), WASM_ONE, 2, |
| WASM_I32V_1(1)), |
| WASM_I32V_1(12))); |
| r.Call(); |
| } |
| |
| WASM_EXEC_TEST(UnalignedFloat32Store) { |
| WasmRunner<int32_t> r(execution_tier); |
| r.builder().AddMemory(kWasmPageSize); |
| BUILD(r, WASM_SEQ(WASM_STORE_MEM_ALIGNMENT(MachineType::Float32(), WASM_ONE, |
| 2, WASM_F32(1.0)), |
| WASM_I32V_1(12))); |
| r.Call(); |
| } |
| |
| WASM_EXEC_TEST(UnalignedFloat64Store) { |
| WasmRunner<int32_t> r(execution_tier); |
| r.builder().AddMemory(kWasmPageSize); |
| BUILD(r, WASM_SEQ(WASM_STORE_MEM_ALIGNMENT(MachineType::Float64(), WASM_ONE, |
| 3, WASM_F64(1.0)), |
| WASM_I32V_1(12))); |
| r.Call(); |
| } |
| |
| WASM_EXEC_TEST(VoidReturn1) { |
| const int32_t kExpected = -414444; |
| WasmRunner<int32_t> r(execution_tier); |
| |
| // Build the test function. |
| WasmFunctionCompiler& test_func = r.NewFunction<void>(); |
| BUILD(test_func, kExprNop); |
| |
| // Build the calling function. |
| BUILD(r, WASM_CALL_FUNCTION0(test_func.function_index()), |
| WASM_I32V_3(kExpected)); |
| |
| // Call and check. |
| int32_t result = r.Call(); |
| CHECK_EQ(kExpected, result); |
| } |
| |
| WASM_EXEC_TEST(VoidReturn2) { |
| const int32_t kExpected = -414444; |
| WasmRunner<int32_t> r(execution_tier); |
| |
| // Build the test function. |
| WasmFunctionCompiler& test_func = r.NewFunction<void>(); |
| BUILD(test_func, WASM_RETURN0); |
| |
| // Build the calling function. |
| BUILD(r, WASM_CALL_FUNCTION0(test_func.function_index()), |
| WASM_I32V_3(kExpected)); |
| |
| // Call and check. |
| int32_t result = r.Call(); |
| CHECK_EQ(kExpected, result); |
| } |
| |
| WASM_EXEC_TEST(BrEmpty) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| BUILD(r, WASM_BRV(0, WASM_GET_LOCAL(0))); |
| FOR_INT32_INPUTS(i) { CHECK_EQ(i, r.Call(i)); } |
| } |
| |
| WASM_EXEC_TEST(BrIfEmpty) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| BUILD(r, WASM_BRV_IF(0, WASM_GET_LOCAL(0), WASM_GET_LOCAL(0))); |
| FOR_INT32_INPUTS(i) { CHECK_EQ(i, r.Call(i)); } |
| } |
| |
| WASM_EXEC_TEST(Block_empty) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| BUILD(r, kExprBlock, kLocalVoid, kExprEnd, WASM_GET_LOCAL(0)); |
| FOR_INT32_INPUTS(i) { CHECK_EQ(i, r.Call(i)); } |
| } |
| |
| WASM_EXEC_TEST(Block_empty_br1) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| BUILD(r, B1(WASM_BR(0)), WASM_GET_LOCAL(0)); |
| FOR_INT32_INPUTS(i) { CHECK_EQ(i, r.Call(i)); } |
| } |
| |
| WASM_EXEC_TEST(Block_empty_brif1) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| BUILD(r, WASM_BLOCK(WASM_BR_IF(0, WASM_ZERO)), WASM_GET_LOCAL(0)); |
| FOR_INT32_INPUTS(i) { CHECK_EQ(i, r.Call(i)); } |
| } |
| |
| WASM_EXEC_TEST(Block_empty_brif2) { |
| WasmRunner<uint32_t, uint32_t, uint32_t> r(execution_tier); |
| BUILD(r, WASM_BLOCK(WASM_BR_IF(0, WASM_GET_LOCAL(1))), WASM_GET_LOCAL(0)); |
| FOR_UINT32_INPUTS(i) { CHECK_EQ(i, r.Call(i, i + 1)); } |
| } |
| |
| WASM_EXEC_TEST(Block_i) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| BUILD(r, WASM_BLOCK_I(WASM_GET_LOCAL(0))); |
| FOR_INT32_INPUTS(i) { CHECK_EQ(i, r.Call(i)); } |
| } |
| |
| WASM_EXEC_TEST(Block_f) { |
| WasmRunner<float, float> r(execution_tier); |
| BUILD(r, WASM_BLOCK_F(WASM_GET_LOCAL(0))); |
| FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(i, r.Call(i)); } |
| } |
| |
| WASM_EXEC_TEST(Block_d) { |
| WasmRunner<double, double> r(execution_tier); |
| BUILD(r, WASM_BLOCK_D(WASM_GET_LOCAL(0))); |
| FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(i, r.Call(i)); } |
| } |
| |
| WASM_EXEC_TEST(Block_br2) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| BUILD(r, WASM_BLOCK_I(WASM_BRV(0, WASM_GET_LOCAL(0)))); |
| FOR_UINT32_INPUTS(i) { CHECK_EQ(i, static_cast<uint32_t>(r.Call(i))); } |
| } |
| |
| WASM_EXEC_TEST(Block_If_P) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| // block { if (p0) break 51; 52; } |
| BUILD(r, WASM_BLOCK_I( // -- |
| WASM_IF(WASM_GET_LOCAL(0), // -- |
| WASM_BRV(1, WASM_I32V_1(51))), // -- |
| WASM_I32V_1(52))); // -- |
| FOR_INT32_INPUTS(i) { |
| int32_t expected = i ? 51 : 52; |
| CHECK_EQ(expected, r.Call(i)); |
| } |
| } |
| |
| WASM_EXEC_TEST(Loop_empty) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| BUILD(r, kExprLoop, kLocalVoid, kExprEnd, WASM_GET_LOCAL(0)); |
| FOR_INT32_INPUTS(i) { CHECK_EQ(i, r.Call(i)); } |
| } |
| |
| WASM_EXEC_TEST(Loop_i) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| BUILD(r, WASM_LOOP_I(WASM_GET_LOCAL(0))); |
| FOR_INT32_INPUTS(i) { CHECK_EQ(i, r.Call(i)); } |
| } |
| |
| WASM_EXEC_TEST(Loop_f) { |
| WasmRunner<float, float> r(execution_tier); |
| BUILD(r, WASM_LOOP_F(WASM_GET_LOCAL(0))); |
| FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(i, r.Call(i)); } |
| } |
| |
| WASM_EXEC_TEST(Loop_d) { |
| WasmRunner<double, double> r(execution_tier); |
| BUILD(r, WASM_LOOP_D(WASM_GET_LOCAL(0))); |
| FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(i, r.Call(i)); } |
| } |
| |
| WASM_EXEC_TEST(Loop_empty_br1) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| BUILD(r, B1(WASM_LOOP(WASM_BR(1))), WASM_GET_LOCAL(0)); |
| FOR_INT32_INPUTS(i) { CHECK_EQ(i, r.Call(i)); } |
| } |
| |
| WASM_EXEC_TEST(Loop_empty_brif1) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| BUILD(r, B1(WASM_LOOP(WASM_BR_IF(1, WASM_ZERO))), WASM_GET_LOCAL(0)); |
| FOR_INT32_INPUTS(i) { CHECK_EQ(i, r.Call(i)); } |
| } |
| |
| WASM_EXEC_TEST(Loop_empty_brif2) { |
| WasmRunner<uint32_t, uint32_t, uint32_t> r(execution_tier); |
| BUILD(r, WASM_LOOP_I(WASM_BRV_IF(1, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)))); |
| FOR_UINT32_INPUTS(i) { CHECK_EQ(i, r.Call(i, i + 1)); } |
| } |
| |
| WASM_EXEC_TEST(Loop_empty_brif3) { |
| WasmRunner<uint32_t, uint32_t, uint32_t, uint32_t> r(execution_tier); |
| BUILD(r, WASM_LOOP(WASM_BRV_IFD(1, WASM_GET_LOCAL(2), WASM_GET_LOCAL(0))), |
| WASM_GET_LOCAL(1)); |
| FOR_UINT32_INPUTS(i) { |
| FOR_UINT32_INPUTS(j) { |
| CHECK_EQ(i, r.Call(0, i, j)); |
| CHECK_EQ(j, r.Call(1, i, j)); |
| } |
| } |
| } |
| |
| WASM_EXEC_TEST(Block_BrIf_P) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| BUILD(r, WASM_BLOCK_I(WASM_BRV_IFD(0, WASM_I32V_1(51), WASM_GET_LOCAL(0)), |
| WASM_I32V_1(52))); |
| FOR_INT32_INPUTS(i) { |
| int32_t expected = i ? 51 : 52; |
| CHECK_EQ(expected, r.Call(i)); |
| } |
| } |
| |
| WASM_EXEC_TEST(Block_IfElse_P_assign) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| // { if (p0) p0 = 71; else p0 = 72; return p0; } |
| BUILD(r, // -- |
| WASM_IF_ELSE(WASM_GET_LOCAL(0), // -- |
| WASM_SET_LOCAL(0, WASM_I32V_2(71)), // -- |
| WASM_SET_LOCAL(0, WASM_I32V_2(72))), // -- |
| WASM_GET_LOCAL(0)); |
| FOR_INT32_INPUTS(i) { |
| int32_t expected = i ? 71 : 72; |
| CHECK_EQ(expected, r.Call(i)); |
| } |
| } |
| |
| WASM_EXEC_TEST(Block_IfElse_P_return) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| // if (p0) return 81; else return 82; |
| BUILD(r, // -- |
| WASM_IF_ELSE(WASM_GET_LOCAL(0), // -- |
| RET_I8(81), // -- |
| RET_I8(82)), // -- |
| WASM_ZERO); // -- |
| FOR_INT32_INPUTS(i) { |
| int32_t expected = i ? 81 : 82; |
| CHECK_EQ(expected, r.Call(i)); |
| } |
| } |
| |
| WASM_EXEC_TEST(Block_If_P_assign) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| // { if (p0) p0 = 61; p0; } |
| BUILD(r, WASM_IF(WASM_GET_LOCAL(0), WASM_SET_LOCAL(0, WASM_I32V_1(61))), |
| WASM_GET_LOCAL(0)); |
| FOR_INT32_INPUTS(i) { |
| int32_t expected = i ? 61 : i; |
| CHECK_EQ(expected, r.Call(i)); |
| } |
| } |
| |
| WASM_EXEC_TEST(DanglingAssign) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| // { return 0; p0 = 0; } |
| BUILD(r, WASM_BLOCK_I(RET_I8(99), WASM_TEE_LOCAL(0, WASM_ZERO))); |
| CHECK_EQ(99, r.Call(1)); |
| } |
| |
| WASM_EXEC_TEST(ExprIf_P) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| // p0 ? 11 : 22; |
| BUILD(r, WASM_IF_ELSE_I(WASM_GET_LOCAL(0), // -- |
| WASM_I32V_1(11), // -- |
| WASM_I32V_1(22))); // -- |
| FOR_INT32_INPUTS(i) { |
| int32_t expected = i ? 11 : 22; |
| CHECK_EQ(expected, r.Call(i)); |
| } |
| } |
| |
| WASM_EXEC_TEST(CountDown) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| BUILD(r, WASM_LOOP(WASM_IFB(WASM_GET_LOCAL(0), |
| WASM_SET_LOCAL(0, WASM_I32_SUB(WASM_GET_LOCAL(0), |
| WASM_I32V_1(1))), |
| WASM_BR(1))), |
| WASM_GET_LOCAL(0)); |
| CHECK_EQ(0, r.Call(1)); |
| CHECK_EQ(0, r.Call(10)); |
| CHECK_EQ(0, r.Call(100)); |
| } |
| |
| WASM_EXEC_TEST(CountDown_fallthru) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| BUILD( |
| r, |
| WASM_LOOP( |
| WASM_IF(WASM_NOT(WASM_GET_LOCAL(0)), WASM_BRV(2, WASM_GET_LOCAL(0))), |
| WASM_SET_LOCAL(0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I32V_1(1))), |
| WASM_CONTINUE(0)), |
| WASM_GET_LOCAL(0)); |
| CHECK_EQ(0, r.Call(1)); |
| CHECK_EQ(0, r.Call(10)); |
| CHECK_EQ(0, r.Call(100)); |
| } |
| |
| WASM_EXEC_TEST(WhileCountDown) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| BUILD(r, WASM_WHILE(WASM_GET_LOCAL(0), |
| WASM_SET_LOCAL( |
| 0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I32V_1(1)))), |
| WASM_GET_LOCAL(0)); |
| CHECK_EQ(0, r.Call(1)); |
| CHECK_EQ(0, r.Call(10)); |
| CHECK_EQ(0, r.Call(100)); |
| } |
| |
| WASM_EXEC_TEST(Loop_if_break1) { |
| WasmRunner<int32_t, int32_t, int32_t> r(execution_tier); |
| BUILD(r, WASM_LOOP(WASM_IF(WASM_GET_LOCAL(0), WASM_BRV(2, WASM_GET_LOCAL(1))), |
| WASM_SET_LOCAL(0, WASM_I32V_2(99))), |
| WASM_GET_LOCAL(0)); |
| CHECK_EQ(99, r.Call(0, 11)); |
| CHECK_EQ(65, r.Call(3, 65)); |
| CHECK_EQ(10001, r.Call(10000, 10001)); |
| CHECK_EQ(-29, r.Call(-28, -29)); |
| } |
| |
| WASM_EXEC_TEST(Loop_if_break2) { |
| WasmRunner<int32_t, int32_t, int32_t> r(execution_tier); |
| BUILD(r, WASM_LOOP(WASM_BRV_IF(1, WASM_GET_LOCAL(1), WASM_GET_LOCAL(0)), |
| WASM_DROP, WASM_SET_LOCAL(0, WASM_I32V_2(99))), |
| WASM_GET_LOCAL(0)); |
| CHECK_EQ(99, r.Call(0, 33)); |
| CHECK_EQ(3, r.Call(1, 3)); |
| CHECK_EQ(10000, r.Call(99, 10000)); |
| CHECK_EQ(-29, r.Call(-11, -29)); |
| } |
| |
| WASM_EXEC_TEST(Loop_if_break_fallthru) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| BUILD(r, B1(WASM_LOOP(WASM_IF(WASM_GET_LOCAL(0), WASM_BR(2)), |
| WASM_SET_LOCAL(0, WASM_I32V_2(93)))), |
| WASM_GET_LOCAL(0)); |
| CHECK_EQ(93, r.Call(0)); |
| CHECK_EQ(3, r.Call(3)); |
| CHECK_EQ(10001, r.Call(10001)); |
| CHECK_EQ(-22, r.Call(-22)); |
| } |
| |
| WASM_EXEC_TEST(Loop_if_break_fallthru2) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| BUILD(r, B1(B1(WASM_LOOP(WASM_IF(WASM_GET_LOCAL(0), WASM_BR(2)), |
| WASM_SET_LOCAL(0, WASM_I32V_2(93))))), |
| WASM_GET_LOCAL(0)); |
| CHECK_EQ(93, r.Call(0)); |
| CHECK_EQ(3, r.Call(3)); |
| CHECK_EQ(10001, r.Call(10001)); |
| CHECK_EQ(-22, r.Call(-22)); |
| } |
| |
| WASM_EXEC_TEST(IfBreak1) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| BUILD(r, WASM_IF(WASM_GET_LOCAL(0), WASM_SEQ(WASM_BR(0), WASM_UNREACHABLE)), |
| WASM_I32V_2(91)); |
| CHECK_EQ(91, r.Call(0)); |
| CHECK_EQ(91, r.Call(1)); |
| CHECK_EQ(91, r.Call(-8734)); |
| } |
| |
| WASM_EXEC_TEST(IfBreak2) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| BUILD(r, WASM_IF(WASM_GET_LOCAL(0), WASM_SEQ(WASM_BR(0), RET_I8(77))), |
| WASM_I32V_2(81)); |
| CHECK_EQ(81, r.Call(0)); |
| CHECK_EQ(81, r.Call(1)); |
| CHECK_EQ(81, r.Call(-8734)); |
| } |
| |
| WASM_EXEC_TEST(LoadMemI32) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| int32_t* memory = |
| r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t)); |
| r.builder().RandomizeMemory(1111); |
| |
| BUILD(r, WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO)); |
| |
| r.builder().WriteMemory(&memory[0], 99999999); |
| CHECK_EQ(99999999, r.Call(0)); |
| |
| r.builder().WriteMemory(&memory[0], 88888888); |
| CHECK_EQ(88888888, r.Call(0)); |
| |
| r.builder().WriteMemory(&memory[0], 77777777); |
| CHECK_EQ(77777777, r.Call(0)); |
| } |
| |
| WASM_EXEC_TEST(LoadMemI32_alignment) { |
| for (byte alignment = 0; alignment <= 2; ++alignment) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| int32_t* memory = |
| r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t)); |
| r.builder().RandomizeMemory(1111); |
| |
| BUILD(r, |
| WASM_LOAD_MEM_ALIGNMENT(MachineType::Int32(), WASM_ZERO, alignment)); |
| |
| r.builder().WriteMemory(&memory[0], 0x1A2B3C4D); |
| CHECK_EQ(0x1A2B3C4D, r.Call(0)); |
| |
| r.builder().WriteMemory(&memory[0], 0x5E6F7A8B); |
| CHECK_EQ(0x5E6F7A8B, r.Call(0)); |
| |
| r.builder().WriteMemory(&memory[0], 0x7CA0B1C2); |
| CHECK_EQ(0x7CA0B1C2, r.Call(0)); |
| } |
| } |
| |
| WASM_EXEC_TEST(LoadMemI32_oob) { |
| WasmRunner<int32_t, uint32_t> r(execution_tier); |
| int32_t* memory = |
| r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t)); |
| r.builder().RandomizeMemory(1111); |
| |
| BUILD(r, WASM_LOAD_MEM(MachineType::Int32(), WASM_GET_LOCAL(0))); |
| |
| r.builder().WriteMemory(&memory[0], 88888888); |
| CHECK_EQ(88888888, r.Call(0u)); |
| for (uint32_t offset = kWasmPageSize - 3; offset < kWasmPageSize + 40; |
| ++offset) { |
| CHECK_TRAP(r.Call(offset)); |
| } |
| |
| for (uint32_t offset = 0x80000000; offset < 0x80000010; ++offset) { |
| CHECK_TRAP(r.Call(offset)); |
| } |
| } |
| |
| WASM_EXEC_TEST(LoadMem_offset_oob) { |
| static const MachineType machineTypes[] = { |
| MachineType::Int8(), MachineType::Uint8(), MachineType::Int16(), |
| MachineType::Uint16(), MachineType::Int32(), MachineType::Uint32(), |
| MachineType::Int64(), MachineType::Uint64(), MachineType::Float32(), |
| MachineType::Float64()}; |
| |
| constexpr size_t num_bytes = kWasmPageSize; |
| |
| for (size_t m = 0; m < arraysize(machineTypes); ++m) { |
| WasmRunner<int32_t, uint32_t> r(execution_tier); |
| r.builder().AddMemoryElems<byte>(num_bytes); |
| r.builder().RandomizeMemory(1116 + static_cast<int>(m)); |
| |
| constexpr byte offset = 8; |
| uint32_t boundary = |
| num_bytes - offset - ValueTypes::MemSize(machineTypes[m]); |
| |
| BUILD(r, WASM_LOAD_MEM_OFFSET(machineTypes[m], offset, WASM_GET_LOCAL(0)), |
| WASM_DROP, WASM_ZERO); |
| |
| CHECK_EQ(0, r.Call(boundary)); // in bounds. |
| |
| for (uint32_t offset = boundary + 1; offset < boundary + 19; ++offset) { |
| CHECK_TRAP(r.Call(offset)); // out of bounds. |
| } |
| } |
| } |
| |
| WASM_EXEC_TEST(LoadMemI32_offset) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| int32_t* memory = |
| r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t)); |
| r.builder().RandomizeMemory(1111); |
| |
| BUILD(r, WASM_LOAD_MEM_OFFSET(MachineType::Int32(), 4, WASM_GET_LOCAL(0))); |
| |
| r.builder().WriteMemory(&memory[0], 66666666); |
| r.builder().WriteMemory(&memory[1], 77777777); |
| r.builder().WriteMemory(&memory[2], 88888888); |
| r.builder().WriteMemory(&memory[3], 99999999); |
| CHECK_EQ(77777777, r.Call(0)); |
| CHECK_EQ(88888888, r.Call(4)); |
| CHECK_EQ(99999999, r.Call(8)); |
| |
| r.builder().WriteMemory(&memory[0], 11111111); |
| r.builder().WriteMemory(&memory[1], 22222222); |
| r.builder().WriteMemory(&memory[2], 33333333); |
| r.builder().WriteMemory(&memory[3], 44444444); |
| CHECK_EQ(22222222, r.Call(0)); |
| CHECK_EQ(33333333, r.Call(4)); |
| CHECK_EQ(44444444, r.Call(8)); |
| } |
| |
| WASM_EXEC_TEST(LoadMemI32_const_oob_misaligned) { |
| // This test accesses memory starting at kRunwayLength bytes before the end of |
| // the memory until a few bytes beyond. |
| constexpr byte kRunwayLength = 12; |
| // TODO(titzer): Fix misaligned accesses on MIPS and re-enable. |
| for (byte offset = 0; offset < kRunwayLength + 5; ++offset) { |
| for (uint32_t index = kWasmPageSize - kRunwayLength; |
| index < kWasmPageSize + 5; ++index) { |
| WasmRunner<int32_t> r(execution_tier); |
| r.builder().AddMemoryElems<byte>(kWasmPageSize); |
| r.builder().RandomizeMemory(); |
| |
| BUILD(r, WASM_LOAD_MEM_OFFSET(MachineType::Int32(), offset, |
| WASM_I32V_3(index))); |
| |
| if (offset + index + sizeof(int32_t) <= kWasmPageSize) { |
| CHECK_EQ(r.builder().raw_val_at<int32_t>(offset + index), r.Call()); |
| } else { |
| CHECK_TRAP(r.Call()); |
| } |
| } |
| } |
| } |
| |
| WASM_EXEC_TEST(LoadMemI32_const_oob) { |
| // This test accesses memory starting at kRunwayLength bytes before the end of |
| // the memory until a few bytes beyond. |
| constexpr byte kRunwayLength = 24; |
| for (byte offset = 0; offset < kRunwayLength + 5; offset += 4) { |
| for (uint32_t index = kWasmPageSize - kRunwayLength; |
| index < kWasmPageSize + 5; index += 4) { |
| WasmRunner<int32_t> r(execution_tier); |
| r.builder().AddMemoryElems<byte>(kWasmPageSize); |
| r.builder().RandomizeMemory(); |
| |
| BUILD(r, WASM_LOAD_MEM_OFFSET(MachineType::Int32(), offset, |
| WASM_I32V_3(index))); |
| |
| if (offset + index + sizeof(int32_t) <= kWasmPageSize) { |
| CHECK_EQ(r.builder().raw_val_at<int32_t>(offset + index), r.Call()); |
| } else { |
| CHECK_TRAP(r.Call()); |
| } |
| } |
| } |
| } |
| |
| WASM_EXEC_TEST(StoreMemI32_alignment) { |
| const int32_t kWritten = 0x12345678; |
| |
| for (byte i = 0; i <= 2; ++i) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| int32_t* memory = |
| r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t)); |
| BUILD(r, WASM_STORE_MEM_ALIGNMENT(MachineType::Int32(), WASM_ZERO, i, |
| WASM_GET_LOCAL(0)), |
| WASM_GET_LOCAL(0)); |
| r.builder().RandomizeMemory(1111); |
| memory[0] = 0; |
| |
| CHECK_EQ(kWritten, r.Call(kWritten)); |
| CHECK_EQ(kWritten, r.builder().ReadMemory(&memory[0])); |
| } |
| } |
| |
| WASM_EXEC_TEST(StoreMemI32_offset) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| int32_t* memory = |
| r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t)); |
| const int32_t kWritten = 0xAABBCCDD; |
| |
| BUILD(r, WASM_STORE_MEM_OFFSET(MachineType::Int32(), 4, WASM_GET_LOCAL(0), |
| WASM_I32V_5(kWritten)), |
| WASM_I32V_5(kWritten)); |
| |
| for (int i = 0; i < 2; ++i) { |
| r.builder().RandomizeMemory(1111); |
| r.builder().WriteMemory(&memory[0], 66666666); |
| r.builder().WriteMemory(&memory[1], 77777777); |
| r.builder().WriteMemory(&memory[2], 88888888); |
| r.builder().WriteMemory(&memory[3], 99999999); |
| CHECK_EQ(kWritten, r.Call(i * 4)); |
| CHECK_EQ(66666666, r.builder().ReadMemory(&memory[0])); |
| CHECK_EQ(i == 0 ? kWritten : 77777777, r.builder().ReadMemory(&memory[1])); |
| CHECK_EQ(i == 1 ? kWritten : 88888888, r.builder().ReadMemory(&memory[2])); |
| CHECK_EQ(i == 2 ? kWritten : 99999999, r.builder().ReadMemory(&memory[3])); |
| } |
| } |
| |
| WASM_EXEC_TEST(StoreMem_offset_oob) { |
| // 64-bit cases are handled in test-run-wasm-64.cc |
| static const MachineType machineTypes[] = { |
| MachineType::Int8(), MachineType::Uint8(), MachineType::Int16(), |
| MachineType::Uint16(), MachineType::Int32(), MachineType::Uint32(), |
| MachineType::Float32(), MachineType::Float64()}; |
| |
| constexpr size_t num_bytes = kWasmPageSize; |
| |
| for (size_t m = 0; m < arraysize(machineTypes); ++m) { |
| WasmRunner<int32_t, uint32_t> r(execution_tier); |
| byte* memory = r.builder().AddMemoryElems<byte>(num_bytes); |
| |
| r.builder().RandomizeMemory(1119 + static_cast<int>(m)); |
| |
| BUILD(r, WASM_STORE_MEM_OFFSET(machineTypes[m], 8, WASM_GET_LOCAL(0), |
| WASM_LOAD_MEM(machineTypes[m], WASM_ZERO)), |
| WASM_ZERO); |
| |
| byte memsize = ValueTypes::MemSize(machineTypes[m]); |
| uint32_t boundary = num_bytes - 8 - memsize; |
| CHECK_EQ(0, r.Call(boundary)); // in bounds. |
| CHECK_EQ(0, memcmp(&memory[0], &memory[8 + boundary], memsize)); |
| |
| for (uint32_t offset = boundary + 1; offset < boundary + 19; ++offset) { |
| CHECK_TRAP(r.Call(offset)); // out of bounds. |
| } |
| } |
| } |
| |
| WASM_EXEC_TEST(Store_i32_narrowed) { |
| constexpr byte kOpcodes[] = {kExprI32StoreMem8, kExprI32StoreMem16, |
| kExprI32StoreMem}; |
| int stored_size_in_bytes = 0; |
| for (auto opcode : kOpcodes) { |
| stored_size_in_bytes = std::max(1, stored_size_in_bytes * 2); |
| constexpr int kBytes = 24; |
| uint8_t expected_memory[kBytes] = {0}; |
| WasmRunner<int32_t, int32_t, int32_t> r(execution_tier); |
| uint8_t* memory = r.builder().AddMemoryElems<uint8_t>(kWasmPageSize); |
| constexpr uint32_t kPattern = 0x12345678; |
| |
| BUILD(r, WASM_GET_LOCAL(0), // index |
| WASM_GET_LOCAL(1), // value |
| opcode, ZERO_ALIGNMENT, ZERO_OFFSET, // store |
| WASM_ZERO); // return value |
| |
| for (int i = 0; i <= kBytes - stored_size_in_bytes; ++i) { |
| uint32_t pattern = base::bits::RotateLeft32(kPattern, i % 32); |
| r.Call(i, pattern); |
| for (int b = 0; b < stored_size_in_bytes; ++b) { |
| expected_memory[i + b] = static_cast<uint8_t>(pattern >> (b * 8)); |
| } |
| for (int w = 0; w < kBytes; ++w) { |
| CHECK_EQ(expected_memory[w], memory[w]); |
| } |
| } |
| } |
| } |
| |
| WASM_EXEC_TEST(LoadMemI32_P) { |
| const int kNumElems = 8; |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| int32_t* memory = |
| r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t)); |
| r.builder().RandomizeMemory(2222); |
| |
| BUILD(r, WASM_LOAD_MEM(MachineType::Int32(), WASM_GET_LOCAL(0))); |
| |
| for (int i = 0; i < kNumElems; ++i) { |
| CHECK_EQ(r.builder().ReadMemory(&memory[i]), r.Call(i * 4)); |
| } |
| } |
| |
| WASM_EXEC_TEST(MemI32_Sum) { |
| const int kNumElems = 20; |
| WasmRunner<uint32_t, int32_t> r(execution_tier); |
| uint32_t* memory = |
| r.builder().AddMemoryElems<uint32_t>(kWasmPageSize / sizeof(int32_t)); |
| const byte kSum = r.AllocateLocal(kWasmI32); |
| |
| BUILD(r, WASM_WHILE( |
| WASM_GET_LOCAL(0), |
| WASM_BLOCK( |
| WASM_SET_LOCAL( |
| kSum, WASM_I32_ADD(WASM_GET_LOCAL(kSum), |
| WASM_LOAD_MEM(MachineType::Int32(), |
| WASM_GET_LOCAL(0)))), |
| WASM_SET_LOCAL( |
| 0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I32V_1(4))))), |
| WASM_GET_LOCAL(1)); |
| |
| // Run 4 trials. |
| for (int i = 0; i < 3; ++i) { |
| r.builder().RandomizeMemory(i * 33); |
| uint32_t expected = 0; |
| for (size_t j = kNumElems - 1; j > 0; --j) { |
| expected += r.builder().ReadMemory(&memory[j]); |
| } |
| uint32_t result = r.Call(4 * (kNumElems - 1)); |
| CHECK_EQ(expected, result); |
| } |
| } |
| |
| WASM_EXEC_TEST(CheckMachIntsZero) { |
| const int kNumElems = 55; |
| WasmRunner<uint32_t, int32_t> r(execution_tier); |
| r.builder().AddMemoryElems<uint32_t>(kWasmPageSize / sizeof(uint32_t)); |
| |
| BUILD(r, // -- |
| /**/ kExprLoop, kLocalVoid, // -- |
| /* */ kExprGetLocal, 0, // -- |
| /* */ kExprIf, kLocalVoid, // -- |
| /* */ kExprGetLocal, 0, // -- |
| /* */ kExprI32LoadMem, 0, 0, // -- |
| /* */ kExprIf, kLocalVoid, // -- |
| /* */ kExprI32Const, 127, // -- |
| /* */ kExprReturn, // -- |
| /* */ kExprEnd, // -- |
| /* */ kExprGetLocal, 0, // -- |
| /* */ kExprI32Const, 4, // -- |
| /* */ kExprI32Sub, // -- |
| /* */ kExprTeeLocal, 0, // -- |
| /* */ kExprBr, DEPTH_0, // -- |
| /* */ kExprEnd, // -- |
| /**/ kExprEnd, // -- |
| /**/ kExprI32Const, 0); // -- |
| |
| r.builder().BlankMemory(); |
| CHECK_EQ(0, r.Call((kNumElems - 1) * 4)); |
| } |
| |
| WASM_EXEC_TEST(MemF32_Sum) { |
| const int kSize = 5; |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| r.builder().AddMemoryElems<float>(kWasmPageSize / sizeof(float)); |
| float* buffer = r.builder().raw_mem_start<float>(); |
| r.builder().WriteMemory(&buffer[0], -99.25f); |
| r.builder().WriteMemory(&buffer[1], -888.25f); |
| r.builder().WriteMemory(&buffer[2], -77.25f); |
| r.builder().WriteMemory(&buffer[3], 66666.25f); |
| r.builder().WriteMemory(&buffer[4], 5555.25f); |
| const byte kSum = r.AllocateLocal(kWasmF32); |
| |
| BUILD(r, WASM_WHILE( |
| WASM_GET_LOCAL(0), |
| WASM_BLOCK( |
| WASM_SET_LOCAL( |
| kSum, WASM_F32_ADD(WASM_GET_LOCAL(kSum), |
| WASM_LOAD_MEM(MachineType::Float32(), |
| WASM_GET_LOCAL(0)))), |
| WASM_SET_LOCAL( |
| 0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I32V_1(4))))), |
| WASM_STORE_MEM(MachineType::Float32(), WASM_ZERO, WASM_GET_LOCAL(kSum)), |
| WASM_GET_LOCAL(0)); |
| |
| CHECK_EQ(0, r.Call(4 * (kSize - 1))); |
| CHECK_NE(-99.25f, r.builder().ReadMemory(&buffer[0])); |
| CHECK_EQ(71256.0f, r.builder().ReadMemory(&buffer[0])); |
| } |
| |
| template <typename T> |
| T GenerateAndRunFold(ExecutionTier execution_tier, WasmOpcode binop, T* buffer, |
| uint32_t size, ValueType astType, MachineType memType) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| T* memory = r.builder().AddMemoryElems<T>(static_cast<uint32_t>( |
| RoundUp(size * sizeof(T), kWasmPageSize) / sizeof(sizeof(T)))); |
| for (uint32_t i = 0; i < size; ++i) { |
| r.builder().WriteMemory(&memory[i], buffer[i]); |
| } |
| const byte kAccum = r.AllocateLocal(astType); |
| |
| BUILD( |
| r, WASM_SET_LOCAL(kAccum, WASM_LOAD_MEM(memType, WASM_ZERO)), |
| WASM_WHILE( |
| WASM_GET_LOCAL(0), |
| WASM_BLOCK(WASM_SET_LOCAL( |
| kAccum, |
| WASM_BINOP(binop, WASM_GET_LOCAL(kAccum), |
| WASM_LOAD_MEM(memType, WASM_GET_LOCAL(0)))), |
| WASM_SET_LOCAL(0, WASM_I32_SUB(WASM_GET_LOCAL(0), |
| WASM_I32V_1(sizeof(T)))))), |
| WASM_STORE_MEM(memType, WASM_ZERO, WASM_GET_LOCAL(kAccum)), |
| WASM_GET_LOCAL(0)); |
| r.Call(static_cast<int>(sizeof(T) * (size - 1))); |
| return r.builder().ReadMemory(&memory[0]); |
| } |
| |
| WASM_EXEC_TEST(MemF64_Mul) { |
| const size_t kSize = 6; |
| double buffer[kSize] = {1, 2, 2, 2, 2, 2}; |
| double result = |
| GenerateAndRunFold<double>(execution_tier, kExprF64Mul, buffer, kSize, |
| kWasmF64, MachineType::Float64()); |
| CHECK_EQ(32, result); |
| } |
| |
| WASM_EXEC_TEST(Build_Wasm_Infinite_Loop) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| // Only build the graph and compile, don't run. |
| BUILD(r, WASM_INFINITE_LOOP, WASM_ZERO); |
| } |
| |
| WASM_EXEC_TEST(Build_Wasm_Infinite_Loop_effect) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| r.builder().AddMemory(kWasmPageSize); |
| |
| // Only build the graph and compile, don't run. |
| BUILD(r, WASM_LOOP(WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO), WASM_DROP), |
| WASM_ZERO); |
| } |
| |
| WASM_EXEC_TEST(Unreachable0a) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| BUILD(r, WASM_BLOCK_I(WASM_BRV(0, WASM_I32V_1(9)), RET(WASM_GET_LOCAL(0)))); |
| CHECK_EQ(9, r.Call(0)); |
| CHECK_EQ(9, r.Call(1)); |
| } |
| |
| WASM_EXEC_TEST(Unreachable0b) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| BUILD(r, WASM_BLOCK_I(WASM_BRV(0, WASM_I32V_1(7)), WASM_UNREACHABLE)); |
| CHECK_EQ(7, r.Call(0)); |
| CHECK_EQ(7, r.Call(1)); |
| } |
| |
| WASM_COMPILED_EXEC_TEST(Build_Wasm_Unreachable1) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| BUILD(r, WASM_UNREACHABLE); |
| } |
| |
| WASM_COMPILED_EXEC_TEST(Build_Wasm_Unreachable2) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| BUILD(r, WASM_UNREACHABLE, WASM_UNREACHABLE); |
| } |
| |
| WASM_COMPILED_EXEC_TEST(Build_Wasm_Unreachable3) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| BUILD(r, WASM_UNREACHABLE, WASM_UNREACHABLE, WASM_UNREACHABLE); |
| } |
| |
| WASM_COMPILED_EXEC_TEST(Build_Wasm_UnreachableIf1) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| BUILD(r, WASM_UNREACHABLE, |
| WASM_IF(WASM_GET_LOCAL(0), WASM_SEQ(WASM_GET_LOCAL(0), WASM_DROP)), |
| WASM_ZERO); |
| } |
| |
| WASM_COMPILED_EXEC_TEST(Build_Wasm_UnreachableIf2) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| BUILD(r, WASM_UNREACHABLE, |
| WASM_IF_ELSE_I(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0), WASM_UNREACHABLE)); |
| } |
| |
| WASM_EXEC_TEST(Unreachable_Load) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| r.builder().AddMemory(kWasmPageSize); |
| BUILD(r, WASM_BLOCK_I(WASM_BRV(0, WASM_GET_LOCAL(0)), |
| WASM_LOAD_MEM(MachineType::Int8(), WASM_GET_LOCAL(0)))); |
| CHECK_EQ(11, r.Call(11)); |
| CHECK_EQ(21, r.Call(21)); |
| } |
| |
| WASM_EXEC_TEST(BrV_Fallthrough) { |
| WasmRunner<int32_t> r(execution_tier); |
| BUILD(r, WASM_BLOCK_I(WASM_BLOCK(WASM_BRV(1, WASM_I32V_1(42))), |
| WASM_I32V_1(22))); |
| CHECK_EQ(42, r.Call()); |
| } |
| |
| WASM_EXEC_TEST(Infinite_Loop_not_taken1) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| BUILD(r, WASM_IF(WASM_GET_LOCAL(0), WASM_INFINITE_LOOP), WASM_I32V_1(45)); |
| // Run the code, but don't go into the infinite loop. |
| CHECK_EQ(45, r.Call(0)); |
| } |
| |
| WASM_EXEC_TEST(Infinite_Loop_not_taken2) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| BUILD(r, WASM_BLOCK_I( |
| WASM_IF_ELSE(WASM_GET_LOCAL(0), WASM_BRV(1, WASM_I32V_1(45)), |
| WASM_INFINITE_LOOP), |
| WASM_ZERO)); |
| // Run the code, but don't go into the infinite loop. |
| CHECK_EQ(45, r.Call(1)); |
| } |
| |
| WASM_EXEC_TEST(Infinite_Loop_not_taken2_brif) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| BUILD(r, WASM_BLOCK_I(WASM_BRV_IF(0, WASM_I32V_1(45), WASM_GET_LOCAL(0)), |
| WASM_INFINITE_LOOP)); |
| // Run the code, but don't go into the infinite loop. |
| CHECK_EQ(45, r.Call(1)); |
| } |
| |
| static void TestBuildGraphForSimpleExpression(WasmOpcode opcode) { |
| Isolate* isolate = CcTest::InitIsolateOnce(); |
| Zone zone(isolate->allocator(), ZONE_NAME); |
| HandleScope scope(isolate); |
| // TODO(ahaas): Enable this test for anyref opcodes when code generation for |
| // them is implemented. |
| if (WasmOpcodes::IsAnyRefOpcode(opcode)) return; |
| // Enable all optional operators. |
| compiler::CommonOperatorBuilder common(&zone); |
| compiler::MachineOperatorBuilder machine( |
| &zone, MachineType::PointerRepresentation(), |
| compiler::MachineOperatorBuilder::kAllOptionalOps); |
| compiler::Graph graph(&zone); |
| compiler::JSGraph jsgraph(isolate, &graph, &common, nullptr, nullptr, |
| &machine); |
| FunctionSig* sig = WasmOpcodes::Signature(opcode); |
| |
| if (sig->parameter_count() == 1) { |
| byte code[] = {WASM_NO_LOCALS, kExprGetLocal, 0, static_cast<byte>(opcode), |
| WASM_END}; |
| TestBuildingGraph(&zone, &jsgraph, nullptr, sig, nullptr, code, |
| code + arraysize(code)); |
| } else { |
| CHECK_EQ(2, sig->parameter_count()); |
| byte code[] = {WASM_NO_LOCALS, |
| kExprGetLocal, |
| 0, |
| kExprGetLocal, |
| 1, |
| static_cast<byte>(opcode), |
| WASM_END}; |
| TestBuildingGraph(&zone, &jsgraph, nullptr, sig, nullptr, code, |
| code + arraysize(code)); |
| } |
| } |
| |
| TEST(Build_Wasm_SimpleExprs) { |
| // Test that the decoder can build a graph for all supported simple expressions. |
| #define GRAPH_BUILD_TEST(name, opcode, sig) \ |
| TestBuildGraphForSimpleExpression(kExpr##name); |
| |
| FOREACH_SIMPLE_OPCODE(GRAPH_BUILD_TEST); |
| |
| #undef GRAPH_BUILD_TEST |
| } |
| |
| WASM_EXEC_TEST(Int32LoadInt8_signext) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| const int kNumElems = kWasmPageSize; |
| int8_t* memory = r.builder().AddMemoryElems<int8_t>(kNumElems); |
| r.builder().RandomizeMemory(); |
| memory[0] = -1; |
| BUILD(r, WASM_LOAD_MEM(MachineType::Int8(), WASM_GET_LOCAL(0))); |
| |
| for (int i = 0; i < kNumElems; ++i) { |
| CHECK_EQ(memory[i], r.Call(i)); |
| } |
| } |
| |
| WASM_EXEC_TEST(Int32LoadInt8_zeroext) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| const int kNumElems = kWasmPageSize; |
| byte* memory = r.builder().AddMemory(kNumElems); |
| r.builder().RandomizeMemory(77); |
| memory[0] = 255; |
| BUILD(r, WASM_LOAD_MEM(MachineType::Uint8(), WASM_GET_LOCAL(0))); |
| |
| for (int i = 0; i < kNumElems; ++i) { |
| CHECK_EQ(memory[i], r.Call(i)); |
| } |
| } |
| |
| WASM_EXEC_TEST(Int32LoadInt16_signext) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| const int kNumBytes = kWasmPageSize; |
| byte* memory = r.builder().AddMemory(kNumBytes); |
| r.builder().RandomizeMemory(888); |
| memory[1] = 200; |
| BUILD(r, WASM_LOAD_MEM(MachineType::Int16(), WASM_GET_LOCAL(0))); |
| |
| for (int i = 0; i < kNumBytes; i += 2) { |
| int32_t expected = static_cast<int16_t>(memory[i] | (memory[i + 1] << 8)); |
| CHECK_EQ(expected, r.Call(i)); |
| } |
| } |
| |
| WASM_EXEC_TEST(Int32LoadInt16_zeroext) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| const int kNumBytes = kWasmPageSize; |
| byte* memory = r.builder().AddMemory(kNumBytes); |
| r.builder().RandomizeMemory(9999); |
| memory[1] = 204; |
| BUILD(r, WASM_LOAD_MEM(MachineType::Uint16(), WASM_GET_LOCAL(0))); |
| |
| for (int i = 0; i < kNumBytes; i += 2) { |
| int32_t expected = memory[i] | (memory[i + 1] << 8); |
| CHECK_EQ(expected, r.Call(i)); |
| } |
| } |
| |
| WASM_EXEC_TEST(Int32Global) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| int32_t* global = r.builder().AddGlobal<int32_t>(); |
| // global = global + p0 |
| BUILD(r, |
| WASM_SET_GLOBAL(0, WASM_I32_ADD(WASM_GET_GLOBAL(0), WASM_GET_LOCAL(0))), |
| WASM_ZERO); |
| |
| WriteLittleEndianValue<int32_t>(global, 116); |
| for (int i = 9; i < 444444; i += 111111) { |
| int32_t expected = ReadLittleEndianValue<int32_t>(global) + i; |
| r.Call(i); |
| CHECK_EQ(expected, ReadLittleEndianValue<int32_t>(global)); |
| } |
| } |
| |
| WASM_EXEC_TEST(Int32Globals_DontAlias) { |
| const int kNumGlobals = 3; |
| for (int g = 0; g < kNumGlobals; ++g) { |
| // global = global + p0 |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| int32_t* globals[] = {r.builder().AddGlobal<int32_t>(), |
| r.builder().AddGlobal<int32_t>(), |
| r.builder().AddGlobal<int32_t>()}; |
| |
| BUILD(r, WASM_SET_GLOBAL( |
| g, WASM_I32_ADD(WASM_GET_GLOBAL(g), WASM_GET_LOCAL(0))), |
| WASM_GET_GLOBAL(g)); |
| |
| // Check that reading/writing global number {g} doesn't alter the others. |
| WriteLittleEndianValue<int32_t>(globals[g], 116 * g); |
| int32_t before[kNumGlobals]; |
| for (int i = 9; i < 444444; i += 111113) { |
| int32_t sum = ReadLittleEndianValue<int32_t>(globals[g]) + i; |
| for (int j = 0; j < kNumGlobals; ++j) |
| before[j] = ReadLittleEndianValue<int32_t>(globals[j]); |
| int32_t result = r.Call(i); |
| CHECK_EQ(sum, result); |
| for (int j = 0; j < kNumGlobals; ++j) { |
| int32_t expected = j == g ? sum : before[j]; |
| CHECK_EQ(expected, ReadLittleEndianValue<int32_t>(globals[j])); |
| } |
| } |
| } |
| } |
| |
| WASM_EXEC_TEST(Float32Global) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| float* global = r.builder().AddGlobal<float>(); |
| // global = global + p0 |
| BUILD(r, WASM_SET_GLOBAL( |
| 0, WASM_F32_ADD(WASM_GET_GLOBAL(0), |
| WASM_F32_SCONVERT_I32(WASM_GET_LOCAL(0)))), |
| WASM_ZERO); |
| |
| WriteLittleEndianValue<float>(global, 1.25); |
| for (int i = 9; i < 4444; i += 1111) { |
| volatile float expected = ReadLittleEndianValue<float>(global) + i; |
| r.Call(i); |
| CHECK_EQ(expected, ReadLittleEndianValue<float>(global)); |
| } |
| } |
| |
| WASM_EXEC_TEST(Float64Global) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| double* global = r.builder().AddGlobal<double>(); |
| // global = global + p0 |
| BUILD(r, WASM_SET_GLOBAL( |
| 0, WASM_F64_ADD(WASM_GET_GLOBAL(0), |
| WASM_F64_SCONVERT_I32(WASM_GET_LOCAL(0)))), |
| WASM_ZERO); |
| |
| WriteLittleEndianValue<double>(global, 1.25); |
| for (int i = 9; i < 4444; i += 1111) { |
| volatile double expected = ReadLittleEndianValue<double>(global) + i; |
| r.Call(i); |
| CHECK_EQ(expected, ReadLittleEndianValue<double>(global)); |
| } |
| } |
| |
| WASM_EXEC_TEST(MixedGlobals) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| |
| int32_t* unused = r.builder().AddGlobal<int32_t>(); |
| byte* memory = r.builder().AddMemory(kWasmPageSize); |
| |
| int32_t* var_int32 = r.builder().AddGlobal<int32_t>(); |
| uint32_t* var_uint32 = r.builder().AddGlobal<uint32_t>(); |
| float* var_float = r.builder().AddGlobal<float>(); |
| double* var_double = r.builder().AddGlobal<double>(); |
| |
| BUILD(r, WASM_SET_GLOBAL(1, WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO)), |
| WASM_SET_GLOBAL(2, WASM_LOAD_MEM(MachineType::Uint32(), WASM_ZERO)), |
| WASM_SET_GLOBAL(3, WASM_LOAD_MEM(MachineType::Float32(), WASM_ZERO)), |
| WASM_SET_GLOBAL(4, WASM_LOAD_MEM(MachineType::Float64(), WASM_ZERO)), |
| WASM_ZERO); |
| |
| memory[0] = 0xAA; |
| memory[1] = 0xCC; |
| memory[2] = 0x55; |
| memory[3] = 0xEE; |
| memory[4] = 0x33; |
| memory[5] = 0x22; |
| memory[6] = 0x11; |
| memory[7] = 0x99; |
| r.Call(1); |
| |
| CHECK(static_cast<int32_t>(0xEE55CCAA) == |
| ReadLittleEndianValue<int32_t>(var_int32)); |
| CHECK(static_cast<uint32_t>(0xEE55CCAA) == |
| ReadLittleEndianValue<uint32_t>(var_uint32)); |
| CHECK(bit_cast<float>(0xEE55CCAA) == ReadLittleEndianValue<float>(var_float)); |
| CHECK(bit_cast<double>(0x99112233EE55CCAAULL) == |
| ReadLittleEndianValue<double>(var_double)); |
| |
| USE(unused); |
| } |
| |
| WASM_EXEC_TEST(CallEmpty) { |
| const int32_t kExpected = -414444; |
| WasmRunner<int32_t> r(execution_tier); |
| |
| // Build the target function. |
| WasmFunctionCompiler& target_func = r.NewFunction<int>(); |
| BUILD(target_func, WASM_I32V_3(kExpected)); |
| |
| // Build the calling function. |
| BUILD(r, WASM_CALL_FUNCTION0(target_func.function_index())); |
| |
| int32_t result = r.Call(); |
| CHECK_EQ(kExpected, result); |
| } |
| |
| WASM_EXEC_TEST(CallF32StackParameter) { |
| WasmRunner<float> r(execution_tier); |
| |
| // Build the target function. |
| ValueType param_types[20]; |
| for (int i = 0; i < 20; ++i) param_types[i] = kWasmF32; |
| FunctionSig sig(1, 19, param_types); |
| WasmFunctionCompiler& t = r.NewFunction(&sig); |
| BUILD(t, WASM_GET_LOCAL(17)); |
| |
| // Build the calling function. |
| BUILD(r, WASM_CALL_FUNCTION( |
| t.function_index(), WASM_F32(1.0f), WASM_F32(2.0f), |
| WASM_F32(4.0f), WASM_F32(8.0f), WASM_F32(16.0f), WASM_F32(32.0f), |
| WASM_F32(64.0f), WASM_F32(128.0f), WASM_F32(256.0f), |
| WASM_F32(1.5f), WASM_F32(2.5f), WASM_F32(4.5f), WASM_F32(8.5f), |
| WASM_F32(16.5f), WASM_F32(32.5f), WASM_F32(64.5f), |
| WASM_F32(128.5f), WASM_F32(256.5f), WASM_F32(512.5f))); |
| |
| float result = r.Call(); |
| CHECK_EQ(256.5f, result); |
| } |
| |
| WASM_EXEC_TEST(CallF64StackParameter) { |
| WasmRunner<double> r(execution_tier); |
| |
| // Build the target function. |
| ValueType param_types[20]; |
| for (int i = 0; i < 20; ++i) param_types[i] = kWasmF64; |
| FunctionSig sig(1, 19, param_types); |
| WasmFunctionCompiler& t = r.NewFunction(&sig); |
| BUILD(t, WASM_GET_LOCAL(17)); |
| |
| // Build the calling function. |
| BUILD(r, WASM_CALL_FUNCTION(t.function_index(), WASM_F64(1.0), WASM_F64(2.0), |
| WASM_F64(4.0), WASM_F64(8.0), WASM_F64(16.0), |
| WASM_F64(32.0), WASM_F64(64.0), WASM_F64(128.0), |
| WASM_F64(256.0), WASM_F64(1.5), WASM_F64(2.5), |
| WASM_F64(4.5), WASM_F64(8.5), WASM_F64(16.5), |
| WASM_F64(32.5), WASM_F64(64.5), WASM_F64(128.5), |
| WASM_F64(256.5), WASM_F64(512.5))); |
| |
| float result = r.Call(); |
| CHECK_EQ(256.5, result); |
| } |
| |
| WASM_EXEC_TEST(CallVoid) { |
| WasmRunner<int32_t> r(execution_tier); |
| |
| const byte kMemOffset = 8; |
| const int32_t kElemNum = kMemOffset / sizeof(int32_t); |
| const int32_t kExpected = 414444; |
| // Build the target function. |
| TestSignatures sigs; |
| int32_t* memory = |
| r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t)); |
| r.builder().RandomizeMemory(); |
| WasmFunctionCompiler& t = r.NewFunction(sigs.v_v()); |
| BUILD(t, WASM_STORE_MEM(MachineType::Int32(), WASM_I32V_1(kMemOffset), |
| WASM_I32V_3(kExpected))); |
| |
| // Build the calling function. |
| BUILD(r, WASM_CALL_FUNCTION0(t.function_index()), |
| WASM_LOAD_MEM(MachineType::Int32(), WASM_I32V_1(kMemOffset))); |
| |
| int32_t result = r.Call(); |
| CHECK_EQ(kExpected, result); |
| CHECK_EQ(static_cast<int64_t>(kExpected), |
| static_cast<int64_t>(r.builder().ReadMemory(&memory[kElemNum]))); |
| } |
| |
| WASM_EXEC_TEST(Call_Int32Add) { |
| WasmRunner<int32_t, int32_t, int32_t> r(execution_tier); |
| |
| // Build the target function. |
| WasmFunctionCompiler& t = r.NewFunction<int32_t, int32_t, int32_t>(); |
| BUILD(t, WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); |
| |
| // Build the caller function. |
| BUILD(r, WASM_CALL_FUNCTION(t.function_index(), WASM_GET_LOCAL(0), |
| WASM_GET_LOCAL(1))); |
| |
| FOR_INT32_INPUTS(i) { |
| FOR_INT32_INPUTS(j) { |
| int32_t expected = static_cast<int32_t>(static_cast<uint32_t>(i) + |
| static_cast<uint32_t>(j)); |
| CHECK_EQ(expected, r.Call(i, j)); |
| } |
| } |
| } |
| |
| WASM_EXEC_TEST(Call_Float32Sub) { |
| WasmRunner<float, float, float> r(execution_tier); |
| |
| // Build the target function. |
| WasmFunctionCompiler& target_func = r.NewFunction<float, float, float>(); |
| BUILD(target_func, WASM_F32_SUB(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); |
| |
| // Build the caller function. |
| BUILD(r, WASM_CALL_FUNCTION(target_func.function_index(), WASM_GET_LOCAL(0), |
| WASM_GET_LOCAL(1))); |
| |
| FOR_FLOAT32_INPUTS(i) { |
| FOR_FLOAT32_INPUTS(j) { CHECK_FLOAT_EQ(i - j, r.Call(i, j)); } |
| } |
| } |
| |
| WASM_EXEC_TEST(Call_Float64Sub) { |
| WasmRunner<int32_t> r(execution_tier); |
| double* memory = |
| r.builder().AddMemoryElems<double>(kWasmPageSize / sizeof(double)); |
| |
| BUILD(r, WASM_STORE_MEM( |
| MachineType::Float64(), WASM_ZERO, |
| WASM_F64_SUB( |
| WASM_LOAD_MEM(MachineType::Float64(), WASM_ZERO), |
| WASM_LOAD_MEM(MachineType::Float64(), WASM_I32V_1(8)))), |
| WASM_I32V_2(107)); |
| |
| FOR_FLOAT64_INPUTS(i) { |
| FOR_FLOAT64_INPUTS(j) { |
| r.builder().WriteMemory(&memory[0], i); |
| r.builder().WriteMemory(&memory[1], j); |
| double expected = i - j; |
| CHECK_EQ(107, r.Call()); |
| |
| if (expected != expected) { |
| CHECK(r.builder().ReadMemory(&memory[0]) != |
| r.builder().ReadMemory(&memory[0])); |
| } else { |
| CHECK_EQ(expected, r.builder().ReadMemory(&memory[0])); |
| } |
| } |
| } |
| } |
| |
| template <typename T> |
| static T factorial(T v) { |
| T expected = 1; |
| for (T i = v; i > 1; i--) { |
| expected *= i; |
| } |
| return expected; |
| } |
| |
| template <typename T> |
| static T sum_1_to_n(T v) { |
| return v * (v + 1) / 2; |
| } |
| |
| // We use unsigned arithmetic because of ubsan validation. |
| WASM_EXEC_TEST(Regular_Factorial) { |
| WasmRunner<uint32_t, uint32_t> r(execution_tier); |
| |
| WasmFunctionCompiler& fact_aux_fn = |
| r.NewFunction<uint32_t, uint32_t, uint32_t>("fact_aux"); |
| BUILD(r, WASM_CALL_FUNCTION(fact_aux_fn.function_index(), WASM_GET_LOCAL(0), |
| WASM_I32V(1))); |
| |
| BUILD(fact_aux_fn, |
| WASM_IF_ELSE_I( |
| WASM_I32_LES(WASM_GET_LOCAL(0), WASM_I32V(1)), WASM_GET_LOCAL(1), |
| WASM_CALL_FUNCTION( |
| fact_aux_fn.function_index(), |
| WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I32V(1)), |
| WASM_I32_MUL(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))))); |
| |
| uint32_t test_values[] = {1, 2, 5, 10, 20}; |
| |
| for (uint32_t v : test_values) { |
| CHECK_EQ(factorial(v), r.Call(v)); |
| } |
| } |
| |
| // Tail-recursive variation on factorial: |
| // fact(N) => f(N,1). |
| // |
| // f(N,X) where N=<1 => X |
| // f(N,X) => f(N-1,X*N). |
| |
| WASM_EXEC_TEST(ReturnCall_Factorial) { |
| EXPERIMENTAL_FLAG_SCOPE(return_call); |
| // Run in bounded amount of stack - 8kb. |
| FlagScope<int32_t> stack_size(&v8::internal::FLAG_stack_size, 8); |
| |
| WasmRunner<uint32_t, uint32_t> r(execution_tier); |
| |
| WasmFunctionCompiler& fact_aux_fn = |
| r.NewFunction<uint32_t, uint32_t, uint32_t>("fact_aux"); |
| BUILD(r, WASM_RETURN_CALL_FUNCTION(fact_aux_fn.function_index(), |
| WASM_GET_LOCAL(0), WASM_I32V(1))); |
| |
| BUILD(fact_aux_fn, |
| WASM_IF_ELSE_I( |
| WASM_I32_LES(WASM_GET_LOCAL(0), WASM_I32V(1)), WASM_GET_LOCAL(1), |
| WASM_RETURN_CALL_FUNCTION( |
| fact_aux_fn.function_index(), |
| WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I32V(1)), |
| WASM_I32_MUL(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))))); |
| |
| uint32_t test_values[] = {1, 2, 5, 10, 20, 2000}; |
| |
| for (uint32_t v : test_values) { |
| CHECK_EQ(factorial<uint32_t>(v), r.Call(v)); |
| } |
| } |
| |
| // Mutually recursive factorial mixing it up |
| // f(0,X)=>X |
| // f(N,X) => g(X*N,N-1) |
| // g(X,0) => X. |
| // g(X,N) => f(N-1,X*N). |
| |
| WASM_EXEC_TEST(ReturnCall_MutualFactorial) { |
| EXPERIMENTAL_FLAG_SCOPE(return_call); |
| // Run in bounded amount of stack - 8kb. |
| FlagScope<int32_t> stack_size(&v8::internal::FLAG_stack_size, 8); |
| |
| WasmRunner<uint32_t, uint32_t> r(execution_tier); |
| |
| WasmFunctionCompiler& f_fn = r.NewFunction<uint32_t, uint32_t, uint32_t>("f"); |
| WasmFunctionCompiler& g_fn = r.NewFunction<uint32_t, uint32_t, uint32_t>("g"); |
| |
| BUILD(r, WASM_RETURN_CALL_FUNCTION(f_fn.function_index(), WASM_GET_LOCAL(0), |
| WASM_I32V(1))); |
| |
| BUILD(f_fn, |
| WASM_IF_ELSE_I(WASM_I32_LES(WASM_GET_LOCAL(0), WASM_I32V(1)), |
| WASM_GET_LOCAL(1), |
| WASM_RETURN_CALL_FUNCTION( |
| g_fn.function_index(), |
| WASM_I32_MUL(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)), |
| WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I32V(1))))); |
| |
| BUILD(g_fn, |
| WASM_IF_ELSE_I( |
| WASM_I32_LES(WASM_GET_LOCAL(1), WASM_I32V(1)), WASM_GET_LOCAL(0), |
| WASM_RETURN_CALL_FUNCTION( |
| f_fn.function_index(), |
| WASM_I32_SUB(WASM_GET_LOCAL(1), WASM_I32V(1)), |
| WASM_I32_MUL(WASM_GET_LOCAL(1), WASM_GET_LOCAL(0))))); |
| |
| uint32_t test_values[] = {1, 2, 5, 10, 20, 2000}; |
| |
| for (uint32_t v : test_values) { |
| CHECK_EQ(factorial(v), r.Call(v)); |
| } |
| } |
| |
| // Indirect variant of factorial. Pass the function ID as an argument: |
| // fact(N) => f(N,1,f). |
| // |
| // f(N,X,_) where N=<1 => X |
| // f(N,X,F) => F(N-1,X*N,F). |
| |
| WASM_EXEC_TEST(ReturnCall_IndirectFactorial) { |
| EXPERIMENTAL_FLAG_SCOPE(return_call); |
| // Run in bounded amount of stack - 8kb. |
| FlagScope<int32_t> stack_size(&v8::internal::FLAG_stack_size, 8); |
| |
| WasmRunner<uint32_t, uint32_t> r(execution_tier); |
| |
| TestSignatures sigs; |
| |
| WasmFunctionCompiler& f_ind_fn = r.NewFunction(sigs.i_iii(), "f_ind"); |
| uint32_t sig_index = r.builder().AddSignature(sigs.i_iii()); |
| f_ind_fn.SetSigIndex(sig_index); |
| |
| // Function table. |
| uint16_t indirect_function_table[] = { |
| static_cast<uint16_t>(f_ind_fn.function_index())}; |
| const int f_ind_index = 0; |
| |
| r.builder().AddIndirectFunctionTable(indirect_function_table, |
| arraysize(indirect_function_table)); |
| |
| BUILD(r, |
| WASM_RETURN_CALL_FUNCTION(f_ind_fn.function_index(), WASM_GET_LOCAL(0), |
| WASM_I32V(1), WASM_I32V(f_ind_index))); |
| |
| BUILD(f_ind_fn, |
| WASM_IF_ELSE_I(WASM_I32_LES(WASM_GET_LOCAL(0), WASM_I32V(1)), |
| WASM_GET_LOCAL(1), |
| WASM_RETURN_CALL_INDIRECT( |
| sig_index, WASM_GET_LOCAL(2), |
| WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I32V(1)), |
| WASM_I32_MUL(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)), |
| WASM_GET_LOCAL(2)))); |
| |
| uint32_t test_values[] = {1, 2, 5, 10, 10000}; |
| |
| for (uint32_t v : test_values) { |
| CHECK_EQ(factorial(v), r.Call(v)); |
| } |
| } |
| |
| // This is 'more stable' (does not degenerate so quickly) than factorial |
| // sum(N,k) where N<1 =>k. |
| // sum(N,k) => sum(N-1,k+N). |
| |
| WASM_EXEC_TEST(ReturnCall_Sum) { |
| EXPERIMENTAL_FLAG_SCOPE(return_call); |
| // Run in bounded amount of stack - 8kb. |
| FlagScope<int32_t> stack_size(&v8::internal::FLAG_stack_size, 8); |
| |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| TestSignatures sigs; |
| |
| WasmFunctionCompiler& sum_aux_fn = r.NewFunction(sigs.i_ii(), "sum_aux"); |
| BUILD(r, WASM_RETURN_CALL_FUNCTION(sum_aux_fn.function_index(), |
| WASM_GET_LOCAL(0), WASM_I32V(0))); |
| |
| BUILD(sum_aux_fn, |
| WASM_IF_ELSE_I( |
| WASM_I32_LTS(WASM_GET_LOCAL(0), WASM_I32V(1)), WASM_GET_LOCAL(1), |
| WASM_RETURN_CALL_FUNCTION( |
| sum_aux_fn.function_index(), |
| WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I32V(1)), |
| WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))))); |
| |
| int32_t test_values[] = {1, 2, 5, 10, 1000}; |
| |
| for (int32_t v : test_values) { |
| CHECK_EQ(sum_1_to_n(v), r.Call(v)); |
| } |
| } |
| |
| // 'Bouncing' mutual recursive sum with different #s of arguments |
| // b1(N,k) where N<1 =>k. |
| // b1(N,k) => b2(N-1,N,k+N). |
| |
| // b2(N,_,k) where N<1 =>k. |
| // b2(N,l,k) => b3(N-1,N,l,k+N). |
| |
| // b3(N,_,_,k) where N<1 =>k. |
| // b3(N,_,_,k) => b1(N-1,k+N). |
| |
| WASM_EXEC_TEST(ReturnCall_Bounce_Sum) { |
| EXPERIMENTAL_FLAG_SCOPE(return_call); |
| // Run in bounded amount of stack - 8kb. |
| FlagScope<int32_t> stack_size(&v8::internal::FLAG_stack_size, 8); |
| |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| TestSignatures sigs; |
| |
| WasmFunctionCompiler& b1_fn = r.NewFunction(sigs.i_ii(), "b1"); |
| WasmFunctionCompiler& b2_fn = r.NewFunction(sigs.i_iii(), "b2"); |
| WasmFunctionCompiler& b3_fn = |
| r.NewFunction<int32_t, int32_t, int32_t, int32_t, int32_t>("b3"); |
| |
| BUILD(r, WASM_RETURN_CALL_FUNCTION(b1_fn.function_index(), WASM_GET_LOCAL(0), |
| WASM_I32V(0))); |
| |
| BUILD( |
| b1_fn, |
| WASM_IF_ELSE_I( |
| WASM_I32_LTS(WASM_GET_LOCAL(0), WASM_I32V(1)), WASM_GET_LOCAL(1), |
| WASM_RETURN_CALL_FUNCTION( |
| b2_fn.function_index(), |
| WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I32V(1)), WASM_GET_LOCAL(0), |
| WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))))); |
| |
| BUILD(b2_fn, |
| WASM_IF_ELSE_I( |
| WASM_I32_LTS(WASM_GET_LOCAL(0), WASM_I32V(1)), WASM_GET_LOCAL(2), |
| WASM_RETURN_CALL_FUNCTION( |
| b3_fn.function_index(), |
| WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I32V(1)), |
| WASM_GET_LOCAL(0), WASM_GET_LOCAL(1), |
| WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(2))))); |
| |
| BUILD(b3_fn, |
| WASM_IF_ELSE_I( |
| WASM_I32_LTS(WASM_GET_LOCAL(0), WASM_I32V(1)), WASM_GET_LOCAL(3), |
| WASM_RETURN_CALL_FUNCTION( |
| b1_fn.function_index(), |
| WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I32V(1)), |
| WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(3))))); |
| |
| int32_t test_values[] = {1, 2, 5, 10, 1000}; |
| |
| for (int32_t v : test_values) { |
| CHECK_EQ(sum_1_to_n(v), r.Call(v)); |
| } |
| } |
| |
| #define ADD_CODE(vec, ...) \ |
| do { \ |
| byte __buf[] = {__VA_ARGS__}; \ |
| for (size_t i = 0; i < sizeof(__buf); ++i) vec.push_back(__buf[i]); \ |
| } while (false) |
| |
| static void Run_WasmMixedCall_N(ExecutionTier execution_tier, int start) { |
| const int kExpected = 6333; |
| const int kElemSize = 8; |
| TestSignatures sigs; |
| |
| // 64-bit cases handled in test-run-wasm-64.cc. |
| static MachineType mixed[] = { |
| MachineType::Int32(), MachineType::Float32(), MachineType::Float64(), |
| MachineType::Float32(), MachineType::Int32(), MachineType::Float64(), |
| MachineType::Float32(), MachineType::Float64(), MachineType::Int32(), |
| MachineType::Int32(), MachineType::Int32()}; |
| |
| int num_params = static_cast<int>(arraysize(mixed)) - start; |
| for (int which = 0; which < num_params; ++which) { |
| v8::internal::AccountingAllocator allocator; |
| Zone zone(&allocator, ZONE_NAME); |
| WasmRunner<int32_t> r(execution_tier); |
| r.builder().AddMemory(kWasmPageSize); |
| MachineType* memtypes = &mixed[start]; |
| MachineType result = memtypes[which]; |
| |
| // ========================================================================= |
| // Build the selector function. |
| // ========================================================================= |
| FunctionSig::Builder b(&zone, 1, num_params); |
| b.AddReturn(ValueTypes::ValueTypeFor(result)); |
| for (int i = 0; i < num_params; ++i) { |
| b.AddParam(ValueTypes::ValueTypeFor(memtypes[i])); |
| } |
| WasmFunctionCompiler& t = r.NewFunction(b.Build()); |
| BUILD(t, WASM_GET_LOCAL(which)); |
| |
| // ========================================================================= |
| // Build the calling function. |
| // ========================================================================= |
| std::vector<byte> code; |
| |
| // Load the arguments. |
| for (int i = 0; i < num_params; ++i) { |
| int offset = (i + 1) * kElemSize; |
| ADD_CODE(code, WASM_LOAD_MEM(memtypes[i], WASM_I32V_2(offset))); |
| } |
| |
| // Call the selector function. |
| ADD_CODE(code, WASM_CALL_FUNCTION0(t.function_index())); |
| |
| // Store the result in a local. |
| byte local_index = r.AllocateLocal(ValueTypes::ValueTypeFor(result)); |
| ADD_CODE(code, kExprSetLocal, local_index); |
| |
| // Store the result in memory. |
| ADD_CODE(code, |
| WASM_STORE_MEM(result, WASM_ZERO, WASM_GET_LOCAL(local_index))); |
| |
| // Return the expected value. |
| ADD_CODE(code, WASM_I32V_2(kExpected)); |
| |
| r.Build(&code[0], &code[0] + code.size()); |
| |
| // Run the code. |
| for (int t = 0; t < 10; ++t) { |
| r.builder().RandomizeMemory(); |
| CHECK_EQ(kExpected, r.Call()); |
| |
| int size = ValueTypes::MemSize(result); |
| for (int i = 0; i < size; ++i) { |
| int base = (which + 1) * kElemSize; |
| byte expected = r.builder().raw_mem_at<byte>(base + i); |
| byte result = r.builder().raw_mem_at<byte>(i); |
| CHECK_EQ(expected, result); |
| } |
| } |
| } |
| } |
| |
| WASM_EXEC_TEST(MixedCall_0) { Run_WasmMixedCall_N(execution_tier, 0); } |
| WASM_EXEC_TEST(MixedCall_1) { Run_WasmMixedCall_N(execution_tier, 1); } |
| WASM_EXEC_TEST(MixedCall_2) { Run_WasmMixedCall_N(execution_tier, 2); } |
| WASM_EXEC_TEST(MixedCall_3) { Run_WasmMixedCall_N(execution_tier, 3); } |
| |
| WASM_EXEC_TEST(AddCall) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| WasmFunctionCompiler& t1 = r.NewFunction<int32_t, int32_t, int32_t>(); |
| BUILD(t1, WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); |
| |
| byte local = r.AllocateLocal(kWasmI32); |
| BUILD(r, WASM_SET_LOCAL(local, WASM_I32V_2(99)), |
| WASM_I32_ADD( |
| WASM_CALL_FUNCTION(t1.function_index(), WASM_GET_LOCAL(0), |
| WASM_GET_LOCAL(0)), |
| WASM_CALL_FUNCTION(t1.function_index(), WASM_GET_LOCAL(local), |
| WASM_GET_LOCAL(local)))); |
| |
| CHECK_EQ(198, r.Call(0)); |
| CHECK_EQ(200, r.Call(1)); |
| CHECK_EQ(100, r.Call(-49)); |
| } |
| |
| WASM_EXEC_TEST(MultiReturnSub) { |
| EXPERIMENTAL_FLAG_SCOPE(mv); |
| WasmRunner<int32_t, int32_t, int32_t> r(execution_tier); |
| |
| ValueType storage[] = {kWasmI32, kWasmI32, kWasmI32, kWasmI32}; |
| FunctionSig sig_ii_ii(2, 2, storage); |
| WasmFunctionCompiler& t1 = r.NewFunction(&sig_ii_ii); |
| BUILD(t1, WASM_GET_LOCAL(1), WASM_GET_LOCAL(0)); |
| |
| BUILD(r, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1), |
| WASM_CALL_FUNCTION0(t1.function_index()), kExprI32Sub); |
| |
| FOR_INT32_INPUTS(i) { |
| FOR_INT32_INPUTS(j) { |
| int32_t expected = static_cast<int32_t>(static_cast<uint32_t>(j) - |
| static_cast<uint32_t>(i)); |
| CHECK_EQ(expected, r.Call(i, j)); |
| } |
| } |
| } |
| |
| template <typename T> |
| void RunMultiReturnSelect(ExecutionTier execution_tier, const T* inputs) { |
| EXPERIMENTAL_FLAG_SCOPE(mv); |
| ValueType type = ValueTypes::ValueTypeFor(MachineTypeForC<T>()); |
| ValueType storage[] = {type, type, type, type, type, type}; |
| const size_t kNumReturns = 2; |
| const size_t kNumParams = arraysize(storage) - kNumReturns; |
| FunctionSig sig(kNumReturns, kNumParams, storage); |
| |
| for (size_t i = 0; i < kNumParams; i++) { |
| for (size_t j = 0; j < kNumParams; j++) { |
| for (int k = 0; k < 2; k++) { |
| WasmRunner<T, T, T, T, T> r(execution_tier); |
| WasmFunctionCompiler& r1 = r.NewFunction(&sig); |
| |
| BUILD(r1, WASM_GET_LOCAL(i), WASM_GET_LOCAL(j)); |
| |
| if (k == 0) { |
| BUILD(r, WASM_CALL_FUNCTION(r1.function_index(), WASM_GET_LOCAL(0), |
| WASM_GET_LOCAL(1), WASM_GET_LOCAL(2), |
| WASM_GET_LOCAL(3)), |
| WASM_DROP); |
| } else { |
| BUILD(r, WASM_CALL_FUNCTION(r1.function_index(), WASM_GET_LOCAL(0), |
| WASM_GET_LOCAL(1), WASM_GET_LOCAL(2), |
| WASM_GET_LOCAL(3)), |
| kExprSetLocal, 0, WASM_DROP, WASM_GET_LOCAL(0)); |
| } |
| |
| T expected = inputs[k == 0 ? i : j]; |
| CHECK_EQ(expected, r.Call(inputs[0], inputs[1], inputs[2], inputs[3])); |
| } |
| } |
| } |
| } |
| |
| WASM_EXEC_TEST(MultiReturnSelect_i32) { |
| static const int32_t inputs[] = {3333333, 4444444, -55555555, -7777777}; |
| RunMultiReturnSelect<int32_t>(execution_tier, inputs); |
| } |
| |
| WASM_EXEC_TEST(MultiReturnSelect_f32) { |
| static const float inputs[] = {33.33333f, 444.4444f, -55555.555f, -77777.77f}; |
| RunMultiReturnSelect<float>(execution_tier, inputs); |
| } |
| |
| WASM_EXEC_TEST(MultiReturnSelect_i64) { |
| #if !V8_TARGET_ARCH_32_BIT || V8_TARGET_ARCH_X64 |
| // TODO(titzer): implement int64-lowering for multiple return values |
| static const int64_t inputs[] = {33333338888, 44444446666, -555555553333, |
| -77777771111}; |
| RunMultiReturnSelect<int64_t>(execution_tier, inputs); |
| #endif |
| } |
| |
| WASM_EXEC_TEST(MultiReturnSelect_f64) { |
| static const double inputs[] = {3.333333, 44444.44, -55.555555, -7777.777}; |
| RunMultiReturnSelect<double>(execution_tier, inputs); |
| } |
| |
| WASM_EXEC_TEST(ExprBlock2a) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| BUILD(r, WASM_BLOCK_I(WASM_IF(WASM_GET_LOCAL(0), WASM_BRV(1, WASM_I32V_1(1))), |
| WASM_I32V_1(1))); |
| CHECK_EQ(1, r.Call(0)); |
| CHECK_EQ(1, r.Call(1)); |
| } |
| |
| WASM_EXEC_TEST(ExprBlock2b) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| BUILD(r, WASM_BLOCK_I(WASM_IF(WASM_GET_LOCAL(0), WASM_BRV(1, WASM_I32V_1(1))), |
| WASM_I32V_1(2))); |
| CHECK_EQ(2, r.Call(0)); |
| CHECK_EQ(1, r.Call(1)); |
| } |
| |
| WASM_EXEC_TEST(ExprBlock2c) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| BUILD(r, WASM_BLOCK_I(WASM_BRV_IFD(0, WASM_I32V_1(1), WASM_GET_LOCAL(0)), |
| WASM_I32V_1(1))); |
| CHECK_EQ(1, r.Call(0)); |
| CHECK_EQ(1, r.Call(1)); |
| } |
| |
| WASM_EXEC_TEST(ExprBlock2d) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| BUILD(r, WASM_BLOCK_I(WASM_BRV_IFD(0, WASM_I32V_1(1), WASM_GET_LOCAL(0)), |
| WASM_I32V_1(2))); |
| CHECK_EQ(2, r.Call(0)); |
| CHECK_EQ(1, r.Call(1)); |
| } |
| |
| WASM_EXEC_TEST(ExprBlock_ManualSwitch) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| BUILD(r, WASM_BLOCK_I(WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I32V_1(1)), |
| WASM_BRV(1, WASM_I32V_1(11))), |
| WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I32V_1(2)), |
| WASM_BRV(1, WASM_I32V_1(12))), |
| WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I32V_1(3)), |
| WASM_BRV(1, WASM_I32V_1(13))), |
| WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I32V_1(4)), |
| WASM_BRV(1, WASM_I32V_1(14))), |
| WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I32V_1(5)), |
| WASM_BRV(1, WASM_I32V_1(15))), |
| WASM_I32V_2(99))); |
| CHECK_EQ(99, r.Call(0)); |
| CHECK_EQ(11, r.Call(1)); |
| CHECK_EQ(12, r.Call(2)); |
| CHECK_EQ(13, r.Call(3)); |
| CHECK_EQ(14, r.Call(4)); |
| CHECK_EQ(15, r.Call(5)); |
| CHECK_EQ(99, r.Call(6)); |
| } |
| |
| WASM_EXEC_TEST(ExprBlock_ManualSwitch_brif) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| BUILD(r, WASM_BLOCK_I( |
| WASM_BRV_IFD(0, WASM_I32V_1(11), |
| WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I32V_1(1))), |
| WASM_BRV_IFD(0, WASM_I32V_1(12), |
| WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I32V_1(2))), |
| WASM_BRV_IFD(0, WASM_I32V_1(13), |
| WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I32V_1(3))), |
| WASM_BRV_IFD(0, WASM_I32V_1(14), |
| WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I32V_1(4))), |
| WASM_BRV_IFD(0, WASM_I32V_1(15), |
| WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I32V_1(5))), |
| WASM_I32V_2(99))); |
| CHECK_EQ(99, r.Call(0)); |
| CHECK_EQ(11, r.Call(1)); |
| CHECK_EQ(12, r.Call(2)); |
| CHECK_EQ(13, r.Call(3)); |
| CHECK_EQ(14, r.Call(4)); |
| CHECK_EQ(15, r.Call(5)); |
| CHECK_EQ(99, r.Call(6)); |
| } |
| |
| WASM_EXEC_TEST(If_nested) { |
| WasmRunner<int32_t, int32_t, int32_t> r(execution_tier); |
| |
| BUILD( |
| r, |
| WASM_IF_ELSE_I( |
| WASM_GET_LOCAL(0), |
| WASM_IF_ELSE_I(WASM_GET_LOCAL(1), WASM_I32V_1(11), WASM_I32V_1(12)), |
| WASM_IF_ELSE_I(WASM_GET_LOCAL(1), WASM_I32V_1(13), WASM_I32V_1(14)))); |
| |
| CHECK_EQ(11, r.Call(1, 1)); |
| CHECK_EQ(12, r.Call(1, 0)); |
| CHECK_EQ(13, r.Call(0, 1)); |
| CHECK_EQ(14, r.Call(0, 0)); |
| } |
| |
| WASM_EXEC_TEST(ExprBlock_if) { |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| |
| BUILD(r, WASM_BLOCK_I(WASM_IF_ELSE_I(WASM_GET_LOCAL(0), |
| WASM_BRV(0, WASM_I32V_1(11)), |
| WASM_BRV(1, WASM_I32V_1(14))))); |
| |
| CHECK_EQ(11, r.Call(1)); |
| CHECK_EQ(14, r.Call(0)); |
| } |
| |
| WASM_EXEC_TEST(ExprBlock_nested_ifs) { |
| WasmRunner<int32_t, int32_t, int32_t> r(execution_tier); |
| |
| BUILD(r, WASM_BLOCK_I(WASM_IF_ELSE_I( |
| WASM_GET_LOCAL(0), |
| WASM_IF_ELSE_I(WASM_GET_LOCAL(1), WASM_BRV(0, WASM_I32V_1(11)), |
| WASM_BRV(1, WASM_I32V_1(12))), |
| WASM_IF_ELSE_I(WASM_GET_LOCAL(1), WASM_BRV(0, WASM_I32V_1(13)), |
| WASM_BRV(1, WASM_I32V_1(14)))))); |
| |
| CHECK_EQ(11, r.Call(1, 1)); |
| CHECK_EQ(12, r.Call(1, 0)); |
| CHECK_EQ(13, r.Call(0, 1)); |
| CHECK_EQ(14, r.Call(0, 0)); |
| } |
| |
| WASM_EXEC_TEST(SimpleCallIndirect) { |
| TestSignatures sigs; |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| |
| WasmFunctionCompiler& t1 = r.NewFunction(sigs.i_ii()); |
| BUILD(t1, WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); |
| t1.SetSigIndex(1); |
| |
| WasmFunctionCompiler& t2 = r.NewFunction(sigs.i_ii()); |
| BUILD(t2, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); |
| t2.SetSigIndex(1); |
| |
| // Signature table. |
| r.builder().AddSignature(sigs.f_ff()); |
| r.builder().AddSignature(sigs.i_ii()); |
| r.builder().AddSignature(sigs.d_dd()); |
| |
| // Function table. |
| uint16_t indirect_function_table[] = { |
| static_cast<uint16_t>(t1.function_index()), |
| static_cast<uint16_t>(t2.function_index())}; |
| r.builder().AddIndirectFunctionTable(indirect_function_table, |
| arraysize(indirect_function_table)); |
| |
| // Build the caller function. |
| BUILD(r, WASM_CALL_INDIRECT2(1, WASM_GET_LOCAL(0), WASM_I32V_2(66), |
| WASM_I32V_1(22))); |
| |
| CHECK_EQ(88, r.Call(0)); |
| CHECK_EQ(44, r.Call(1)); |
| CHECK_TRAP(r.Call(2)); |
| } |
| |
| WASM_EXEC_TEST(MultipleCallIndirect) { |
| TestSignatures sigs; |
| WasmRunner<int32_t, int32_t, int32_t, int32_t> r(execution_tier); |
| |
| WasmFunctionCompiler& t1 = r.NewFunction(sigs.i_ii()); |
| BUILD(t1, WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); |
| t1.SetSigIndex(1); |
| |
| WasmFunctionCompiler& t2 = r.NewFunction(sigs.i_ii()); |
| BUILD(t2, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); |
| t2.SetSigIndex(1); |
| |
| // Signature table. |
| r.builder().AddSignature(sigs.f_ff()); |
| r.builder().AddSignature(sigs.i_ii()); |
| r.builder().AddSignature(sigs.d_dd()); |
| |
| // Function table. |
| uint16_t indirect_function_table[] = { |
| static_cast<uint16_t>(t1.function_index()), |
| static_cast<uint16_t>(t2.function_index())}; |
| r.builder().AddIndirectFunctionTable(indirect_function_table, |
| arraysize(indirect_function_table)); |
| |
| // Build the caller function. |
| BUILD(r, WASM_I32_ADD( |
| WASM_CALL_INDIRECT2(1, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1), |
| WASM_GET_LOCAL(2)), |
| WASM_CALL_INDIRECT2(1, WASM_GET_LOCAL(1), WASM_GET_LOCAL(2), |
| WASM_GET_LOCAL(0)))); |
| |
| CHECK_EQ(5, r.Call(0, 1, 2)); |
| CHECK_EQ(19, r.Call(0, 1, 9)); |
| CHECK_EQ(1, r.Call(1, 0, 2)); |
| CHECK_EQ(1, r.Call(1, 0, 9)); |
| |
| CHECK_TRAP(r.Call(0, 2, 1)); |
| CHECK_TRAP(r.Call(1, 2, 0)); |
| CHECK_TRAP(r.Call(2, 0, 1)); |
| CHECK_TRAP(r.Call(2, 1, 0)); |
| } |
| |
| WASM_EXEC_TEST(CallIndirect_EmptyTable) { |
| TestSignatures sigs; |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| |
| // One function. |
| WasmFunctionCompiler& t1 = r.NewFunction(sigs.i_ii()); |
| BUILD(t1, WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); |
| t1.SetSigIndex(1); |
| |
| // Signature table. |
| r.builder().AddSignature(sigs.f_ff()); |
| r.builder().AddSignature(sigs.i_ii()); |
| r.builder().AddIndirectFunctionTable(nullptr, 0); |
| |
| // Build the caller function. |
| BUILD(r, WASM_CALL_INDIRECT2(1, WASM_GET_LOCAL(0), WASM_I32V_2(66), |
| WASM_I32V_1(22))); |
| |
| CHECK_TRAP(r.Call(0)); |
| CHECK_TRAP(r.Call(1)); |
| CHECK_TRAP(r.Call(2)); |
| } |
| |
| WASM_EXEC_TEST(CallIndirect_canonical) { |
| TestSignatures sigs; |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| |
| WasmFunctionCompiler& t1 = r.NewFunction(sigs.i_ii()); |
| BUILD(t1, WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); |
| t1.SetSigIndex(0); |
| |
| WasmFunctionCompiler& t2 = r.NewFunction(sigs.i_ii()); |
| BUILD(t2, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); |
| t2.SetSigIndex(1); |
| |
| WasmFunctionCompiler& t3 = r.NewFunction(sigs.f_ff()); |
| BUILD(t3, WASM_F32_SUB(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); |
| t3.SetSigIndex(2); |
| |
| // Signature table. |
| r.builder().AddSignature(sigs.i_ii()); |
| r.builder().AddSignature(sigs.i_ii()); |
| r.builder().AddSignature(sigs.f_ff()); |
| |
| // Function table. |
| uint16_t i1 = static_cast<uint16_t>(t1.function_index()); |
| uint16_t i2 = static_cast<uint16_t>(t2.function_index()); |
| uint16_t i3 = static_cast<uint16_t>(t3.function_index()); |
| uint16_t indirect_function_table[] = {i1, i2, i3, i1, i2}; |
| |
| r.builder().AddIndirectFunctionTable(indirect_function_table, |
| arraysize(indirect_function_table)); |
| |
| // Build the caller function. |
| BUILD(r, WASM_CALL_INDIRECT2(1, WASM_GET_LOCAL(0), WASM_I32V_2(77), |
| WASM_I32V_1(11))); |
| |
| CHECK_EQ(88, r.Call(0)); |
| CHECK_EQ(66, r.Call(1)); |
| CHECK_TRAP(r.Call(2)); |
| CHECK_EQ(88, r.Call(3)); |
| CHECK_EQ(66, r.Call(4)); |
| CHECK_TRAP(r.Call(5)); |
| } |
| |
| WASM_EXEC_TEST(F32Floor) { |
| WasmRunner<float, float> r(execution_tier); |
| BUILD(r, WASM_F32_FLOOR(WASM_GET_LOCAL(0))); |
| |
| FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(floorf(i), r.Call(i)); } |
| } |
| |
| WASM_EXEC_TEST(F32Ceil) { |
| WasmRunner<float, float> r(execution_tier); |
| BUILD(r, WASM_F32_CEIL(WASM_GET_LOCAL(0))); |
| |
| FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(ceilf(i), r.Call(i)); } |
| } |
| |
| WASM_EXEC_TEST(F32Trunc) { |
| WasmRunner<float, float> r(execution_tier); |
| BUILD(r, WASM_F32_TRUNC(WASM_GET_LOCAL(0))); |
| |
| FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(truncf(i), r.Call(i)); } |
| } |
| |
| WASM_EXEC_TEST(F32NearestInt) { |
| WasmRunner<float, float> r(execution_tier); |
| BUILD(r, WASM_F32_NEARESTINT(WASM_GET_LOCAL(0))); |
| |
| FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(nearbyintf(i), r.Call(i)); } |
| } |
| |
| WASM_EXEC_TEST(F64Floor) { |
| WasmRunner<double, double> r(execution_tier); |
| BUILD(r, WASM_F64_FLOOR(WASM_GET_LOCAL(0))); |
| |
| FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(floor(i), r.Call(i)); } |
| } |
| |
| WASM_EXEC_TEST(F64Ceil) { |
| WasmRunner<double, double> r(execution_tier); |
| BUILD(r, WASM_F64_CEIL(WASM_GET_LOCAL(0))); |
| |
| FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(ceil(i), r.Call(i)); } |
| } |
| |
| WASM_EXEC_TEST(F64Trunc) { |
| WasmRunner<double, double> r(execution_tier); |
| BUILD(r, WASM_F64_TRUNC(WASM_GET_LOCAL(0))); |
| |
| FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(trunc(i), r.Call(i)); } |
| } |
| |
| WASM_EXEC_TEST(F64NearestInt) { |
| WasmRunner<double, double> r(execution_tier); |
| BUILD(r, WASM_F64_NEARESTINT(WASM_GET_LOCAL(0))); |
| |
| FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(nearbyint(i), r.Call(i)); } |
| } |
| |
| WASM_EXEC_TEST(F32Min) { |
| WasmRunner<float, float, float> r(execution_tier); |
| BUILD(r, WASM_F32_MIN(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); |
| |
| FOR_FLOAT32_INPUTS(i) { |
| FOR_FLOAT32_INPUTS(j) { CHECK_DOUBLE_EQ(JSMin(i, j), r.Call(i, j)); } |
| } |
| } |
| |
| WASM_EXEC_TEST(F32MinSameValue) { |
| WasmRunner<float, float> r(execution_tier); |
| BUILD(r, WASM_F32_MIN(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0))); |
| float result = r.Call(5.0f); |
| CHECK_FLOAT_EQ(5.0f, result); |
| } |
| |
| WASM_EXEC_TEST(F64Min) { |
| WasmRunner<double, double, double> r(execution_tier); |
| BUILD(r, WASM_F64_MIN(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); |
| |
| FOR_FLOAT64_INPUTS(i) { |
| FOR_FLOAT64_INPUTS(j) { CHECK_DOUBLE_EQ(JSMin(i, j), r.Call(i, j)); } |
| } |
| } |
| |
| WASM_EXEC_TEST(F64MinSameValue) { |
| WasmRunner<double, double> r(execution_tier); |
| BUILD(r, WASM_F64_MIN(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0))); |
| double result = r.Call(5.0); |
| CHECK_DOUBLE_EQ(5.0, result); |
| } |
| |
| WASM_EXEC_TEST(F32Max) { |
| WasmRunner<float, float, float> r(execution_tier); |
| BUILD(r, WASM_F32_MAX(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); |
| |
| FOR_FLOAT32_INPUTS(i) { |
| FOR_FLOAT32_INPUTS(j) { CHECK_FLOAT_EQ(JSMax(i, j), r.Call(i, j)); } |
| } |
| } |
| |
| WASM_EXEC_TEST(F32MaxSameValue) { |
| WasmRunner<float, float> r(execution_tier); |
| BUILD(r, WASM_F32_MAX(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0))); |
| float result = r.Call(5.0f); |
| CHECK_FLOAT_EQ(5.0f, result); |
| } |
| |
| WASM_EXEC_TEST(F64Max) { |
| WasmRunner<double, double, double> r(execution_tier); |
| BUILD(r, WASM_F64_MAX(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); |
| |
| FOR_FLOAT64_INPUTS(i) { |
| FOR_FLOAT64_INPUTS(j) { |
| double result = r.Call(i, j); |
| CHECK_DOUBLE_EQ(JSMax(i, j), result); |
| } |
| } |
| } |
| |
| WASM_EXEC_TEST(F64MaxSameValue) { |
| WasmRunner<double, double> r(execution_tier); |
| BUILD(r, WASM_F64_MAX(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0))); |
| double result = r.Call(5.0); |
| CHECK_DOUBLE_EQ(5.0, result); |
| } |
| |
| WASM_EXEC_TEST(I32SConvertF32) { |
| WasmRunner<int32_t, float> r(execution_tier); |
| BUILD(r, WASM_I32_SCONVERT_F32(WASM_GET_LOCAL(0))); |
| |
| FOR_FLOAT32_INPUTS(i) { |
| if (is_inbounds<int32_t>(i)) { |
| CHECK_EQ(static_cast<int32_t>(i), r.Call(i)); |
| } else { |
| CHECK_TRAP32(r.Call(i)); |
| } |
| } |
| } |
| |
| WASM_EXEC_TEST(I32SConvertSatF32) { |
| EXPERIMENTAL_FLAG_SCOPE(sat_f2i_conversions); |
| WasmRunner<int32_t, float> r(execution_tier); |
| BUILD(r, WASM_I32_SCONVERT_SAT_F32(WASM_GET_LOCAL(0))); |
| |
| FOR_FLOAT32_INPUTS(i) { |
| int32_t expected = |
| is_inbounds<int32_t>(i) |
| ? static_cast<int32_t>(i) |
| : std::isnan(i) ? 0 |
| : i < 0.0 ? std::numeric_limits<int32_t>::min() |
| : std::numeric_limits<int32_t>::max(); |
| int32_t found = r.Call(i); |
| CHECK_EQ(expected, found); |
| } |
| } |
| |
| WASM_EXEC_TEST(I32SConvertF64) { |
| WasmRunner<int32_t, double> r(execution_tier); |
| BUILD(r, WASM_I32_SCONVERT_F64(WASM_GET_LOCAL(0))); |
| |
| FOR_FLOAT64_INPUTS(i) { |
| if (is_inbounds<int32_t>(i)) { |
| CHECK_EQ(static_cast<int32_t>(i), r.Call(i)); |
| } else { |
| CHECK_TRAP32(r.Call(i)); |
| } |
| } |
| } |
| |
| WASM_EXEC_TEST(I32SConvertSatF64) { |
| EXPERIMENTAL_FLAG_SCOPE(sat_f2i_conversions); |
| WasmRunner<int32_t, double> r(execution_tier); |
| BUILD(r, WASM_I32_SCONVERT_SAT_F64(WASM_GET_LOCAL(0))); |
| FOR_FLOAT64_INPUTS(i) { |
| int32_t expected = |
| is_inbounds<int32_t>(i) |
| ? static_cast<int32_t>(i) |
| : std::isnan(i) ? 0 |
| : i < 0.0 ? std::numeric_limits<int32_t>::min() |
| : std::numeric_limits<int32_t>::max(); |
| int32_t found = r.Call(i); |
| CHECK_EQ(expected, found); |
| } |
| } |
| |
| WASM_EXEC_TEST(I32UConvertF32) { |
| WasmRunner<uint32_t, float> r(execution_tier); |
| BUILD(r, WASM_I32_UCONVERT_F32(WASM_GET_LOCAL(0))); |
| FOR_FLOAT32_INPUTS(i) { |
| if (is_inbounds<uint32_t>(i)) { |
| CHECK_EQ(static_cast<uint32_t>(i), r.Call(i)); |
| } else { |
| CHECK_TRAP32(r.Call(i)); |
| } |
| } |
| } |
| |
| WASM_EXEC_TEST(I32UConvertSatF32) { |
| EXPERIMENTAL_FLAG_SCOPE(sat_f2i_conversions); |
| WasmRunner<uint32_t, float> r(execution_tier); |
| BUILD(r, WASM_I32_UCONVERT_SAT_F32(WASM_GET_LOCAL(0))); |
| FOR_FLOAT32_INPUTS(i) { |
| int32_t expected = |
| is_inbounds<uint32_t>(i) |
| ? static_cast<uint32_t>(i) |
| : std::isnan(i) ? 0 |
| : i < 0.0 ? std::numeric_limits<uint32_t>::min() |
| : std::numeric_limits<uint32_t>::max(); |
| int32_t found = r.Call(i); |
| CHECK_EQ(expected, found); |
| } |
| } |
| |
| WASM_EXEC_TEST(I32UConvertF64) { |
| WasmRunner<uint32_t, double> r(execution_tier); |
| BUILD(r, WASM_I32_UCONVERT_F64(WASM_GET_LOCAL(0))); |
| FOR_FLOAT64_INPUTS(i) { |
| if (is_inbounds<uint32_t>(i)) { |
| CHECK_EQ(static_cast<uint32_t>(i), r.Call(i)); |
| } else { |
| CHECK_TRAP32(r.Call(i)); |
| } |
| } |
| } |
| |
| WASM_EXEC_TEST(I32UConvertSatF64) { |
| EXPERIMENTAL_FLAG_SCOPE(sat_f2i_conversions); |
| WasmRunner<uint32_t, double> r(execution_tier); |
| BUILD(r, WASM_I32_UCONVERT_SAT_F64(WASM_GET_LOCAL(0))); |
| FOR_FLOAT64_INPUTS(i) { |
| int32_t expected = |
| is_inbounds<uint32_t>(i) |
| ? static_cast<uint32_t>(i) |
| : std::isnan(i) ? 0 |
| : i < 0.0 ? std::numeric_limits<uint32_t>::min() |
| : std::numeric_limits<uint32_t>::max(); |
| int32_t found = r.Call(i); |
| CHECK_EQ(expected, found); |
| } |
| } |
| |
| WASM_EXEC_TEST(F64CopySign) { |
| WasmRunner<double, double, double> r(execution_tier); |
| BUILD(r, WASM_F64_COPYSIGN(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); |
| |
| FOR_FLOAT64_INPUTS(i) { |
| FOR_FLOAT64_INPUTS(j) { CHECK_DOUBLE_EQ(copysign(i, j), r.Call(i, j)); } |
| } |
| } |
| |
| WASM_EXEC_TEST(F32CopySign) { |
| WasmRunner<float, float, float> r(execution_tier); |
| BUILD(r, WASM_F32_COPYSIGN(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); |
| |
| FOR_FLOAT32_INPUTS(i) { |
| FOR_FLOAT32_INPUTS(j) { CHECK_FLOAT_EQ(copysignf(i, j), r.Call(i, j)); } |
| } |
| } |
| |
| static void CompileCallIndirectMany(ExecutionTier tier, ValueType param) { |
| // Make sure we don't run out of registers when compiling indirect calls |
| // with many many parameters. |
| TestSignatures sigs; |
| for (byte num_params = 0; num_params < 40; ++num_params) { |
| WasmRunner<void> r(tier); |
| FunctionSig* sig = sigs.many(r.zone(), kWasmStmt, param, num_params); |
| |
| r.builder().AddSignature(sig); |
| r.builder().AddSignature(sig); |
| r.builder().AddIndirectFunctionTable(nullptr, 0); |
| |
| WasmFunctionCompiler& t = r.NewFunction(sig); |
| |
| std::vector<byte> code; |
| for (byte p = 0; p < num_params; ++p) { |
| ADD_CODE(code, kExprGetLocal, p); |
| } |
| ADD_CODE(code, kExprI32Const, 0); |
| ADD_CODE(code, kExprCallIndirect, 1, TABLE_ZERO); |
| |
| t.Build(&code[0], &code[0] + code.size()); |
| } |
| } |
| |
| WASM_COMPILED_EXEC_TEST(Compile_Wasm_CallIndirect_Many_i32) { |
| CompileCallIndirectMany(execution_tier, kWasmI32); |
| } |
| |
| WASM_COMPILED_EXEC_TEST(Compile_Wasm_CallIndirect_Many_f32) { |
| CompileCallIndirectMany(execution_tier, kWasmF32); |
| } |
| |
| WASM_COMPILED_EXEC_TEST(Compile_Wasm_CallIndirect_Many_f64) { |
| CompileCallIndirectMany(execution_tier, kWasmF64); |
| } |
| |
| WASM_EXEC_TEST(Int32RemS_dead) { |
| WasmRunner<int32_t, int32_t, int32_t> r(execution_tier); |
| BUILD(r, WASM_I32_REMS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)), WASM_DROP, |
| WASM_ZERO); |
| const int32_t kMin = std::numeric_limits<int32_t>::min(); |
| CHECK_EQ(0, r.Call(133, 100)); |
| CHECK_EQ(0, r.Call(kMin, -1)); |
| CHECK_EQ(0, r.Call(0, 1)); |
| CHECK_TRAP(r.Call(100, 0)); |
| CHECK_TRAP(r.Call(-1001, 0)); |
| CHECK_TRAP(r.Call(kMin, 0)); |
| } |
| |
| WASM_EXEC_TEST(BrToLoopWithValue) { |
| WasmRunner<int32_t, int32_t, int32_t> r(execution_tier); |
| // Subtracts <1> times 3 from <0> and returns the result. |
| BUILD(r, |
| // loop i32 |
| kExprLoop, kLocalI32, |
| // decrement <0> by 3. |
| WASM_SET_LOCAL(0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I32V_1(3))), |
| // decrement <1> by 1. |
| WASM_SET_LOCAL(1, WASM_I32_SUB(WASM_GET_LOCAL(1), WASM_ONE)), |
| // load return value <0>, br_if will drop if if the branch is taken. |
| WASM_GET_LOCAL(0), |
| // continue loop if <1> is != 0. |
| WASM_BR_IF(0, WASM_GET_LOCAL(1)), |
| // end of loop, value loaded above is the return value. |
| kExprEnd); |
| CHECK_EQ(12, r.Call(27, 5)); |
| } |
| |
| WASM_EXEC_TEST(BrToLoopWithoutValue) { |
| // This was broken in the interpreter, see http://crbug.com/715454 |
| WasmRunner<int32_t, int32_t> r(execution_tier); |
| BUILD( |
| r, kExprLoop, kLocalI32, // loop i32 |
| WASM_SET_LOCAL(0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_ONE)), // dec <0> |
| WASM_BR_IF(0, WASM_GET_LOCAL(0)), // br_if <0> != 0 |
| kExprUnreachable, // unreachable |
| kExprEnd); // end |
| CHECK_TRAP32(r.Call(2)); |
| } |
| |
| WASM_EXEC_TEST(LoopsWithValues) { |
| WasmRunner<int32_t> r(execution_tier); |
| BUILD(r, WASM_LOOP_I(WASM_LOOP_I(WASM_ONE), WASM_ONE, kExprI32Add)); |
| CHECK_EQ(2, r.Call()); |
| } |
| |
| WASM_EXEC_TEST(InvalidStackAfterUnreachable) { |
| WasmRunner<int32_t> r(execution_tier); |
| BUILD(r, kExprUnreachable, kExprI32Add); |
| CHECK_TRAP32(r.Call()); |
| } |
| |
| WASM_EXEC_TEST(InvalidStackAfterBr) { |
| WasmRunner<int32_t> r(execution_tier); |
| BUILD(r, WASM_BRV(0, WASM_I32V_1(27)), kExprI32Add); |
| CHECK_EQ(27, r.Call()); |
| } |
| |
| WASM_EXEC_TEST(InvalidStackAfterReturn) { |
| WasmRunner<int32_t> r(execution_tier); |
| BUILD(r, WASM_RETURN1(WASM_I32V_1(17)), kExprI32Add); |
| CHECK_EQ(17, r.Call()); |
| } |
| |
| WASM_EXEC_TEST(BranchOverUnreachableCode) { |
| WasmRunner<int32_t> r(execution_tier); |
| BUILD(r, |
| // Start a block which breaks in the middle (hence unreachable code |
| // afterwards) and continue execution after this block. |
| WASM_BLOCK_I(WASM_BRV(0, WASM_I32V_1(17)), kExprI32Add), |
| // Add one to the 17 returned from the block. |
| WASM_ONE, kExprI32Add); |
| CHECK_EQ(18, r.Call()); |
| } |
| |
| WASM_EXEC_TEST(BranchOverUnreachableCodeInLoop0) { |
| WasmRunner<int32_t> r(execution_tier); |
| BUILD(r, |
| WASM_BLOCK_I( |
| // Start a loop which breaks in the middle (hence unreachable code |
| // afterwards) and continue execution after this loop. |
| // This should validate even though there is no value on the stack |
| // at the end of the loop. |
| WASM_LOOP_I(WASM_BRV(1, WASM_I32V_1(17)))), |
| // Add one to the 17 returned from the block. |
| WASM_ONE, kExprI32Add); |
| CHECK_EQ(18, r.Call()); |
| } |
| |
| WASM_EXEC_TEST(BranchOverUnreachableCodeInLoop1) { |
| WasmRunner<int32_t> r(execution_tier); |
| BUILD(r, |
| WASM_BLOCK_I( |
| // Start a loop which breaks in the middle (hence unreachable code |
| // afterwards) and continue execution after this loop. |
| // Even though unreachable, the loop leaves one value on the stack. |
| WASM_LOOP_I(WASM_BRV(1, WASM_I32V_1(17)), WASM_ONE)), |
| // Add one to the 17 returned from the block. |
| WASM_ONE, kExprI32Add); |
| CHECK_EQ(18, r.Call()); |
| } |
| |
| WASM_EXEC_TEST(BranchOverUnreachableCodeInLoop2) { |
| WasmRunner<int32_t> r(execution_tier); |
| BUILD(r, |
| WASM_BLOCK_I( |
| // Start a loop which breaks in the middle (hence unreachable code |
| // afterwards) and continue execution after this loop. |
| // The unreachable code is allowed to pop non-existing values off |
| // the stack and push back the result. |
| WASM_LOOP_I(WASM_BRV(1, WASM_I32V_1(17)), kExprI32Add)), |
| // Add one to the 17 returned from the block. |
| WASM_ONE, kExprI32Add); |
| CHECK_EQ(18, r.Call()); |
| } |
| |
| WASM_EXEC_TEST(BlockInsideUnreachable) { |
| WasmRunner<int32_t> r(execution_tier); |
| BUILD(r, WASM_RETURN1(WASM_I32V_1(17)), WASM_BLOCK(WASM_BR(0))); |
| CHECK_EQ(17, r.Call()); |
| } |
| |
| WASM_EXEC_TEST(IfInsideUnreachable) { |
| WasmRunner<int32_t> r(execution_tier); |
| BUILD( |
| r, WASM_RETURN1(WASM_I32V_1(17)), |
| WASM_IF_ELSE_I(WASM_ONE, WASM_BRV(0, WASM_ONE), WASM_RETURN1(WASM_ONE))); |
| CHECK_EQ(17, r.Call()); |
| } |
| |
| // This test targets binops in Liftoff. |
| // Initialize a number of local variables to force them into different |
| // registers, then perform a binary operation on two of the locals. |
| // Afterwards, write back all locals to memory, to check that their value was |
| // not overwritten. |
| template <typename ctype> |
| void BinOpOnDifferentRegisters( |
| ExecutionTier execution_tier, ValueType type, Vector<const ctype> inputs, |
| WasmOpcode opcode, std::function<ctype(ctype, ctype, bool*)> expect_fn) { |
| static constexpr int kMaxNumLocals = 8; |
| for (int num_locals = 1; num_locals < kMaxNumLocals; ++num_locals) { |
| // {init_locals_code} is shared by all code generated in the loop below. |
| std::vector<byte> init_locals_code; |
| // Load from memory into the locals. |
| for (int i = 0; i < num_locals; ++i) { |
| ADD_CODE( |
| init_locals_code, |
| WASM_SET_LOCAL(i, WASM_LOAD_MEM(ValueTypes::MachineTypeFor(type), |
| WASM_I32V_2(sizeof(ctype) * i)))); |
| } |
| // {write_locals_code} is shared by all code generated in the loop below. |
| std::vector<byte> write_locals_code; |
| // Write locals back into memory, shifted by one element to the right. |
| for (int i = 0; i < num_locals; ++i) { |
| ADD_CODE(write_locals_code, |
| WASM_STORE_MEM(ValueTypes::MachineTypeFor(type), |
| WASM_I32V_2(sizeof(ctype) * (i + 1)), |
| WASM_GET_LOCAL(i))); |
| } |
| for (int lhs = 0; lhs < num_locals; ++lhs) { |
| for (int rhs = 0; rhs < num_locals; ++rhs) { |
| WasmRunner<int32_t> r(execution_tier); |
| ctype* memory = |
| r.builder().AddMemoryElems<ctype>(kWasmPageSize / sizeof(ctype)); |
| for (int i = 0; i < num_locals; ++i) { |
| r.AllocateLocal(type); |
| } |
| std::vector<byte> code(init_locals_code); |
| ADD_CODE(code, |
| // Store the result of the binary operation at memory[0]. |
| WASM_STORE_MEM(ValueTypes::MachineTypeFor(type), WASM_ZERO, |
| WASM_BINOP(opcode, WASM_GET_LOCAL(lhs), |
| WASM_GET_LOCAL(rhs))), |
| // Return 0. |
| WASM_ZERO); |
| code.insert(code.end(), write_locals_code.begin(), |
| write_locals_code.end()); |
| r.Build(code.data(), code.data() + code.size()); |
| for (ctype lhs_value : inputs) { |
| for (ctype rhs_value : inputs) { |
| if (lhs == rhs) lhs_value = rhs_value; |
| for (int i = 0; i < num_locals; ++i) { |
| ctype value = |
| i == lhs ? lhs_value |
| : i == rhs ? rhs_value : static_cast<ctype>(i + 47); |
| WriteLittleEndianValue<ctype>(&memory[i], value); |
| } |
| bool trap = false; |
| int64_t expect = expect_fn(lhs_value, rhs_value, &trap); |
| if (trap) { |
| CHECK_TRAP(r.Call()); |
| continue; |
| } |
| CHECK_EQ(0, r.Call()); |
| CHECK_EQ(expect, ReadLittleEndianValue<ctype>(&memory[0])); |
| for (int i = 0; i < num_locals; ++i) { |
| ctype value = |
| i == lhs ? lhs_value |
| : i == rhs ? rhs_value : static_cast<ctype>(i + 47); |
| CHECK_EQ(value, ReadLittleEndianValue<ctype>(&memory[i + 1])); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // Keep this list small, the BinOpOnDifferentRegisters test is running long |
| // enough already. |
| static constexpr int32_t kSome32BitInputs[] = {0, 1, -1, 31, 0xff112233}; |
| static constexpr int64_t kSome64BitInputs[] = { |
| 0, 1, -1, 31, 63, 0x100000000, 0xff11223344556677}; |
| |
| WASM_EXEC_TEST(I32AddOnDifferentRegisters) { |
| BinOpOnDifferentRegisters<int32_t>( |
| execution_tier, kWasmI32, ArrayVector(kSome32BitInputs), kExprI32Add, |
| [](int32_t lhs, int32_t rhs, bool* trap) { return lhs + rhs; }); |
| } |
| |
| WASM_EXEC_TEST(I32SubOnDifferentRegisters) { |
| BinOpOnDifferentRegisters<int32_t>( |
| execution_tier, kWasmI32, ArrayVector(kSome32BitInputs), kExprI32Sub, |
| [](int32_t lhs, int32_t rhs, bool* trap) { return lhs - rhs; }); |
| } |
| |
| WASM_EXEC_TEST(I32MulOnDifferentRegisters) { |
| BinOpOnDifferentRegisters<int32_t>(execution_tier, kWasmI32, |
| ArrayVector(kSome32BitInputs), kExprI32Mul, |
| [](int32_t lhs, int32_t rhs, bool* trap) { |
| return base::MulWithWraparound(lhs, rhs); |
| }); |
| } |
| |
| WASM_EXEC_TEST(I32ShlOnDifferentRegisters) { |
| BinOpOnDifferentRegisters<int32_t>(execution_tier, kWasmI32, |
| ArrayVector(kSome32BitInputs), kExprI32Shl, |
| [](int32_t lhs, int32_t rhs, bool* trap) { |
| return base::ShlWithWraparound(lhs, rhs); |
| }); |
| } |
| |
| WASM_EXEC_TEST(I32ShrSOnDifferentRegisters) { |
| BinOpOnDifferentRegisters<int32_t>( |
| execution_tier, kWasmI32, ArrayVector(kSome32BitInputs), kExprI32ShrS, |
| [](int32_t lhs, int32_t rhs, bool* trap) { return lhs >> (rhs & 31); }); |
| } |
| |
| WASM_EXEC_TEST(I32ShrUOnDifferentRegisters) { |
| BinOpOnDifferentRegisters<int32_t>( |
| execution_tier, kWasmI32, ArrayVector(kSome32BitInputs), kExprI32ShrU, |
| [](int32_t lhs, int32_t rhs, bool* trap) { |
| return static_cast<uint32_t>(lhs) >> (rhs & 31); |
| }); |
| } |
| |
| WASM_EXEC_TEST(I32DivSOnDifferentRegisters) { |
| BinOpOnDifferentRegisters<int32_t>( |
| execution_tier, kWasmI32, ArrayVector(kSome32BitInputs), kExprI32DivS, |
| [](int32_t lhs, int32_t rhs, bool* trap) { |
| *trap = rhs == 0; |
| return *trap ? 0 : lhs / rhs; |
| }); |
| } |
| |
| WASM_EXEC_TEST(I32DivUOnDifferentRegisters) { |
| BinOpOnDifferentRegisters<int32_t>( |
| execution_tier, kWasmI32, ArrayVector(kSome32BitInputs), kExprI32DivU, |
| [](uint32_t lhs, uint32_t rhs, bool* trap) { |
| *trap = rhs == 0; |
| return *trap ? 0 : lhs / rhs; |
| }); |
| } |
| |
| WASM_EXEC_TEST(I32RemSOnDifferentRegisters) { |
| BinOpOnDifferentRegisters<int32_t>( |
| execution_tier, kWasmI32, ArrayVector(kSome32BitInputs), kExprI32RemS, |
| [](int32_t lhs, int32_t rhs, bool* trap) { |
| *trap = rhs == 0; |
| return *trap || rhs == -1 ? 0 : lhs % rhs; |
| }); |
| } |
| |
| WASM_EXEC_TEST(I32RemUOnDifferentRegisters) { |
| BinOpOnDifferentRegisters<int32_t>( |
| execution_tier, kWasmI32, ArrayVector(kSome32BitInputs), kExprI32RemU, |
| [](uint32_t lhs, uint32_t rhs, bool* trap) { |
| *trap = rhs == 0; |
| return *trap ? 0 : lhs % rhs; |
| }); |
| } |
| |
| WASM_EXEC_TEST(I64AddOnDifferentRegisters) { |
| BinOpOnDifferentRegisters<int64_t>( |
| execution_tier, kWasmI64, ArrayVector(kSome64BitInputs), kExprI64Add, |
| [](int64_t lhs, int64_t rhs, bool* trap) { return lhs + rhs; }); |
| } |
| |
| WASM_EXEC_TEST(I64SubOnDifferentRegisters) { |
| BinOpOnDifferentRegisters<int64_t>( |
| execution_tier, kWasmI64, ArrayVector(kSome64BitInputs), kExprI64Sub, |
| [](int64_t lhs, int64_t rhs, bool* trap) { return lhs - rhs; }); |
| } |
| |
| WASM_EXEC_TEST(I64MulOnDifferentRegisters) { |
| BinOpOnDifferentRegisters<int64_t>(execution_tier, kWasmI64, |
| ArrayVector(kSome64BitInputs), kExprI64Mul, |
| [](int64_t lhs, int64_t rhs, bool* trap) { |
| return base::MulWithWraparound(lhs, rhs); |
| }); |
| } |
| |
| WASM_EXEC_TEST(I64ShlOnDifferentRegisters) { |
| BinOpOnDifferentRegisters<int64_t>(execution_tier, kWasmI64, |
| ArrayVector(kSome64BitInputs), kExprI64Shl, |
| [](int64_t lhs, int64_t rhs, bool* trap) { |
| return base::ShlWithWraparound(lhs, rhs); |
| }); |
| } |
| |
| WASM_EXEC_TEST(I64ShrSOnDifferentRegisters) { |
| BinOpOnDifferentRegisters<int64_t>( |
| execution_tier, kWasmI64, ArrayVector(kSome64BitInputs), kExprI64ShrS, |
| [](int64_t lhs, int64_t rhs, bool* trap) { return lhs >> (rhs & 63); }); |
| } |
| |
| WASM_EXEC_TEST(I64ShrUOnDifferentRegisters) { |
| BinOpOnDifferentRegisters<int64_t>( |
| execution_tier, kWasmI64, ArrayVector(kSome64BitInputs), kExprI64ShrU, |
| [](int64_t lhs, int64_t rhs, bool* trap) { |
| return static_cast<uint64_t>(lhs) >> (rhs & 63); |
| }); |
| } |
| |
| WASM_EXEC_TEST(I64DivSOnDifferentRegisters) { |
| BinOpOnDifferentRegisters<int64_t>( |
| execution_tier, kWasmI64, ArrayVector(kSome64BitInputs), kExprI64DivS, |
| [](int64_t lhs, int64_t rhs, bool* trap) { |
| *trap = rhs == 0 || |
| (rhs == -1 && lhs == std::numeric_limits<int64_t>::min()); |
| return *trap ? 0 : lhs / rhs; |
| }); |
| } |
| |
| WASM_EXEC_TEST(I64DivUOnDifferentRegisters) { |
| BinOpOnDifferentRegisters<int64_t>( |
| execution_tier, kWasmI64, ArrayVector(kSome64BitInputs), kExprI64DivU, |
| [](uint64_t lhs, uint64_t rhs, bool* trap) { |
| *trap = rhs == 0; |
| return *trap ? 0 : lhs / rhs; |
| }); |
| } |
| |
| WASM_EXEC_TEST(I64RemSOnDifferentRegisters) { |
| BinOpOnDifferentRegisters<int64_t>( |
| execution_tier, kWasmI64, ArrayVector(kSome64BitInputs), kExprI64RemS, |
| [](int64_t lhs, int64_t rhs, bool* trap) { |
| *trap = rhs == 0; |
| return *trap || rhs == -1 ? 0 : lhs % rhs; |
| }); |
| } |
| |
| WASM_EXEC_TEST(I64RemUOnDifferentRegisters) { |
| BinOpOnDifferentRegisters<int64_t>( |
| execution_tier, kWasmI64, ArrayVector(kSome64BitInputs), kExprI64RemU, |
| [](uint64_t lhs, uint64_t rhs, bool* trap) { |
| *trap = rhs == 0; |
| return *trap ? 0 : lhs % rhs; |
| }); |
| } |
| |
| TEST(Liftoff_tier_up) { |
| WasmRunner<int32_t, int32_t, int32_t> r(ExecutionTier::kLiftoff); |
| |
| WasmFunctionCompiler& add = r.NewFunction<int32_t, int32_t, int32_t>("add"); |
| BUILD(add, WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); |
| |
| WasmFunctionCompiler& sub = r.NewFunction<int32_t, int32_t, int32_t>("sub"); |
| BUILD(sub, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); |
| |
| // Create the main function, which shall call {add}. |
| BUILD(r, WASM_CALL_FUNCTION(add.function_index(), WASM_GET_LOCAL(0), |
| WASM_GET_LOCAL(1))); |
| |
| NativeModule* native_module = |
| r.builder().instance_object()->module_object().native_module(); |
| |
| // This test only works if we managed to compile with Liftoff. |
| if (native_module->GetCode(add.function_index())->is_liftoff()) { |
| // First run should execute {add}. |
| CHECK_EQ(18, r.Call(11, 7)); |
| |
| // Now make a copy of the {sub} function, and add it to the native module at |
| // the index of {add}. |
| CodeDesc desc; |
| memset(&desc, 0, sizeof(CodeDesc)); |
| WasmCode* sub_code = native_module->GetCode(sub.function_index()); |
| size_t sub_size = sub_code->instructions().size(); |
| std::unique_ptr<byte[]> buffer(new byte[sub_code->instructions().size()]); |
| memcpy(buffer.get(), sub_code->instructions().begin(), sub_size); |
| desc.buffer = buffer.get(); |
| desc.instr_size = static_cast<int>(sub_size); |
| std::unique_ptr<WasmCode> new_code = native_module->AddCode( |
| add.function_index(), desc, 0, 0, {}, OwnedVector<byte>(), |
| WasmCode::kFunction, ExecutionTier::kTurbofan); |
| native_module->PublishCode(std::move(new_code)); |
| |
| // Second run should now execute {sub}. |
| CHECK_EQ(4, r.Call(11, 7)); |
| } |
| } |
| |
| #undef B1 |
| #undef B2 |
| #undef RET |
| #undef RET_I8 |
| #undef ADD_CODE |
| |
| } // namespace test_run_wasm |
| } // namespace wasm |
| } // namespace internal |
| } // namespace v8 |