| /* Copyright (c) 2007-2008 CSIRO |
| Copyright (c) 2007-2009 Xiph.Org Foundation |
| Written by Jean-Marc Valin */ |
| /* |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions |
| are met: |
| |
| - Redistributions of source code must retain the above copyright |
| notice, this list of conditions and the following disclaimer. |
| |
| - Redistributions in binary form must reproduce the above copyright |
| notice, this list of conditions and the following disclaimer in the |
| documentation and/or other materials provided with the distribution. |
| |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER |
| OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #ifdef HAVE_CONFIG_H |
| #include "config.h" |
| #endif |
| |
| #include <math.h> |
| #include "modes.h" |
| #include "cwrs.h" |
| #include "arch.h" |
| #include "os_support.h" |
| |
| #include "entcode.h" |
| #include "rate.h" |
| |
| static const unsigned char LOG2_FRAC_TABLE[24]={ |
| 0, |
| 8,13, |
| 16,19,21,23, |
| 24,26,27,28,29,30,31,32, |
| 32,33,34,34,35,36,36,37,37 |
| }; |
| |
| #ifdef CUSTOM_MODES |
| |
| /*Determines if V(N,K) fits in a 32-bit unsigned integer. |
| N and K are themselves limited to 15 bits.*/ |
| static int fits_in32(int _n, int _k) |
| { |
| static const opus_int16 maxN[15] = { |
| 32767, 32767, 32767, 1476, 283, 109, 60, 40, |
| 29, 24, 20, 18, 16, 14, 13}; |
| static const opus_int16 maxK[15] = { |
| 32767, 32767, 32767, 32767, 1172, 238, 95, 53, |
| 36, 27, 22, 18, 16, 15, 13}; |
| if (_n>=14) |
| { |
| if (_k>=14) |
| return 0; |
| else |
| return _n <= maxN[_k]; |
| } else { |
| return _k <= maxK[_n]; |
| } |
| } |
| |
| void compute_pulse_cache(CELTMode *m, int LM) |
| { |
| int C; |
| int i; |
| int j; |
| int curr=0; |
| int nbEntries=0; |
| int entryN[100], entryK[100], entryI[100]; |
| const opus_int16 *eBands = m->eBands; |
| PulseCache *cache = &m->cache; |
| opus_int16 *cindex; |
| unsigned char *bits; |
| unsigned char *cap; |
| |
| cindex = (opus_int16 *)opus_alloc(sizeof(cache->index[0])*m->nbEBands*(LM+2)); |
| cache->index = cindex; |
| |
| /* Scan for all unique band sizes */ |
| for (i=0;i<=LM+1;i++) |
| { |
| for (j=0;j<m->nbEBands;j++) |
| { |
| int k; |
| int N = (eBands[j+1]-eBands[j])<<i>>1; |
| cindex[i*m->nbEBands+j] = -1; |
| /* Find other bands that have the same size */ |
| for (k=0;k<=i;k++) |
| { |
| int n; |
| for (n=0;n<m->nbEBands && (k!=i || n<j);n++) |
| { |
| if (N == (eBands[n+1]-eBands[n])<<k>>1) |
| { |
| cindex[i*m->nbEBands+j] = cindex[k*m->nbEBands+n]; |
| break; |
| } |
| } |
| } |
| if (cache->index[i*m->nbEBands+j] == -1 && N!=0) |
| { |
| int K; |
| entryN[nbEntries] = N; |
| K = 0; |
| while (fits_in32(N,get_pulses(K+1)) && K<MAX_PSEUDO) |
| K++; |
| entryK[nbEntries] = K; |
| cindex[i*m->nbEBands+j] = curr; |
| entryI[nbEntries] = curr; |
| |
| curr += K+1; |
| nbEntries++; |
| } |
| } |
| } |
| bits = (unsigned char *)opus_alloc(sizeof(unsigned char)*curr); |
| cache->bits = bits; |
| cache->size = curr; |
| /* Compute the cache for all unique sizes */ |
| for (i=0;i<nbEntries;i++) |
| { |
| unsigned char *ptr = bits+entryI[i]; |
| opus_int16 tmp[CELT_MAX_PULSES+1]; |
| get_required_bits(tmp, entryN[i], get_pulses(entryK[i]), BITRES); |
| for (j=1;j<=entryK[i];j++) |
| ptr[j] = tmp[get_pulses(j)]-1; |
| ptr[0] = entryK[i]; |
| } |
| |
| /* Compute the maximum rate for each band at which we'll reliably use as |
| many bits as we ask for. */ |
| cache->caps = cap = (unsigned char *)opus_alloc(sizeof(cache->caps[0])*(LM+1)*2*m->nbEBands); |
| for (i=0;i<=LM;i++) |
| { |
| for (C=1;C<=2;C++) |
| { |
| for (j=0;j<m->nbEBands;j++) |
| { |
| int N0; |
| int max_bits; |
| N0 = m->eBands[j+1]-m->eBands[j]; |
| /* N=1 bands only have a sign bit and fine bits. */ |
| if (N0<<i == 1) |
| max_bits = C*(1+MAX_FINE_BITS)<<BITRES; |
| else |
| { |
| const unsigned char *pcache; |
| opus_int32 num; |
| opus_int32 den; |
| int LM0; |
| int N; |
| int offset; |
| int ndof; |
| int qb; |
| int k; |
| LM0 = 0; |
| /* Even-sized bands bigger than N=2 can be split one more time. |
| As of commit 44203907 all bands >1 are even, including custom modes.*/ |
| if (N0 > 2) |
| { |
| N0>>=1; |
| LM0--; |
| } |
| /* N0=1 bands can't be split down to N<2. */ |
| else if (N0 <= 1) |
| { |
| LM0=IMIN(i,1); |
| N0<<=LM0; |
| } |
| /* Compute the cost for the lowest-level PVQ of a fully split |
| band. */ |
| pcache = bits + cindex[(LM0+1)*m->nbEBands+j]; |
| max_bits = pcache[pcache[0]]+1; |
| /* Add in the cost of coding regular splits. */ |
| N = N0; |
| for(k=0;k<i-LM0;k++){ |
| max_bits <<= 1; |
| /* Offset the number of qtheta bits by log2(N)/2 |
| + QTHETA_OFFSET compared to their "fair share" of |
| total/N */ |
| offset = ((m->logN[j]+((LM0+k)<<BITRES))>>1)-QTHETA_OFFSET; |
| /* The number of qtheta bits we'll allocate if the remainder |
| is to be max_bits. |
| The average measured cost for theta is 0.89701 times qb, |
| approximated here as 459/512. */ |
| num=459*(opus_int32)((2*N-1)*offset+max_bits); |
| den=((opus_int32)(2*N-1)<<9)-459; |
| qb = IMIN((num+(den>>1))/den, 57); |
| celt_assert(qb >= 0); |
| max_bits += qb; |
| N <<= 1; |
| } |
| /* Add in the cost of a stereo split, if necessary. */ |
| if (C==2) |
| { |
| max_bits <<= 1; |
| offset = ((m->logN[j]+(i<<BITRES))>>1)-(N==2?QTHETA_OFFSET_TWOPHASE:QTHETA_OFFSET); |
| ndof = 2*N-1-(N==2); |
| /* The average measured cost for theta with the step PDF is |
| 0.95164 times qb, approximated here as 487/512. */ |
| num = (N==2?512:487)*(opus_int32)(max_bits+ndof*offset); |
| den = ((opus_int32)ndof<<9)-(N==2?512:487); |
| qb = IMIN((num+(den>>1))/den, (N==2?64:61)); |
| celt_assert(qb >= 0); |
| max_bits += qb; |
| } |
| /* Add the fine bits we'll use. */ |
| /* Compensate for the extra DoF in stereo */ |
| ndof = C*N + ((C==2 && N>2) ? 1 : 0); |
| /* Offset the number of fine bits by log2(N)/2 + FINE_OFFSET |
| compared to their "fair share" of total/N */ |
| offset = ((m->logN[j] + (i<<BITRES))>>1)-FINE_OFFSET; |
| /* N=2 is the only point that doesn't match the curve */ |
| if (N==2) |
| offset += 1<<BITRES>>2; |
| /* The number of fine bits we'll allocate if the remainder is |
| to be max_bits. */ |
| num = max_bits+ndof*offset; |
| den = (ndof-1)<<BITRES; |
| qb = IMIN((num+(den>>1))/den, MAX_FINE_BITS); |
| celt_assert(qb >= 0); |
| max_bits += C*qb<<BITRES; |
| } |
| max_bits = (4*max_bits/(C*((m->eBands[j+1]-m->eBands[j])<<i)))-64; |
| celt_assert(max_bits >= 0); |
| celt_assert(max_bits < 256); |
| *cap++ = (unsigned char)max_bits; |
| } |
| } |
| } |
| } |
| |
| #endif /* CUSTOM_MODES */ |
| |
| #define ALLOC_STEPS 6 |
| |
| static OPUS_INLINE int interp_bits2pulses(const CELTMode *m, int start, int end, int skip_start, |
| const int *bits1, const int *bits2, const int *thresh, const int *cap, opus_int32 total, opus_int32 *_balance, |
| int skip_rsv, int *intensity, int intensity_rsv, int *dual_stereo, int dual_stereo_rsv, int *bits, |
| int *ebits, int *fine_priority, int C, int LM, ec_ctx *ec, int encode, int prev, int signalBandwidth) |
| { |
| opus_int32 psum; |
| int lo, hi; |
| int i, j; |
| int logM; |
| int stereo; |
| int codedBands=-1; |
| int alloc_floor; |
| opus_int32 left, percoeff; |
| int done; |
| opus_int32 balance; |
| SAVE_STACK; |
| |
| alloc_floor = C<<BITRES; |
| stereo = C>1; |
| |
| logM = LM<<BITRES; |
| lo = 0; |
| hi = 1<<ALLOC_STEPS; |
| for (i=0;i<ALLOC_STEPS;i++) |
| { |
| int mid = (lo+hi)>>1; |
| psum = 0; |
| done = 0; |
| for (j=end;j-->start;) |
| { |
| int tmp = bits1[j] + (mid*(opus_int32)bits2[j]>>ALLOC_STEPS); |
| if (tmp >= thresh[j] || done) |
| { |
| done = 1; |
| /* Don't allocate more than we can actually use */ |
| psum += IMIN(tmp, cap[j]); |
| } else { |
| if (tmp >= alloc_floor) |
| psum += alloc_floor; |
| } |
| } |
| if (psum > total) |
| hi = mid; |
| else |
| lo = mid; |
| } |
| psum = 0; |
| /*printf ("interp bisection gave %d\n", lo);*/ |
| done = 0; |
| for (j=end;j-->start;) |
| { |
| int tmp = bits1[j] + ((opus_int32)lo*bits2[j]>>ALLOC_STEPS); |
| if (tmp < thresh[j] && !done) |
| { |
| if (tmp >= alloc_floor) |
| tmp = alloc_floor; |
| else |
| tmp = 0; |
| } else |
| done = 1; |
| /* Don't allocate more than we can actually use */ |
| tmp = IMIN(tmp, cap[j]); |
| bits[j] = tmp; |
| psum += tmp; |
| } |
| |
| /* Decide which bands to skip, working backwards from the end. */ |
| for (codedBands=end;;codedBands--) |
| { |
| int band_width; |
| int band_bits; |
| int rem; |
| j = codedBands-1; |
| /* Never skip the first band, nor a band that has been boosted by |
| dynalloc. |
| In the first case, we'd be coding a bit to signal we're going to waste |
| all the other bits. |
| In the second case, we'd be coding a bit to redistribute all the bits |
| we just signaled should be cocentrated in this band. */ |
| if (j<=skip_start) |
| { |
| /* Give the bit we reserved to end skipping back. */ |
| total += skip_rsv; |
| break; |
| } |
| /*Figure out how many left-over bits we would be adding to this band. |
| This can include bits we've stolen back from higher, skipped bands.*/ |
| left = total-psum; |
| percoeff = celt_udiv(left, m->eBands[codedBands]-m->eBands[start]); |
| left -= (m->eBands[codedBands]-m->eBands[start])*percoeff; |
| rem = IMAX(left-(m->eBands[j]-m->eBands[start]),0); |
| band_width = m->eBands[codedBands]-m->eBands[j]; |
| band_bits = (int)(bits[j] + percoeff*band_width + rem); |
| /*Only code a skip decision if we're above the threshold for this band. |
| Otherwise it is force-skipped. |
| This ensures that we have enough bits to code the skip flag.*/ |
| if (band_bits >= IMAX(thresh[j], alloc_floor+(1<<BITRES))) |
| { |
| if (encode) |
| { |
| /*This if() block is the only part of the allocation function that |
| is not a mandatory part of the bitstream: any bands we choose to |
| skip here must be explicitly signaled.*/ |
| int depth_threshold; |
| /*We choose a threshold with some hysteresis to keep bands from |
| fluctuating in and out, but we try not to fold below a certain point. */ |
| if (codedBands > 17) |
| depth_threshold = j<prev ? 7 : 9; |
| else |
| depth_threshold = 0; |
| #ifdef FUZZING |
| if ((rand()&0x1) == 0) |
| #else |
| if (codedBands<=start+2 || (band_bits > (depth_threshold*band_width<<LM<<BITRES)>>4 && j<=signalBandwidth)) |
| #endif |
| { |
| ec_enc_bit_logp(ec, 1, 1); |
| break; |
| } |
| ec_enc_bit_logp(ec, 0, 1); |
| } else if (ec_dec_bit_logp(ec, 1)) { |
| break; |
| } |
| /*We used a bit to skip this band.*/ |
| psum += 1<<BITRES; |
| band_bits -= 1<<BITRES; |
| } |
| /*Reclaim the bits originally allocated to this band.*/ |
| psum -= bits[j]+intensity_rsv; |
| if (intensity_rsv > 0) |
| intensity_rsv = LOG2_FRAC_TABLE[j-start]; |
| psum += intensity_rsv; |
| if (band_bits >= alloc_floor) |
| { |
| /*If we have enough for a fine energy bit per channel, use it.*/ |
| psum += alloc_floor; |
| bits[j] = alloc_floor; |
| } else { |
| /*Otherwise this band gets nothing at all.*/ |
| bits[j] = 0; |
| } |
| } |
| |
| celt_assert(codedBands > start); |
| /* Code the intensity and dual stereo parameters. */ |
| if (intensity_rsv > 0) |
| { |
| if (encode) |
| { |
| *intensity = IMIN(*intensity, codedBands); |
| ec_enc_uint(ec, *intensity-start, codedBands+1-start); |
| } |
| else |
| *intensity = start+ec_dec_uint(ec, codedBands+1-start); |
| } |
| else |
| *intensity = 0; |
| if (*intensity <= start) |
| { |
| total += dual_stereo_rsv; |
| dual_stereo_rsv = 0; |
| } |
| if (dual_stereo_rsv > 0) |
| { |
| if (encode) |
| ec_enc_bit_logp(ec, *dual_stereo, 1); |
| else |
| *dual_stereo = ec_dec_bit_logp(ec, 1); |
| } |
| else |
| *dual_stereo = 0; |
| |
| /* Allocate the remaining bits */ |
| left = total-psum; |
| percoeff = celt_udiv(left, m->eBands[codedBands]-m->eBands[start]); |
| left -= (m->eBands[codedBands]-m->eBands[start])*percoeff; |
| for (j=start;j<codedBands;j++) |
| bits[j] += ((int)percoeff*(m->eBands[j+1]-m->eBands[j])); |
| for (j=start;j<codedBands;j++) |
| { |
| int tmp = (int)IMIN(left, m->eBands[j+1]-m->eBands[j]); |
| bits[j] += tmp; |
| left -= tmp; |
| } |
| /*for (j=0;j<end;j++)printf("%d ", bits[j]);printf("\n");*/ |
| |
| balance = 0; |
| for (j=start;j<codedBands;j++) |
| { |
| int N0, N, den; |
| int offset; |
| int NClogN; |
| opus_int32 excess, bit; |
| |
| celt_assert(bits[j] >= 0); |
| N0 = m->eBands[j+1]-m->eBands[j]; |
| N=N0<<LM; |
| bit = (opus_int32)bits[j]+balance; |
| |
| if (N>1) |
| { |
| excess = MAX32(bit-cap[j],0); |
| bits[j] = bit-excess; |
| |
| /* Compensate for the extra DoF in stereo */ |
| den=(C*N+ ((C==2 && N>2 && !*dual_stereo && j<*intensity) ? 1 : 0)); |
| |
| NClogN = den*(m->logN[j] + logM); |
| |
| /* Offset for the number of fine bits by log2(N)/2 + FINE_OFFSET |
| compared to their "fair share" of total/N */ |
| offset = (NClogN>>1)-den*FINE_OFFSET; |
| |
| /* N=2 is the only point that doesn't match the curve */ |
| if (N==2) |
| offset += den<<BITRES>>2; |
| |
| /* Changing the offset for allocating the second and third |
| fine energy bit */ |
| if (bits[j] + offset < den*2<<BITRES) |
| offset += NClogN>>2; |
| else if (bits[j] + offset < den*3<<BITRES) |
| offset += NClogN>>3; |
| |
| /* Divide with rounding */ |
| ebits[j] = IMAX(0, (bits[j] + offset + (den<<(BITRES-1)))); |
| ebits[j] = celt_udiv(ebits[j], den)>>BITRES; |
| |
| /* Make sure not to bust */ |
| if (C*ebits[j] > (bits[j]>>BITRES)) |
| ebits[j] = bits[j] >> stereo >> BITRES; |
| |
| /* More than that is useless because that's about as far as PVQ can go */ |
| ebits[j] = IMIN(ebits[j], MAX_FINE_BITS); |
| |
| /* If we rounded down or capped this band, make it a candidate for the |
| final fine energy pass */ |
| fine_priority[j] = ebits[j]*(den<<BITRES) >= bits[j]+offset; |
| |
| /* Remove the allocated fine bits; the rest are assigned to PVQ */ |
| bits[j] -= C*ebits[j]<<BITRES; |
| |
| } else { |
| /* For N=1, all bits go to fine energy except for a single sign bit */ |
| excess = MAX32(0,bit-(C<<BITRES)); |
| bits[j] = bit-excess; |
| ebits[j] = 0; |
| fine_priority[j] = 1; |
| } |
| |
| /* Fine energy can't take advantage of the re-balancing in |
| quant_all_bands(). |
| Instead, do the re-balancing here.*/ |
| if(excess > 0) |
| { |
| int extra_fine; |
| int extra_bits; |
| extra_fine = IMIN(excess>>(stereo+BITRES),MAX_FINE_BITS-ebits[j]); |
| ebits[j] += extra_fine; |
| extra_bits = extra_fine*C<<BITRES; |
| fine_priority[j] = extra_bits >= excess-balance; |
| excess -= extra_bits; |
| } |
| balance = excess; |
| |
| celt_assert(bits[j] >= 0); |
| celt_assert(ebits[j] >= 0); |
| } |
| /* Save any remaining bits over the cap for the rebalancing in |
| quant_all_bands(). */ |
| *_balance = balance; |
| |
| /* The skipped bands use all their bits for fine energy. */ |
| for (;j<end;j++) |
| { |
| ebits[j] = bits[j] >> stereo >> BITRES; |
| celt_assert(C*ebits[j]<<BITRES == bits[j]); |
| bits[j] = 0; |
| fine_priority[j] = ebits[j]<1; |
| } |
| RESTORE_STACK; |
| return codedBands; |
| } |
| |
| int compute_allocation(const CELTMode *m, int start, int end, const int *offsets, const int *cap, int alloc_trim, int *intensity, int *dual_stereo, |
| opus_int32 total, opus_int32 *balance, int *pulses, int *ebits, int *fine_priority, int C, int LM, ec_ctx *ec, int encode, int prev, int signalBandwidth) |
| { |
| int lo, hi, len, j; |
| int codedBands; |
| int skip_start; |
| int skip_rsv; |
| int intensity_rsv; |
| int dual_stereo_rsv; |
| VARDECL(int, bits1); |
| VARDECL(int, bits2); |
| VARDECL(int, thresh); |
| VARDECL(int, trim_offset); |
| SAVE_STACK; |
| |
| total = IMAX(total, 0); |
| len = m->nbEBands; |
| skip_start = start; |
| /* Reserve a bit to signal the end of manually skipped bands. */ |
| skip_rsv = total >= 1<<BITRES ? 1<<BITRES : 0; |
| total -= skip_rsv; |
| /* Reserve bits for the intensity and dual stereo parameters. */ |
| intensity_rsv = dual_stereo_rsv = 0; |
| if (C==2) |
| { |
| intensity_rsv = LOG2_FRAC_TABLE[end-start]; |
| if (intensity_rsv>total) |
| intensity_rsv = 0; |
| else |
| { |
| total -= intensity_rsv; |
| dual_stereo_rsv = total>=1<<BITRES ? 1<<BITRES : 0; |
| total -= dual_stereo_rsv; |
| } |
| } |
| ALLOC(bits1, len, int); |
| ALLOC(bits2, len, int); |
| ALLOC(thresh, len, int); |
| ALLOC(trim_offset, len, int); |
| |
| for (j=start;j<end;j++) |
| { |
| /* Below this threshold, we're sure not to allocate any PVQ bits */ |
| thresh[j] = IMAX((C)<<BITRES, (3*(m->eBands[j+1]-m->eBands[j])<<LM<<BITRES)>>4); |
| /* Tilt of the allocation curve */ |
| trim_offset[j] = C*(m->eBands[j+1]-m->eBands[j])*(alloc_trim-5-LM)*(end-j-1) |
| *(1<<(LM+BITRES))>>6; |
| /* Giving less resolution to single-coefficient bands because they get |
| more benefit from having one coarse value per coefficient*/ |
| if ((m->eBands[j+1]-m->eBands[j])<<LM==1) |
| trim_offset[j] -= C<<BITRES; |
| } |
| lo = 1; |
| hi = m->nbAllocVectors - 1; |
| do |
| { |
| int done = 0; |
| int psum = 0; |
| int mid = (lo+hi) >> 1; |
| for (j=end;j-->start;) |
| { |
| int bitsj; |
| int N = m->eBands[j+1]-m->eBands[j]; |
| bitsj = C*N*m->allocVectors[mid*len+j]<<LM>>2; |
| if (bitsj > 0) |
| bitsj = IMAX(0, bitsj + trim_offset[j]); |
| bitsj += offsets[j]; |
| if (bitsj >= thresh[j] || done) |
| { |
| done = 1; |
| /* Don't allocate more than we can actually use */ |
| psum += IMIN(bitsj, cap[j]); |
| } else { |
| if (bitsj >= C<<BITRES) |
| psum += C<<BITRES; |
| } |
| } |
| if (psum > total) |
| hi = mid - 1; |
| else |
| lo = mid + 1; |
| /*printf ("lo = %d, hi = %d\n", lo, hi);*/ |
| } |
| while (lo <= hi); |
| hi = lo--; |
| /*printf ("interp between %d and %d\n", lo, hi);*/ |
| for (j=start;j<end;j++) |
| { |
| int bits1j, bits2j; |
| int N = m->eBands[j+1]-m->eBands[j]; |
| bits1j = C*N*m->allocVectors[lo*len+j]<<LM>>2; |
| bits2j = hi>=m->nbAllocVectors ? |
| cap[j] : C*N*m->allocVectors[hi*len+j]<<LM>>2; |
| if (bits1j > 0) |
| bits1j = IMAX(0, bits1j + trim_offset[j]); |
| if (bits2j > 0) |
| bits2j = IMAX(0, bits2j + trim_offset[j]); |
| if (lo > 0) |
| bits1j += offsets[j]; |
| bits2j += offsets[j]; |
| if (offsets[j]>0) |
| skip_start = j; |
| bits2j = IMAX(0,bits2j-bits1j); |
| bits1[j] = bits1j; |
| bits2[j] = bits2j; |
| } |
| codedBands = interp_bits2pulses(m, start, end, skip_start, bits1, bits2, thresh, cap, |
| total, balance, skip_rsv, intensity, intensity_rsv, dual_stereo, dual_stereo_rsv, |
| pulses, ebits, fine_priority, C, LM, ec, encode, prev, signalBandwidth); |
| RESTORE_STACK; |
| return codedBands; |
| } |
| |