| /* origin: FreeBSD /usr/src/lib/msun/src/e_exp.c */ | 
 | /* | 
 |  * ==================================================== | 
 |  * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved. | 
 |  * | 
 |  * Permission to use, copy, modify, and distribute this | 
 |  * software is freely granted, provided that this notice | 
 |  * is preserved. | 
 |  * ==================================================== | 
 |  */ | 
 | /* exp(x) | 
 |  * Returns the exponential of x. | 
 |  * | 
 |  * Method | 
 |  *   1. Argument reduction: | 
 |  *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. | 
 |  *      Given x, find r and integer k such that | 
 |  * | 
 |  *               x = k*ln2 + r,  |r| <= 0.5*ln2. | 
 |  * | 
 |  *      Here r will be represented as r = hi-lo for better | 
 |  *      accuracy. | 
 |  * | 
 |  *   2. Approximation of exp(r) by a special rational function on | 
 |  *      the interval [0,0.34658]: | 
 |  *      Write | 
 |  *          R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... | 
 |  *      We use a special Remez algorithm on [0,0.34658] to generate | 
 |  *      a polynomial of degree 5 to approximate R. The maximum error | 
 |  *      of this polynomial approximation is bounded by 2**-59. In | 
 |  *      other words, | 
 |  *          R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 | 
 |  *      (where z=r*r, and the values of P1 to P5 are listed below) | 
 |  *      and | 
 |  *          |                  5          |     -59 | 
 |  *          | 2.0+P1*z+...+P5*z   -  R(z) | <= 2 | 
 |  *          |                             | | 
 |  *      The computation of exp(r) thus becomes | 
 |  *                              2*r | 
 |  *              exp(r) = 1 + ---------- | 
 |  *                            R(r) - r | 
 |  *                                 r*c(r) | 
 |  *                     = 1 + r + ----------- (for better accuracy) | 
 |  *                                2 - c(r) | 
 |  *      where | 
 |  *                              2       4             10 | 
 |  *              c(r) = r - (P1*r  + P2*r  + ... + P5*r   ). | 
 |  * | 
 |  *   3. Scale back to obtain exp(x): | 
 |  *      From step 1, we have | 
 |  *         exp(x) = 2^k * exp(r) | 
 |  * | 
 |  * Special cases: | 
 |  *      exp(INF) is INF, exp(NaN) is NaN; | 
 |  *      exp(-INF) is 0, and | 
 |  *      for finite argument, only exp(0)=1 is exact. | 
 |  * | 
 |  * Accuracy: | 
 |  *      according to an error analysis, the error is always less than | 
 |  *      1 ulp (unit in the last place). | 
 |  * | 
 |  * Misc. info. | 
 |  *      For IEEE double | 
 |  *          if x >  709.782712893383973096 then exp(x) overflows | 
 |  *          if x < -745.133219101941108420 then exp(x) underflows | 
 |  */ | 
 |  | 
 | #include "libm.h" | 
 |  | 
 | static const double | 
 | half[2] = {0.5,-0.5}, | 
 | ln2hi = 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */ | 
 | ln2lo = 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */ | 
 | invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */ | 
 | P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ | 
 | P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ | 
 | P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ | 
 | P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ | 
 | P5   =  4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */ | 
 |  | 
 | double exp(double x) | 
 | { | 
 | 	double_t hi, lo, c, xx, y; | 
 | 	int k, sign; | 
 | 	uint32_t hx; | 
 |  | 
 | 	GET_HIGH_WORD(hx, x); | 
 | 	sign = hx>>31; | 
 | 	hx &= 0x7fffffff;  /* high word of |x| */ | 
 |  | 
 | 	/* special cases */ | 
 | 	if (hx >= 0x4086232b) {  /* if |x| >= 708.39... */ | 
 | 		if (isnan(x)) | 
 | 			return x; | 
 | 		if (x > 709.782712893383973096) { | 
 | 			/* overflow if x!=inf */ | 
 | 			x *= 0x1p1023; | 
 | 			return x; | 
 | 		} | 
 | 		if (x < -708.39641853226410622) { | 
 | 			/* underflow if x!=-inf */ | 
 | 			FORCE_EVAL((float)(-0x1p-149/x)); | 
 | 			if (x < -745.13321910194110842) | 
 | 				return 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* argument reduction */ | 
 | 	if (hx > 0x3fd62e42) {  /* if |x| > 0.5 ln2 */ | 
 | 		if (hx >= 0x3ff0a2b2)  /* if |x| >= 1.5 ln2 */ | 
 | 			k = (int)(invln2*x + half[sign]); | 
 | 		else | 
 | 			k = 1 - sign - sign; | 
 | 		hi = x - k*ln2hi;  /* k*ln2hi is exact here */ | 
 | 		lo = k*ln2lo; | 
 | 		x = hi - lo; | 
 | 	} else if (hx > 0x3e300000)  {  /* if |x| > 2**-28 */ | 
 | 		k = 0; | 
 | 		hi = x; | 
 | 		lo = 0; | 
 | 	} else { | 
 | 		/* inexact if x!=0 */ | 
 | 		FORCE_EVAL(0x1p1023 + x); | 
 | 		return 1 + x; | 
 | 	} | 
 |  | 
 | 	/* x is now in primary range */ | 
 | 	xx = x*x; | 
 | 	c = x - xx*(P1+xx*(P2+xx*(P3+xx*(P4+xx*P5)))); | 
 | 	y = 1 + (x*c/(2-c) - lo + hi); | 
 | 	if (k == 0) | 
 | 		return y; | 
 | 	return scalbn(y, k); | 
 | } |