blob: ed86a053820775c0eeff29962ff8be8dfbd4e6b0 [file] [log] [blame]
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "jscompartment.h"
#include "jit/Bailouts.h"
#include "jit/BaselineJIT.h"
#include "jit/JitCompartment.h"
#include "jit/JitFrames.h"
#include "jit/JitSpewer.h"
#include "jit/Linker.h"
#ifdef JS_ION_PERF
# include "jit/PerfSpewer.h"
#endif
#include "jit/VMFunctions.h"
#include "jit/x86/SharedICHelpers-x86.h"
#include "jsscriptinlines.h"
#include "jit/MacroAssembler-inl.h"
using namespace js;
using namespace js::jit;
// All registers to save and restore. This includes the stack pointer, since we
// use the ability to reference register values on the stack by index.
static const LiveRegisterSet AllRegs =
LiveRegisterSet(GeneralRegisterSet(Registers::AllMask),
FloatRegisterSet(FloatRegisters::AllMask));
enum EnterJitEbpArgumentOffset {
ARG_JITCODE = 2 * sizeof(void*),
ARG_ARGC = 3 * sizeof(void*),
ARG_ARGV = 4 * sizeof(void*),
ARG_STACKFRAME = 5 * sizeof(void*),
ARG_CALLEETOKEN = 6 * sizeof(void*),
ARG_SCOPECHAIN = 7 * sizeof(void*),
ARG_STACKVALUES = 8 * sizeof(void*),
ARG_RESULT = 9 * sizeof(void*)
};
// Generates a trampoline for calling Jit compiled code from a C++ function.
// The trampoline use the EnterJitCode signature, with the standard cdecl
// calling convention.
JitCode*
JitRuntime::generateEnterJIT(JSContext* cx, EnterJitType type)
{
MacroAssembler masm(cx);
masm.assertStackAlignment(ABIStackAlignment, -int32_t(sizeof(uintptr_t)) /* return address */);
// Save old stack frame pointer, set new stack frame pointer.
masm.push(ebp);
masm.movl(esp, ebp);
// Save non-volatile registers. These must be saved by the trampoline,
// rather than the JIT'd code, because they are scanned by the conservative
// scanner.
masm.push(ebx);
masm.push(esi);
masm.push(edi);
// Keep track of the stack which has to be unwound after returning from the
// compiled function.
masm.movl(esp, esi);
// Load the number of values to be copied (argc) into eax
masm.loadPtr(Address(ebp, ARG_ARGC), eax);
// If we are constructing, that also needs to include newTarget
{
Label noNewTarget;
masm.loadPtr(Address(ebp, ARG_CALLEETOKEN), edx);
masm.branchTest32(Assembler::Zero, edx, Imm32(CalleeToken_FunctionConstructing),
&noNewTarget);
masm.addl(Imm32(1), eax);
masm.bind(&noNewTarget);
}
// eax <- 8*numValues, eax is now the offset betwen argv and the last value.
masm.shll(Imm32(3), eax);
// Guarantee stack alignment of Jit frames.
//
// This code compensates for the offset created by the copy of the vector of
// arguments, such that the jit frame will be aligned once the return
// address is pushed on the stack.
//
// In the computation of the offset, we omit the size of the JitFrameLayout
// which is pushed on the stack, as the JitFrameLayout size is a multiple of
// the JitStackAlignment.
masm.movl(esp, ecx);
masm.subl(eax, ecx);
static_assert(sizeof(JitFrameLayout) % JitStackAlignment == 0,
"No need to consider the JitFrameLayout for aligning the stack");
// ecx = ecx & 15, holds alignment.
masm.andl(Imm32(JitStackAlignment - 1), ecx);
masm.subl(ecx, esp);
/***************************************************************
Loop over argv vector, push arguments onto stack in reverse order
***************************************************************/
// ebx = argv --argv pointer is in ebp + 16
masm.loadPtr(Address(ebp, ARG_ARGV), ebx);
// eax = argv[8(argc)] --eax now points one value past the last argument
masm.addl(ebx, eax);
// while (eax > ebx) --while still looping through arguments
{
Label header, footer;
masm.bind(&header);
masm.cmp32(eax, ebx);
masm.j(Assembler::BelowOrEqual, &footer);
// eax -= 8 --move to previous argument
masm.subl(Imm32(8), eax);
// Push what eax points to on stack, a Value is 2 words
masm.push(Operand(eax, 4));
masm.push(Operand(eax, 0));
masm.jmp(&header);
masm.bind(&footer);
}
// Push the number of actual arguments. |result| is used to store the
// actual number of arguments without adding an extra argument to the enter
// JIT.
masm.mov(Operand(ebp, ARG_RESULT), eax);
masm.unboxInt32(Address(eax, 0x0), eax);
masm.push(eax);
// Push the callee token.
masm.push(Operand(ebp, ARG_CALLEETOKEN));
// Load the InterpreterFrame address into the OsrFrameReg.
// This address is also used for setting the constructing bit on all paths.
masm.loadPtr(Address(ebp, ARG_STACKFRAME), OsrFrameReg);
/*****************************************************************
Push the number of bytes we've pushed so far on the stack and call
*****************************************************************/
// Create a frame descriptor.
masm.subl(esp, esi);
masm.makeFrameDescriptor(esi, JitFrame_Entry);
masm.push(esi);
CodeLabel returnLabel;
CodeLabel oomReturnLabel;
if (type == EnterJitBaseline) {
// Handle OSR.
AllocatableGeneralRegisterSet regs(GeneralRegisterSet::All());
regs.take(JSReturnOperand);
regs.takeUnchecked(OsrFrameReg);
regs.take(ebp);
regs.take(ReturnReg);
Register scratch = regs.takeAny();
Label notOsr;
masm.branchTestPtr(Assembler::Zero, OsrFrameReg, OsrFrameReg, &notOsr);
Register numStackValues = regs.takeAny();
masm.loadPtr(Address(ebp, ARG_STACKVALUES), numStackValues);
Register jitcode = regs.takeAny();
masm.loadPtr(Address(ebp, ARG_JITCODE), jitcode);
// Push return address.
masm.mov(returnLabel.patchAt(), scratch);
masm.push(scratch);
// Push previous frame pointer.
masm.push(ebp);
// Reserve frame.
Register framePtr = ebp;
masm.subPtr(Imm32(BaselineFrame::Size()), esp);
masm.mov(esp, framePtr);
#ifdef XP_WIN
// Can't push large frames blindly on windows. Touch frame memory incrementally.
masm.mov(numStackValues, scratch);
masm.shll(Imm32(3), scratch);
masm.subPtr(scratch, framePtr);
{
masm.movePtr(esp, scratch);
masm.subPtr(Imm32(WINDOWS_BIG_FRAME_TOUCH_INCREMENT), scratch);
Label touchFrameLoop;
Label touchFrameLoopEnd;
masm.bind(&touchFrameLoop);
masm.branchPtr(Assembler::Below, scratch, framePtr, &touchFrameLoopEnd);
masm.store32(Imm32(0), Address(scratch, 0));
masm.subPtr(Imm32(WINDOWS_BIG_FRAME_TOUCH_INCREMENT), scratch);
masm.jump(&touchFrameLoop);
masm.bind(&touchFrameLoopEnd);
}
masm.mov(esp, framePtr);
#endif
// Reserve space for locals and stack values.
masm.mov(numStackValues, scratch);
masm.shll(Imm32(3), scratch);
masm.subPtr(scratch, esp);
// Enter exit frame.
masm.addPtr(Imm32(BaselineFrame::Size() + BaselineFrame::FramePointerOffset), scratch);
masm.makeFrameDescriptor(scratch, JitFrame_BaselineJS);
masm.push(scratch); // Fake return address.
masm.push(Imm32(0));
// No GC things to mark on the stack, push a bare token.
masm.enterFakeExitFrame(ExitFrameLayoutBareToken);
masm.push(framePtr);
masm.push(jitcode);
masm.setupUnalignedABICall(scratch);
masm.passABIArg(framePtr); // BaselineFrame
masm.passABIArg(OsrFrameReg); // InterpreterFrame
masm.passABIArg(numStackValues);
masm.callWithABI(JS_FUNC_TO_DATA_PTR(void*, jit::InitBaselineFrameForOsr));
masm.pop(jitcode);
masm.pop(framePtr);
MOZ_ASSERT(jitcode != ReturnReg);
Label error;
masm.addPtr(Imm32(ExitFrameLayout::SizeWithFooter()), esp);
masm.addPtr(Imm32(BaselineFrame::Size()), framePtr);
masm.branchIfFalseBool(ReturnReg, &error);
// If OSR-ing, then emit instrumentation for setting lastProfilerFrame
// if profiler instrumentation is enabled.
{
Label skipProfilingInstrumentation;
Register realFramePtr = numStackValues;
AbsoluteAddress addressOfEnabled(cx->runtime()->spsProfiler.addressOfEnabled());
masm.branch32(Assembler::Equal, addressOfEnabled, Imm32(0),
&skipProfilingInstrumentation);
masm.lea(Operand(framePtr, sizeof(void*)), realFramePtr);
masm.profilerEnterFrame(realFramePtr, scratch);
masm.bind(&skipProfilingInstrumentation);
}
masm.jump(jitcode);
// OOM: load error value, discard return address and previous frame
// pointer and return.
masm.bind(&error);
masm.mov(framePtr, esp);
masm.addPtr(Imm32(2 * sizeof(uintptr_t)), esp);
masm.moveValue(MagicValue(JS_ION_ERROR), JSReturnOperand);
masm.mov(oomReturnLabel.patchAt(), scratch);
masm.jump(scratch);
masm.bind(&notOsr);
masm.loadPtr(Address(ebp, ARG_SCOPECHAIN), R1.scratchReg());
}
// The call will push the return address on the stack, thus we check that
// the stack would be aligned once the call is complete.
masm.assertStackAlignment(JitStackAlignment, sizeof(uintptr_t));
/***************************************************************
Call passed-in code, get return value and fill in the
passed in return value pointer
***************************************************************/
masm.call(Address(ebp, ARG_JITCODE));
if (type == EnterJitBaseline) {
// Baseline OSR will return here.
masm.use(returnLabel.target());
masm.addCodeLabel(returnLabel);
masm.use(oomReturnLabel.target());
masm.addCodeLabel(oomReturnLabel);
}
// Pop arguments off the stack.
// eax <- 8*argc (size of all arguments we pushed on the stack)
masm.pop(eax);
masm.shrl(Imm32(FRAMESIZE_SHIFT), eax); // Unmark EntryFrame.
masm.addl(eax, esp);
// |ebp| could have been clobbered by the inner function.
// Grab the address for the Value result from the argument stack.
// +20 ... arguments ...
// +16 <return>
// +12 ebp <- original %ebp pointing here.
// +8 ebx
// +4 esi
// +0 edi
masm.loadPtr(Address(esp, ARG_RESULT + 3 * sizeof(void*)), eax);
masm.storeValue(JSReturnOperand, Operand(eax, 0));
/**************************************************************
Return stack and registers to correct state
**************************************************************/
// Restore non-volatile registers
masm.pop(edi);
masm.pop(esi);
masm.pop(ebx);
// Restore old stack frame pointer
masm.pop(ebp);
masm.ret();
Linker linker(masm);
JitCode* code = linker.newCode<NoGC>(cx, OTHER_CODE);
#ifdef JS_ION_PERF
writePerfSpewerJitCodeProfile(code, "EnterJIT");
#endif
return code;
}
JitCode*
JitRuntime::generateInvalidator(JSContext* cx)
{
AutoJitContextAlloc ajca(cx);
MacroAssembler masm(cx);
// We do the minimum amount of work in assembly and shunt the rest
// off to InvalidationBailout. Assembly does:
//
// - Pop the return address from the invalidation epilogue call.
// - Push the machine state onto the stack.
// - Call the InvalidationBailout routine with the stack pointer.
// - Now that the frame has been bailed out, convert the invalidated
// frame into an exit frame.
// - Do the normal check-return-code-and-thunk-to-the-interpreter dance.
masm.addl(Imm32(sizeof(uintptr_t)), esp);
// Push registers such that we can access them from [base + code].
masm.PushRegsInMask(AllRegs);
masm.movl(esp, eax); // Argument to jit::InvalidationBailout.
// Make space for InvalidationBailout's frameSize outparam.
masm.reserveStack(sizeof(size_t));
masm.movl(esp, ebx);
// Make space for InvalidationBailout's bailoutInfo outparam.
masm.reserveStack(sizeof(void*));
masm.movl(esp, ecx);
masm.setupUnalignedABICall(edx);
masm.passABIArg(eax);
masm.passABIArg(ebx);
masm.passABIArg(ecx);
masm.callWithABI(JS_FUNC_TO_DATA_PTR(void*, InvalidationBailout));
masm.pop(ecx); // Get bailoutInfo outparam.
masm.pop(ebx); // Get the frameSize outparam.
// Pop the machine state and the dead frame.
masm.lea(Operand(esp, ebx, TimesOne, sizeof(InvalidationBailoutStack)), esp);
// Jump to shared bailout tail. The BailoutInfo pointer has to be in ecx.
JitCode* bailoutTail = cx->runtime()->jitRuntime()->getBailoutTail();
masm.jmp(bailoutTail);
Linker linker(masm);
JitCode* code = linker.newCode<NoGC>(cx, OTHER_CODE);
JitSpew(JitSpew_IonInvalidate, " invalidation thunk created at %p", (void*) code->raw());
#ifdef JS_ION_PERF
writePerfSpewerJitCodeProfile(code, "Invalidator");
#endif
return code;
}
JitCode*
JitRuntime::generateArgumentsRectifier(JSContext* cx, void** returnAddrOut)
{
MacroAssembler masm(cx);
// Caller:
// [arg2] [arg1] [this] [[argc] [callee] [descr] [raddr]] <- esp
// '-- #esi ---'
// ArgumentsRectifierReg contains the |nargs| pushed onto the current frame.
// Including |this|, there are (|nargs| + 1) arguments to copy.
MOZ_ASSERT(ArgumentsRectifierReg == esi);
// Load the number of |undefined|s to push into %ecx.
masm.loadPtr(Address(esp, RectifierFrameLayout::offsetOfCalleeToken()), eax);
masm.mov(eax, ecx);
masm.andl(Imm32(CalleeTokenMask), ecx);
masm.movzwl(Operand(ecx, JSFunction::offsetOfNargs()), ecx);
// The frame pointer and its padding are pushed on the stack.
// Including |this|, there are (|nformals| + 1) arguments to push to the
// stack. Then we push a JitFrameLayout. We compute the padding expressed
// in the number of extra |undefined| values to push on the stack.
static_assert(sizeof(JitFrameLayout) % JitStackAlignment == 0,
"No need to consider the JitFrameLayout for aligning the stack");
static_assert((sizeof(Value) + 2 * sizeof(void*)) % JitStackAlignment == 0,
"No need to consider |this| and the frame pointer and its padding for aligning the stack");
static_assert(JitStackAlignment % sizeof(Value) == 0,
"Ensure that we can pad the stack by pushing extra UndefinedValue");
MOZ_ASSERT(IsPowerOfTwo(JitStackValueAlignment));
masm.addl(Imm32(JitStackValueAlignment - 1 /* for padding */), ecx);
// Account for newTarget, if necessary.
static_assert(CalleeToken_FunctionConstructing == 1,
"Ensure that we can use the constructing bit to count an extra push");
masm.mov(eax, edx);
masm.andl(Imm32(CalleeToken_FunctionConstructing), edx);
masm.addl(edx, ecx);
masm.andl(Imm32(~(JitStackValueAlignment - 1)), ecx);
masm.subl(esi, ecx);
// Copy the number of actual arguments.
masm.loadPtr(Address(esp, RectifierFrameLayout::offsetOfNumActualArgs()), edx);
masm.moveValue(UndefinedValue(), ebx, edi);
// NOTE: The fact that x86 ArgumentsRectifier saves the FramePointer is relied upon
// by the baseline bailout code. If this changes, fix that code! See
// BaselineJIT.cpp/BaselineStackBuilder::calculatePrevFramePtr, and
// BaselineJIT.cpp/InitFromBailout. Check for the |#if defined(JS_CODEGEN_X86)| portions.
masm.push(FramePointer);
masm.movl(esp, FramePointer); // Save %esp.
masm.push(FramePointer /* padding */);
// Caller:
// [arg2] [arg1] [this] [[argc] [callee] [descr] [raddr]]
// '-- #esi ---'
//
// Rectifier frame:
// [ebp'] <- ebp [padding] <- esp [undef] [undef] [arg2] [arg1] [this]
// '--- #ecx ----' '-- #esi ---'
//
// [[argc] [callee] [descr] [raddr]]
// Push undefined.
{
Label undefLoopTop;
masm.bind(&undefLoopTop);
masm.push(ebx); // type(undefined);
masm.push(edi); // payload(undefined);
masm.subl(Imm32(1), ecx);
masm.j(Assembler::NonZero, &undefLoopTop);
}
// Get the topmost argument. We did a push of %ebp earlier, so be sure to
// account for this in the offset
BaseIndex b = BaseIndex(FramePointer, esi, TimesEight,
sizeof(RectifierFrameLayout) + sizeof(void*));
masm.lea(Operand(b), ecx);
// Push arguments, |nargs| + 1 times (to include |this|).
masm.addl(Imm32(1), esi);
{
Label copyLoopTop;
masm.bind(&copyLoopTop);
masm.push(Operand(ecx, sizeof(Value)/2));
masm.push(Operand(ecx, 0x0));
masm.subl(Imm32(sizeof(Value)), ecx);
masm.subl(Imm32(1), esi);
masm.j(Assembler::NonZero, &copyLoopTop);
}
{
Label notConstructing;
masm.mov(eax, ebx);
masm.branchTest32(Assembler::Zero, ebx, Imm32(CalleeToken_FunctionConstructing),
&notConstructing);
BaseValueIndex src(FramePointer, edx,
sizeof(RectifierFrameLayout) +
sizeof(Value) +
sizeof(void*));
masm.andl(Imm32(CalleeTokenMask), ebx);
masm.movzwl(Operand(ebx, JSFunction::offsetOfNargs()), ebx);
BaseValueIndex dst(esp, ebx, sizeof(Value));
ValueOperand newTarget(ecx, edi);
masm.loadValue(src, newTarget);
masm.storeValue(newTarget, dst);
masm.bind(&notConstructing);
}
// Construct descriptor, accounting for pushed frame pointer above
masm.lea(Operand(FramePointer, sizeof(void*)), ebx);
masm.subl(esp, ebx);
masm.makeFrameDescriptor(ebx, JitFrame_Rectifier);
// Construct JitFrameLayout.
masm.push(edx); // number of actual arguments
masm.push(eax); // callee token
masm.push(ebx); // descriptor
// Call the target function.
// Note that this assumes the function is JITted.
masm.andl(Imm32(CalleeTokenMask), eax);
masm.loadPtr(Address(eax, JSFunction::offsetOfNativeOrScript()), eax);
masm.loadBaselineOrIonRaw(eax, eax, nullptr);
uint32_t returnOffset = masm.callJitNoProfiler(eax);
// Remove the rectifier frame.
masm.pop(ebx); // ebx <- descriptor with FrameType.
masm.shrl(Imm32(FRAMESIZE_SHIFT), ebx); // ebx <- descriptor.
masm.pop(edi); // Discard calleeToken.
masm.pop(edi); // Discard number of actual arguments.
// Discard pushed arguments, but not the pushed frame pointer.
BaseIndex unwind = BaseIndex(esp, ebx, TimesOne, -int32_t(sizeof(void*)));
masm.lea(Operand(unwind), esp);
masm.pop(FramePointer);
masm.ret();
Linker linker(masm);
JitCode* code = linker.newCode<NoGC>(cx, OTHER_CODE);
#ifdef JS_ION_PERF
writePerfSpewerJitCodeProfile(code, "ArgumentsRectifier");
#endif
if (returnAddrOut)
*returnAddrOut = (void*) (code->raw() + returnOffset);
return code;
}
static void
PushBailoutFrame(MacroAssembler& masm, uint32_t frameClass, Register spArg)
{
// Push registers such that we can access them from [base + code].
if (JitSupportsSimd()) {
masm.PushRegsInMask(AllRegs);
} else {
// When SIMD isn't supported, PushRegsInMask reduces the set of float
// registers to be double-sized, while the RegisterDump expects each of
// the float registers to have the maximal possible size
// (Simd128DataSize). To work around this, we just spill the double
// registers by hand here, using the register dump offset directly.
for (GeneralRegisterBackwardIterator iter(AllRegs.gprs()); iter.more(); iter++)
masm.Push(*iter);
masm.reserveStack(sizeof(RegisterDump::FPUArray));
for (FloatRegisterBackwardIterator iter(AllRegs.fpus()); iter.more(); iter++) {
FloatRegister reg = *iter;
Address spillAddress(StackPointer, reg.getRegisterDumpOffsetInBytes());
masm.storeDouble(reg, spillAddress);
}
}
// Push the bailout table number.
masm.push(Imm32(frameClass));
// The current stack pointer is the first argument to jit::Bailout.
masm.movl(esp, spArg);
}
static void
GenerateBailoutThunk(JSContext* cx, MacroAssembler& masm, uint32_t frameClass)
{
PushBailoutFrame(masm, frameClass, eax);
// Make space for Bailout's baioutInfo outparam.
masm.reserveStack(sizeof(void*));
masm.movl(esp, ebx);
// Call the bailout function. This will correct the size of the bailout.
masm.setupUnalignedABICall(ecx);
masm.passABIArg(eax);
masm.passABIArg(ebx);
masm.callWithABI(JS_FUNC_TO_DATA_PTR(void*, Bailout));
masm.pop(ecx); // Get bailoutInfo outparam.
// Common size of stuff we've pushed.
static const uint32_t BailoutDataSize = 0
+ sizeof(void*) // frameClass
+ sizeof(RegisterDump);
// Remove both the bailout frame and the topmost Ion frame's stack.
if (frameClass == NO_FRAME_SIZE_CLASS_ID) {
// We want the frameSize. Stack is:
// ... frame ...
// snapshotOffset
// frameSize
// ... bailoutFrame ...
masm.addl(Imm32(BailoutDataSize), esp);
masm.pop(ebx);
masm.addl(Imm32(sizeof(uint32_t)), esp);
masm.addl(ebx, esp);
} else {
// Stack is:
// ... frame ...
// bailoutId
// ... bailoutFrame ...
uint32_t frameSize = FrameSizeClass::FromClass(frameClass).frameSize();
masm.addl(Imm32(BailoutDataSize + sizeof(void*) + frameSize), esp);
}
// Jump to shared bailout tail. The BailoutInfo pointer has to be in ecx.
JitCode* bailoutTail = cx->runtime()->jitRuntime()->getBailoutTail();
masm.jmp(bailoutTail);
}
JitCode*
JitRuntime::generateBailoutTable(JSContext* cx, uint32_t frameClass)
{
MacroAssembler masm;
Label bailout;
for (size_t i = 0; i < BAILOUT_TABLE_SIZE; i++)
masm.call(&bailout);
masm.bind(&bailout);
GenerateBailoutThunk(cx, masm, frameClass);
Linker linker(masm);
JitCode* code = linker.newCode<NoGC>(cx, OTHER_CODE);
#ifdef JS_ION_PERF
writePerfSpewerJitCodeProfile(code, "BailoutHandler");
#endif
return code;
}
JitCode*
JitRuntime::generateBailoutHandler(JSContext* cx)
{
MacroAssembler masm;
GenerateBailoutThunk(cx, masm, NO_FRAME_SIZE_CLASS_ID);
Linker linker(masm);
JitCode* code = linker.newCode<NoGC>(cx, OTHER_CODE);
#ifdef JS_ION_PERF
writePerfSpewerJitCodeProfile(code, "BailoutHandler");
#endif
return code;
}
JitCode*
JitRuntime::generateVMWrapper(JSContext* cx, const VMFunction& f)
{
MOZ_ASSERT(functionWrappers_);
MOZ_ASSERT(functionWrappers_->initialized());
VMWrapperMap::AddPtr p = functionWrappers_->lookupForAdd(&f);
if (p)
return p->value();
// Generate a separated code for the wrapper.
MacroAssembler masm;
// Avoid conflicts with argument registers while discarding the result after
// the function call.
AllocatableGeneralRegisterSet regs(Register::Codes::WrapperMask);
// Wrapper register set is a superset of Volatile register set.
JS_STATIC_ASSERT((Register::Codes::VolatileMask & ~Register::Codes::WrapperMask) == 0);
// The context is the first argument.
Register cxreg = regs.takeAny();
// Stack is:
// ... frame ...
// +8 [args]
// +4 descriptor
// +0 returnAddress
//
// We're aligned to an exit frame, so link it up.
masm.enterExitFrame(&f);
masm.loadJSContext(cxreg);
// Save the current stack pointer as the base for copying arguments.
Register argsBase = InvalidReg;
if (f.explicitArgs) {
argsBase = regs.takeAny();
masm.lea(Operand(esp, ExitFrameLayout::SizeWithFooter()), argsBase);
}
// Reserve space for the outparameter.
Register outReg = InvalidReg;
switch (f.outParam) {
case Type_Value:
outReg = regs.takeAny();
masm.Push(UndefinedValue());
masm.movl(esp, outReg);
break;
case Type_Handle:
outReg = regs.takeAny();
masm.PushEmptyRooted(f.outParamRootType);
masm.movl(esp, outReg);
break;
case Type_Int32:
case Type_Pointer:
case Type_Bool:
outReg = regs.takeAny();
masm.reserveStack(sizeof(int32_t));
masm.movl(esp, outReg);
break;
case Type_Double:
outReg = regs.takeAny();
masm.reserveStack(sizeof(double));
masm.movl(esp, outReg);
break;
default:
MOZ_ASSERT(f.outParam == Type_Void);
break;
}
masm.setupUnalignedABICall(regs.getAny());
masm.passABIArg(cxreg);
size_t argDisp = 0;
// Copy arguments.
for (uint32_t explicitArg = 0; explicitArg < f.explicitArgs; explicitArg++) {
MoveOperand from;
switch (f.argProperties(explicitArg)) {
case VMFunction::WordByValue:
masm.passABIArg(MoveOperand(argsBase, argDisp), MoveOp::GENERAL);
argDisp += sizeof(void*);
break;
case VMFunction::DoubleByValue:
// We don't pass doubles in float registers on x86, so no need
// to check for argPassedInFloatReg.
masm.passABIArg(MoveOperand(argsBase, argDisp), MoveOp::GENERAL);
argDisp += sizeof(void*);
masm.passABIArg(MoveOperand(argsBase, argDisp), MoveOp::GENERAL);
argDisp += sizeof(void*);
break;
case VMFunction::WordByRef:
masm.passABIArg(MoveOperand(argsBase, argDisp, MoveOperand::EFFECTIVE_ADDRESS),
MoveOp::GENERAL);
argDisp += sizeof(void*);
break;
case VMFunction::DoubleByRef:
masm.passABIArg(MoveOperand(argsBase, argDisp, MoveOperand::EFFECTIVE_ADDRESS),
MoveOp::GENERAL);
argDisp += 2 * sizeof(void*);
break;
}
}
// Copy the implicit outparam, if any.
if (outReg != InvalidReg)
masm.passABIArg(outReg);
masm.callWithABI(f.wrapped);
// Test for failure.
switch (f.failType()) {
case Type_Object:
masm.branchTestPtr(Assembler::Zero, eax, eax, masm.failureLabel());
break;
case Type_Bool:
masm.testb(eax, eax);
masm.j(Assembler::Zero, masm.failureLabel());
break;
default:
MOZ_CRASH("unknown failure kind");
}
// Load the outparam and free any allocated stack.
switch (f.outParam) {
case Type_Handle:
masm.popRooted(f.outParamRootType, ReturnReg, JSReturnOperand);
break;
case Type_Value:
masm.Pop(JSReturnOperand);
break;
case Type_Int32:
case Type_Pointer:
masm.Pop(ReturnReg);
break;
case Type_Bool:
masm.Pop(ReturnReg);
masm.movzbl(ReturnReg, ReturnReg);
break;
case Type_Double:
if (cx->runtime()->jitSupportsFloatingPoint)
masm.Pop(ReturnDoubleReg);
else
masm.assumeUnreachable("Unable to pop to float reg, with no FP support.");
break;
default:
MOZ_ASSERT(f.outParam == Type_Void);
break;
}
masm.leaveExitFrame();
masm.retn(Imm32(sizeof(ExitFrameLayout) +
f.explicitStackSlots() * sizeof(void*) +
f.extraValuesToPop * sizeof(Value)));
Linker linker(masm);
JitCode* wrapper = linker.newCode<NoGC>(cx, OTHER_CODE);
if (!wrapper)
return nullptr;
#ifdef JS_ION_PERF
writePerfSpewerJitCodeProfile(wrapper, "VMWrapper");
#endif
// linker.newCode may trigger a GC and sweep functionWrappers_ so we have to
// use relookupOrAdd instead of add.
if (!functionWrappers_->relookupOrAdd(p, &f, wrapper))
return nullptr;
return wrapper;
}
JitCode*
JitRuntime::generatePreBarrier(JSContext* cx, MIRType type)
{
MacroAssembler masm;
LiveRegisterSet save;
if (cx->runtime()->jitSupportsFloatingPoint) {
save.set() = RegisterSet(GeneralRegisterSet(Registers::VolatileMask),
FloatRegisterSet(FloatRegisters::VolatileMask));
} else {
save.set() = RegisterSet(GeneralRegisterSet(Registers::VolatileMask),
FloatRegisterSet());
}
masm.PushRegsInMask(save);
MOZ_ASSERT(PreBarrierReg == edx);
masm.movl(ImmPtr(cx->runtime()), ecx);
masm.setupUnalignedABICall(eax);
masm.passABIArg(ecx);
masm.passABIArg(edx);
masm.callWithABI(IonMarkFunction(type));
masm.PopRegsInMask(save);
masm.ret();
Linker linker(masm);
JitCode* code = linker.newCode<NoGC>(cx, OTHER_CODE);
#ifdef JS_ION_PERF
writePerfSpewerJitCodeProfile(code, "PreBarrier");
#endif
return code;
}
typedef bool (*HandleDebugTrapFn)(JSContext*, BaselineFrame*, uint8_t*, bool*);
static const VMFunction HandleDebugTrapInfo = FunctionInfo<HandleDebugTrapFn>(HandleDebugTrap);
JitCode*
JitRuntime::generateDebugTrapHandler(JSContext* cx)
{
MacroAssembler masm;
#ifndef JS_USE_LINK_REGISTER
// The first value contains the return addres,
// which we pull into ICTailCallReg for tail calls.
masm.setFramePushed(sizeof(intptr_t));
#endif
Register scratch1 = eax;
Register scratch2 = ecx;
Register scratch3 = edx;
// Load the return address in scratch1.
masm.loadPtr(Address(esp, 0), scratch1);
// Load BaselineFrame pointer in scratch2.
masm.mov(ebp, scratch2);
masm.subPtr(Imm32(BaselineFrame::Size()), scratch2);
// Enter a stub frame and call the HandleDebugTrap VM function. Ensure
// the stub frame has a nullptr ICStub pointer, since this pointer is
// marked during GC.
masm.movePtr(ImmPtr(nullptr), ICStubReg);
EmitBaselineEnterStubFrame(masm, scratch3);
JitCode* code = cx->runtime()->jitRuntime()->getVMWrapper(HandleDebugTrapInfo);
if (!code)
return nullptr;
masm.push(scratch1);
masm.push(scratch2);
EmitBaselineCallVM(code, masm);
EmitBaselineLeaveStubFrame(masm);
// If the stub returns |true|, we have to perform a forced return
// (return from the JS frame). If the stub returns |false|, just return
// from the trap stub so that execution continues at the current pc.
Label forcedReturn;
masm.branchTest32(Assembler::NonZero, ReturnReg, ReturnReg, &forcedReturn);
masm.ret();
masm.bind(&forcedReturn);
masm.loadValue(Address(ebp, BaselineFrame::reverseOffsetOfReturnValue()),
JSReturnOperand);
masm.mov(ebp, esp);
masm.pop(ebp);
// Before returning, if profiling is turned on, make sure that lastProfilingFrame
// is set to the correct caller frame.
{
Label skipProfilingInstrumentation;
AbsoluteAddress addressOfEnabled(cx->runtime()->spsProfiler.addressOfEnabled());
masm.branch32(Assembler::Equal, addressOfEnabled, Imm32(0), &skipProfilingInstrumentation);
masm.profilerExitFrame();
masm.bind(&skipProfilingInstrumentation);
}
masm.ret();
Linker linker(masm);
JitCode* codeDbg = linker.newCode<NoGC>(cx, OTHER_CODE);
#ifdef JS_ION_PERF
writePerfSpewerJitCodeProfile(codeDbg, "DebugTrapHandler");
#endif
return codeDbg;
}
JitCode*
JitRuntime::generateExceptionTailStub(JSContext* cx, void* handler)
{
MacroAssembler masm;
masm.handleFailureWithHandlerTail(handler);
Linker linker(masm);
JitCode* code = linker.newCode<NoGC>(cx, OTHER_CODE);
#ifdef JS_ION_PERF
writePerfSpewerJitCodeProfile(code, "ExceptionTailStub");
#endif
return code;
}
JitCode*
JitRuntime::generateBailoutTailStub(JSContext* cx)
{
MacroAssembler masm;
masm.generateBailoutTail(edx, ecx);
Linker linker(masm);
JitCode* code = linker.newCode<NoGC>(cx, OTHER_CODE);
#ifdef JS_ION_PERF
writePerfSpewerJitCodeProfile(code, "BailoutTailStub");
#endif
return code;
}
JitCode*
JitRuntime::generateProfilerExitFrameTailStub(JSContext* cx)
{
MacroAssembler masm;
Register scratch1 = eax;
Register scratch2 = ebx;
Register scratch3 = esi;
Register scratch4 = edi;
//
// The code generated below expects that the current stack pointer points
// to an Ion or Baseline frame, at the state it would be immediately
// before a ret(). Thus, after this stub's business is done, it executes
// a ret() and returns directly to the caller script, on behalf of the
// callee script that jumped to this code.
//
// Thus the expected stack is:
//
// StackPointer ----+
// v
// ..., ActualArgc, CalleeToken, Descriptor, ReturnAddr
// MEM-HI MEM-LOW
//
//
// The generated jitcode is responsible for overwriting the
// jitActivation->lastProfilingFrame field with a pointer to the previous
// Ion or Baseline jit-frame that was pushed before this one. It is also
// responsible for overwriting jitActivation->lastProfilingCallSite with
// the return address into that frame. The frame could either be an
// immediate "caller" frame, or it could be a frame in a previous
// JitActivation (if the current frame was entered from C++, and the C++
// was entered by some caller jit-frame further down the stack).
//
// So this jitcode is responsible for "walking up" the jit stack, finding
// the previous Ion or Baseline JS frame, and storing its address and the
// return address into the appropriate fields on the current jitActivation.
//
// There are a fixed number of different path types that can lead to the
// current frame, which is either a baseline or ion frame:
//
// <Baseline-Or-Ion>
// ^
// |
// ^--- Ion
// |
// ^--- Baseline Stub <---- Baseline
// |
// ^--- Argument Rectifier
// | ^
// | |
// | ^--- Ion
// | |
// | ^--- Baseline Stub <---- Baseline
// |
// ^--- Entry Frame (From C++)
//
Register actReg = scratch4;
AbsoluteAddress activationAddr(GetJitContext()->runtime->addressOfProfilingActivation());
masm.loadPtr(activationAddr, actReg);
Address lastProfilingFrame(actReg, JitActivation::offsetOfLastProfilingFrame());
Address lastProfilingCallSite(actReg, JitActivation::offsetOfLastProfilingCallSite());
#ifdef DEBUG
// Ensure that frame we are exiting is current lastProfilingFrame
{
masm.loadPtr(lastProfilingFrame, scratch1);
Label checkOk;
masm.branchPtr(Assembler::Equal, scratch1, ImmWord(0), &checkOk);
masm.branchPtr(Assembler::Equal, StackPointer, scratch1, &checkOk);
masm.assumeUnreachable(
"Mismatch between stored lastProfilingFrame and current stack pointer.");
masm.bind(&checkOk);
}
#endif
// Load the frame descriptor into |scratch1|, figure out what to do
// depending on its type.
masm.loadPtr(Address(StackPointer, JitFrameLayout::offsetOfDescriptor()), scratch1);
// Going into the conditionals, we will have:
// FrameDescriptor.size in scratch1
// FrameDescriptor.type in scratch2
masm.movePtr(scratch1, scratch2);
masm.rshiftPtr(Imm32(FRAMESIZE_SHIFT), scratch1);
masm.and32(Imm32((1 << FRAMETYPE_BITS) - 1), scratch2);
// Handling of each case is dependent on FrameDescriptor.type
Label handle_IonJS;
Label handle_BaselineStub;
Label handle_Rectifier;
Label handle_IonAccessorIC;
Label handle_Entry;
Label end;
masm.branch32(Assembler::Equal, scratch2, Imm32(JitFrame_IonJS), &handle_IonJS);
masm.branch32(Assembler::Equal, scratch2, Imm32(JitFrame_BaselineJS), &handle_IonJS);
masm.branch32(Assembler::Equal, scratch2, Imm32(JitFrame_BaselineStub), &handle_BaselineStub);
masm.branch32(Assembler::Equal, scratch2, Imm32(JitFrame_Rectifier), &handle_Rectifier);
masm.branch32(Assembler::Equal, scratch2, Imm32(JitFrame_IonAccessorIC), &handle_IonAccessorIC);
masm.branch32(Assembler::Equal, scratch2, Imm32(JitFrame_Entry), &handle_Entry);
masm.assumeUnreachable("Invalid caller frame type when exiting from Ion frame.");
//
// JitFrame_IonJS
//
// Stack layout:
// ...
// Ion-Descriptor
// Prev-FP ---> Ion-ReturnAddr
// ... previous frame data ... |- Descriptor.Size
// ... arguments ... |
// ActualArgc |
// CalleeToken |- JitFrameLayout::Size()
// Descriptor |
// FP -----> ReturnAddr |
//
masm.bind(&handle_IonJS);
{
// |scratch1| contains Descriptor.size
// returning directly to an IonJS frame. Store return addr to frame
// in lastProfilingCallSite.
masm.loadPtr(Address(StackPointer, JitFrameLayout::offsetOfReturnAddress()), scratch2);
masm.storePtr(scratch2, lastProfilingCallSite);
// Store return frame in lastProfilingFrame.
// scratch2 := StackPointer + Descriptor.size*1 + JitFrameLayout::Size();
masm.lea(Operand(StackPointer, scratch1, TimesOne, JitFrameLayout::Size()), scratch2);
masm.storePtr(scratch2, lastProfilingFrame);
masm.ret();
}
//
// JitFrame_BaselineStub
//
// Look past the stub and store the frame pointer to
// the baselineJS frame prior to it.
//
// Stack layout:
// ...
// BL-Descriptor
// Prev-FP ---> BL-ReturnAddr
// +-----> BL-PrevFramePointer
// | ... BL-FrameData ...
// | BLStub-Descriptor
// | BLStub-ReturnAddr
// | BLStub-StubPointer |
// +------ BLStub-SavedFramePointer |- Descriptor.Size
// ... arguments ... |
// ActualArgc |
// CalleeToken |- JitFrameLayout::Size()
// Descriptor |
// FP -----> ReturnAddr |
//
// We take advantage of the fact that the stub frame saves the frame
// pointer pointing to the baseline frame, so a bunch of calculation can
// be avoided.
//
masm.bind(&handle_BaselineStub);
{
BaseIndex stubFrameReturnAddr(StackPointer, scratch1, TimesOne,
JitFrameLayout::Size() +
BaselineStubFrameLayout::offsetOfReturnAddress());
masm.loadPtr(stubFrameReturnAddr, scratch2);
masm.storePtr(scratch2, lastProfilingCallSite);
BaseIndex stubFrameSavedFramePtr(StackPointer, scratch1, TimesOne,
JitFrameLayout::Size() - (2 * sizeof(void*)));
masm.loadPtr(stubFrameSavedFramePtr, scratch2);
masm.addPtr(Imm32(sizeof(void*)), scratch2); // Skip past BL-PrevFramePtr
masm.storePtr(scratch2, lastProfilingFrame);
masm.ret();
}
//
// JitFrame_Rectifier
//
// The rectifier frame can be preceded by either an IonJS or a
// BaselineStub frame.
//
// Stack layout if caller of rectifier was Ion:
//
// Ion-Descriptor
// Ion-ReturnAddr
// ... ion frame data ... |- Rect-Descriptor.Size
// < COMMON LAYOUT >
//
// Stack layout if caller of rectifier was Baseline:
//
// BL-Descriptor
// Prev-FP ---> BL-ReturnAddr
// +-----> BL-SavedFramePointer
// | ... baseline frame data ...
// | BLStub-Descriptor
// | BLStub-ReturnAddr
// | BLStub-StubPointer |
// +------ BLStub-SavedFramePointer |- Rect-Descriptor.Size
// ... args to rectifier ... |
// < COMMON LAYOUT >
//
// Common stack layout:
//
// ActualArgc |
// CalleeToken |- IonRectitiferFrameLayout::Size()
// Rect-Descriptor |
// Rect-ReturnAddr |
// ... rectifier data & args ... |- Descriptor.Size
// ActualArgc |
// CalleeToken |- JitFrameLayout::Size()
// Descriptor |
// FP -----> ReturnAddr |
//
masm.bind(&handle_Rectifier);
{
// scratch2 := StackPointer + Descriptor.size + JitFrameLayout::Size()
masm.lea(Operand(StackPointer, scratch1, TimesOne, JitFrameLayout::Size()), scratch2);
masm.loadPtr(Address(scratch2, RectifierFrameLayout::offsetOfDescriptor()), scratch3);
masm.movePtr(scratch3, scratch1);
masm.and32(Imm32((1 << FRAMETYPE_BITS) - 1), scratch3);
masm.rshiftPtr(Imm32(FRAMESIZE_SHIFT), scratch1);
// Now |scratch1| contains Rect-Descriptor.Size
// and |scratch2| points to Rectifier frame
// and |scratch3| contains Rect-Descriptor.Type
// Check for either Ion or BaselineStub frame.
Label handle_Rectifier_BaselineStub;
masm.branch32(Assembler::NotEqual, scratch3, Imm32(JitFrame_IonJS),
&handle_Rectifier_BaselineStub);
// Handle Rectifier <- IonJS
// scratch3 := RectFrame[ReturnAddr]
masm.loadPtr(Address(scratch2, RectifierFrameLayout::offsetOfReturnAddress()), scratch3);
masm.storePtr(scratch3, lastProfilingCallSite);
// scratch3 := RectFrame + Rect-Descriptor.Size + RectifierFrameLayout::Size()
masm.lea(Operand(scratch2, scratch1, TimesOne, RectifierFrameLayout::Size()), scratch3);
masm.storePtr(scratch3, lastProfilingFrame);
masm.ret();
// Handle Rectifier <- BaselineStub <- BaselineJS
masm.bind(&handle_Rectifier_BaselineStub);
#ifdef DEBUG
{
Label checkOk;
masm.branch32(Assembler::Equal, scratch3, Imm32(JitFrame_BaselineStub), &checkOk);
masm.assumeUnreachable("Unrecognized frame preceding baselineStub.");
masm.bind(&checkOk);
}
#endif
BaseIndex stubFrameReturnAddr(scratch2, scratch1, TimesOne,
RectifierFrameLayout::Size() +
BaselineStubFrameLayout::offsetOfReturnAddress());
masm.loadPtr(stubFrameReturnAddr, scratch3);
masm.storePtr(scratch3, lastProfilingCallSite);
BaseIndex stubFrameSavedFramePtr(scratch2, scratch1, TimesOne,
RectifierFrameLayout::Size() - (2 * sizeof(void*)));
masm.loadPtr(stubFrameSavedFramePtr, scratch3);
masm.addPtr(Imm32(sizeof(void*)), scratch3);
masm.storePtr(scratch3, lastProfilingFrame);
masm.ret();
}
// JitFrame_IonAccessorIC
//
// The caller is always an IonJS frame.
//
// Ion-Descriptor
// Ion-ReturnAddr
// ... ion frame data ... |- AccFrame-Descriptor.Size
// StubCode |
// AccFrame-Descriptor |- IonAccessorICFrameLayout::Size()
// AccFrame-ReturnAddr |
// ... accessor frame data & args ... |- Descriptor.Size
// ActualArgc |
// CalleeToken |- JitFrameLayout::Size()
// Descriptor |
// FP -----> ReturnAddr |
masm.bind(&handle_IonAccessorIC);
{
// scratch2 := StackPointer + Descriptor.size + JitFrameLayout::Size()
masm.lea(Operand(StackPointer, scratch1, TimesOne, JitFrameLayout::Size()), scratch2);
// scratch3 := AccFrame-Descriptor.Size
masm.loadPtr(Address(scratch2, IonAccessorICFrameLayout::offsetOfDescriptor()), scratch3);
#ifdef DEBUG
// Assert previous frame is an IonJS frame.
masm.movePtr(scratch3, scratch1);
masm.and32(Imm32((1 << FRAMETYPE_BITS) - 1), scratch1);
{
Label checkOk;
masm.branch32(Assembler::Equal, scratch1, Imm32(JitFrame_IonJS), &checkOk);
masm.assumeUnreachable("IonAccessorIC frame must be preceded by IonJS frame");
masm.bind(&checkOk);
}
#endif
masm.rshiftPtr(Imm32(FRAMESIZE_SHIFT), scratch3);
// lastProfilingCallSite := AccFrame-ReturnAddr
masm.loadPtr(Address(scratch2, IonAccessorICFrameLayout::offsetOfReturnAddress()), scratch1);
masm.storePtr(scratch1, lastProfilingCallSite);
// lastProfilingFrame := AccessorFrame + AccFrame-Descriptor.Size +
// IonAccessorICFrameLayout::Size()
masm.lea(Operand(scratch2, scratch3, TimesOne, IonAccessorICFrameLayout::Size()), scratch1);
masm.storePtr(scratch1, lastProfilingFrame);
masm.ret();
}
//
// JitFrame_Entry
//
// If at an entry frame, store null into both fields.
//
masm.bind(&handle_Entry);
{
masm.movePtr(ImmPtr(nullptr), scratch1);
masm.storePtr(scratch1, lastProfilingCallSite);
masm.storePtr(scratch1, lastProfilingFrame);
masm.ret();
}
Linker linker(masm);
JitCode* code = linker.newCode<NoGC>(cx, OTHER_CODE);
#ifdef JS_ION_PERF
writePerfSpewerJitCodeProfile(code, "ProfilerExitFrameStub");
#endif
return code;
}