| // Copyright 2014 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "src/heap/factory.h" |
| |
| #include "src/ast/ast-source-ranges.h" |
| #include "src/ast/ast.h" |
| #include "src/base/bits.h" |
| #include "src/builtins/accessors.h" |
| #include "src/builtins/constants-table-builder.h" |
| #include "src/codegen/compiler.h" |
| #include "src/execution/isolate-inl.h" |
| #include "src/heap/heap-inl.h" |
| #include "src/heap/incremental-marking.h" |
| #include "src/heap/mark-compact-inl.h" |
| #include "src/heap/read-only-heap.h" |
| #include "src/ic/handler-configuration-inl.h" |
| #include "src/init/bootstrapper.h" |
| #include "src/interpreter/interpreter.h" |
| #include "src/logging/counters.h" |
| #include "src/logging/log.h" |
| #include "src/numbers/conversions.h" |
| #include "src/numbers/hash-seed-inl.h" |
| #include "src/objects/allocation-site-inl.h" |
| #include "src/objects/allocation-site-scopes.h" |
| #include "src/objects/api-callbacks.h" |
| #include "src/objects/arguments-inl.h" |
| #include "src/objects/bigint.h" |
| #include "src/objects/cell-inl.h" |
| #include "src/objects/debug-objects-inl.h" |
| #include "src/objects/embedder-data-array-inl.h" |
| #include "src/objects/feedback-cell-inl.h" |
| #include "src/objects/fixed-array-inl.h" |
| #include "src/objects/foreign-inl.h" |
| #include "src/objects/frame-array-inl.h" |
| #include "src/objects/instance-type-inl.h" |
| #include "src/objects/js-array-inl.h" |
| #include "src/objects/js-collection-inl.h" |
| #include "src/objects/js-generator-inl.h" |
| #include "src/objects/js-regexp-inl.h" |
| #include "src/objects/js-weak-refs-inl.h" |
| #include "src/objects/literal-objects-inl.h" |
| #include "src/objects/microtask-inl.h" |
| #include "src/objects/module-inl.h" |
| #include "src/objects/promise-inl.h" |
| #include "src/objects/scope-info.h" |
| #include "src/objects/stack-frame-info-inl.h" |
| #include "src/objects/struct-inl.h" |
| #include "src/objects/template-objects-inl.h" |
| #include "src/objects/transitions-inl.h" |
| #include "src/strings/unicode-inl.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| namespace { |
| |
| int ComputeCodeObjectSize(const CodeDesc& desc) { |
| bool has_unwinding_info = desc.unwinding_info != nullptr; |
| DCHECK((has_unwinding_info && desc.unwinding_info_size > 0) || |
| (!has_unwinding_info && desc.unwinding_info_size == 0)); |
| int body_size = desc.instr_size; |
| int unwinding_info_size_field_size = kInt64Size; |
| if (has_unwinding_info) { |
| body_size = RoundUp(body_size, kInt64Size) + desc.unwinding_info_size + |
| unwinding_info_size_field_size; |
| } |
| int object_size = Code::SizeFor(RoundUp(body_size, kObjectAlignment)); |
| DCHECK(IsAligned(static_cast<intptr_t>(object_size), kCodeAlignment)); |
| return object_size; |
| } |
| |
| } // namespace |
| |
| Factory::CodeBuilder::CodeBuilder(Isolate* isolate, const CodeDesc& desc, |
| Code::Kind kind) |
| : isolate_(isolate), |
| code_desc_(desc), |
| kind_(kind), |
| source_position_table_(isolate_->factory()->empty_byte_array()) {} |
| |
| MaybeHandle<Code> Factory::CodeBuilder::BuildInternal( |
| bool retry_allocation_or_fail) { |
| const auto factory = isolate_->factory(); |
| // Allocate objects needed for code initialization. |
| Handle<ByteArray> reloc_info = |
| factory->NewByteArray(code_desc_.reloc_size, AllocationType::kOld); |
| Handle<CodeDataContainer> data_container; |
| |
| // Use a canonical off-heap trampoline CodeDataContainer if possible. |
| const int32_t promise_rejection_flag = |
| Code::IsPromiseRejectionField::encode(true); |
| if (read_only_data_container_ && |
| (kind_specific_flags_ == 0 || |
| kind_specific_flags_ == promise_rejection_flag)) { |
| const ReadOnlyRoots roots(isolate_); |
| const auto canonical_code_data_container = |
| kind_specific_flags_ == 0 |
| ? roots.trampoline_trivial_code_data_container_handle() |
| : roots.trampoline_promise_rejection_code_data_container_handle(); |
| DCHECK_EQ(canonical_code_data_container->kind_specific_flags(), |
| kind_specific_flags_); |
| data_container = canonical_code_data_container; |
| } else { |
| data_container = factory->NewCodeDataContainer( |
| 0, read_only_data_container_ ? AllocationType::kReadOnly |
| : AllocationType::kOld); |
| data_container->set_kind_specific_flags(kind_specific_flags_); |
| } |
| |
| Handle<Code> code; |
| { |
| int object_size = ComputeCodeObjectSize(code_desc_); |
| Heap* heap = isolate_->heap(); |
| |
| CodePageCollectionMemoryModificationScope code_allocation(heap); |
| HeapObject result; |
| if (retry_allocation_or_fail) { |
| result = |
| heap->AllocateRawWithRetryOrFail(object_size, AllocationType::kCode); |
| } else { |
| result = |
| heap->AllocateRawWithLightRetry(object_size, AllocationType::kCode); |
| // Return an empty handle if we cannot allocate the code object. |
| if (result.is_null()) return MaybeHandle<Code>(); |
| } |
| |
| if (!is_movable_) { |
| result = heap->EnsureImmovableCode(result, object_size); |
| } |
| |
| // The code object has not been fully initialized yet. We rely on the |
| // fact that no allocation will happen from this point on. |
| DisallowHeapAllocation no_gc; |
| |
| result.set_map_after_allocation(*factory->code_map(), SKIP_WRITE_BARRIER); |
| code = handle(Code::cast(result), isolate_); |
| DCHECK(IsAligned(code->address(), kCodeAlignment)); |
| DCHECK_IMPLIES( |
| !heap->memory_allocator()->code_range().is_empty(), |
| heap->memory_allocator()->code_range().contains(code->address())); |
| |
| constexpr bool kIsNotOffHeapTrampoline = false; |
| const bool has_unwinding_info = code_desc_.unwinding_info != nullptr; |
| |
| code->set_raw_instruction_size(code_desc_.instr_size); |
| code->set_relocation_info(*reloc_info); |
| code->initialize_flags(kind_, has_unwinding_info, is_turbofanned_, |
| stack_slots_, kIsNotOffHeapTrampoline); |
| code->set_builtin_index(builtin_index_); |
| code->set_code_data_container(*data_container); |
| code->set_deoptimization_data(*deoptimization_data_); |
| code->set_source_position_table(*source_position_table_); |
| code->set_safepoint_table_offset(code_desc_.safepoint_table_offset); |
| code->set_handler_table_offset(code_desc_.handler_table_offset); |
| code->set_constant_pool_offset(code_desc_.constant_pool_offset); |
| code->set_code_comments_offset(code_desc_.code_comments_offset); |
| |
| // Allow self references to created code object by patching the handle to |
| // point to the newly allocated Code object. |
| Handle<Object> self_reference; |
| if (self_reference_.ToHandle(&self_reference)) { |
| DCHECK(self_reference->IsOddball()); |
| DCHECK(Oddball::cast(*self_reference).kind() == |
| Oddball::kSelfReferenceMarker); |
| if (FLAG_embedded_builtins) { |
| auto builder = isolate_->builtins_constants_table_builder(); |
| if (builder != nullptr) |
| builder->PatchSelfReference(self_reference, code); |
| } |
| *(self_reference.location()) = code->ptr(); |
| } |
| |
| // Migrate generated code. |
| // The generated code can contain embedded objects (typically from handles) |
| // in a pointer-to-tagged-value format (i.e. with indirection like a handle) |
| // that are dereferenced during the copy to point directly to the actual |
| // heap objects. These pointers can include references to the code object |
| // itself, through the self_reference parameter. |
| code->CopyFromNoFlush(heap, code_desc_); |
| |
| code->clear_padding(); |
| |
| #ifdef VERIFY_HEAP |
| if (FLAG_verify_heap) code->ObjectVerify(isolate_); |
| #endif |
| |
| // Flush the instruction cache before changing the permissions. |
| // Note: we do this before setting permissions to ReadExecute because on |
| // some older ARM kernels there is a bug which causes an access error on |
| // cache flush instructions to trigger access error on non-writable memory. |
| // See https://bugs.chromium.org/p/v8/issues/detail?id=8157 |
| code->FlushICache(); |
| } |
| |
| return code; |
| } |
| |
| MaybeHandle<Code> Factory::CodeBuilder::TryBuild() { |
| return BuildInternal(false); |
| } |
| |
| Handle<Code> Factory::CodeBuilder::Build() { |
| return BuildInternal(true).ToHandleChecked(); |
| } |
| |
| HeapObject Factory::AllocateRawWithImmortalMap(int size, |
| AllocationType allocation, |
| Map map, |
| AllocationAlignment alignment) { |
| HeapObject result = isolate()->heap()->AllocateRawWithRetryOrFail( |
| size, allocation, alignment); |
| result.set_map_after_allocation(map, SKIP_WRITE_BARRIER); |
| return result; |
| } |
| |
| HeapObject Factory::AllocateRawWithAllocationSite( |
| Handle<Map> map, AllocationType allocation, |
| Handle<AllocationSite> allocation_site) { |
| DCHECK(map->instance_type() != MAP_TYPE); |
| int size = map->instance_size(); |
| if (!allocation_site.is_null()) size += AllocationMemento::kSize; |
| HeapObject result = |
| isolate()->heap()->AllocateRawWithRetryOrFail(size, allocation); |
| WriteBarrierMode write_barrier_mode = allocation == AllocationType::kYoung |
| ? SKIP_WRITE_BARRIER |
| : UPDATE_WRITE_BARRIER; |
| result.set_map_after_allocation(*map, write_barrier_mode); |
| if (!allocation_site.is_null()) { |
| AllocationMemento alloc_memento = AllocationMemento::unchecked_cast( |
| Object(result.ptr() + map->instance_size())); |
| InitializeAllocationMemento(alloc_memento, *allocation_site); |
| } |
| return result; |
| } |
| |
| void Factory::InitializeAllocationMemento(AllocationMemento memento, |
| AllocationSite allocation_site) { |
| memento.set_map_after_allocation(*allocation_memento_map(), |
| SKIP_WRITE_BARRIER); |
| memento.set_allocation_site(allocation_site, SKIP_WRITE_BARRIER); |
| if (FLAG_allocation_site_pretenuring) { |
| allocation_site.IncrementMementoCreateCount(); |
| } |
| } |
| |
| HeapObject Factory::AllocateRawArray(int size, AllocationType allocation) { |
| HeapObject result = |
| isolate()->heap()->AllocateRawWithRetryOrFail(size, allocation); |
| if (size > kMaxRegularHeapObjectSize && FLAG_use_marking_progress_bar) { |
| MemoryChunk* chunk = MemoryChunk::FromHeapObject(result); |
| chunk->SetFlag<AccessMode::ATOMIC>(MemoryChunk::HAS_PROGRESS_BAR); |
| } |
| return result; |
| } |
| |
| HeapObject Factory::AllocateRawFixedArray(int length, |
| AllocationType allocation) { |
| if (length < 0 || length > FixedArray::kMaxLength) { |
| isolate()->heap()->FatalProcessOutOfMemory("invalid array length"); |
| } |
| return AllocateRawArray(FixedArray::SizeFor(length), allocation); |
| } |
| |
| HeapObject Factory::AllocateRawWeakArrayList(int capacity, |
| AllocationType allocation) { |
| if (capacity < 0 || capacity > WeakArrayList::kMaxCapacity) { |
| isolate()->heap()->FatalProcessOutOfMemory("invalid array length"); |
| } |
| return AllocateRawArray(WeakArrayList::SizeForCapacity(capacity), allocation); |
| } |
| |
| HeapObject Factory::New(Handle<Map> map, AllocationType allocation) { |
| DCHECK(map->instance_type() != MAP_TYPE); |
| int size = map->instance_size(); |
| HeapObject result = |
| isolate()->heap()->AllocateRawWithRetryOrFail(size, allocation); |
| // New space objects are allocated white. |
| WriteBarrierMode write_barrier_mode = allocation == AllocationType::kYoung |
| ? SKIP_WRITE_BARRIER |
| : UPDATE_WRITE_BARRIER; |
| result.set_map_after_allocation(*map, write_barrier_mode); |
| return result; |
| } |
| |
| Handle<HeapObject> Factory::NewFillerObject(int size, bool double_align, |
| AllocationType allocation) { |
| AllocationAlignment alignment = double_align ? kDoubleAligned : kWordAligned; |
| Heap* heap = isolate()->heap(); |
| HeapObject result = |
| heap->AllocateRawWithRetryOrFail(size, allocation, alignment); |
| heap->CreateFillerObjectAt(result.address(), size, ClearRecordedSlots::kNo); |
| return Handle<HeapObject>(result, isolate()); |
| } |
| |
| Handle<PrototypeInfo> Factory::NewPrototypeInfo() { |
| Handle<PrototypeInfo> result = Handle<PrototypeInfo>::cast( |
| NewStruct(PROTOTYPE_INFO_TYPE, AllocationType::kOld)); |
| result->set_prototype_users(Smi::kZero); |
| result->set_registry_slot(PrototypeInfo::UNREGISTERED); |
| result->set_bit_field(0); |
| result->set_module_namespace(*undefined_value()); |
| return result; |
| } |
| |
| Handle<EnumCache> Factory::NewEnumCache(Handle<FixedArray> keys, |
| Handle<FixedArray> indices) { |
| Handle<EnumCache> result = Handle<EnumCache>::cast( |
| NewStruct(ENUM_CACHE_TYPE, AllocationType::kOld)); |
| result->set_keys(*keys); |
| result->set_indices(*indices); |
| return result; |
| } |
| |
| Handle<Tuple2> Factory::NewTuple2(Handle<Object> value1, Handle<Object> value2, |
| AllocationType allocation) { |
| Handle<Tuple2> result = |
| Handle<Tuple2>::cast(NewStruct(TUPLE2_TYPE, allocation)); |
| result->set_value1(*value1); |
| result->set_value2(*value2); |
| return result; |
| } |
| |
| Handle<Tuple3> Factory::NewTuple3(Handle<Object> value1, Handle<Object> value2, |
| Handle<Object> value3, |
| AllocationType allocation) { |
| Handle<Tuple3> result = |
| Handle<Tuple3>::cast(NewStruct(TUPLE3_TYPE, allocation)); |
| result->set_value1(*value1); |
| result->set_value2(*value2); |
| result->set_value3(*value3); |
| return result; |
| } |
| |
| Handle<ArrayBoilerplateDescription> Factory::NewArrayBoilerplateDescription( |
| ElementsKind elements_kind, Handle<FixedArrayBase> constant_values) { |
| Handle<ArrayBoilerplateDescription> result = |
| Handle<ArrayBoilerplateDescription>::cast( |
| NewStruct(ARRAY_BOILERPLATE_DESCRIPTION_TYPE, AllocationType::kOld)); |
| result->set_elements_kind(elements_kind); |
| result->set_constant_elements(*constant_values); |
| return result; |
| } |
| |
| Handle<TemplateObjectDescription> Factory::NewTemplateObjectDescription( |
| Handle<FixedArray> raw_strings, Handle<FixedArray> cooked_strings) { |
| DCHECK_EQ(raw_strings->length(), cooked_strings->length()); |
| DCHECK_LT(0, raw_strings->length()); |
| Handle<TemplateObjectDescription> result = |
| Handle<TemplateObjectDescription>::cast( |
| NewStruct(TEMPLATE_OBJECT_DESCRIPTION_TYPE, AllocationType::kOld)); |
| result->set_raw_strings(*raw_strings); |
| result->set_cooked_strings(*cooked_strings); |
| return result; |
| } |
| |
| Handle<Oddball> Factory::NewOddball(Handle<Map> map, const char* to_string, |
| Handle<Object> to_number, |
| const char* type_of, byte kind, |
| AllocationType allocation) { |
| Handle<Oddball> oddball(Oddball::cast(New(map, allocation)), isolate()); |
| Oddball::Initialize(isolate(), oddball, to_string, to_number, type_of, kind); |
| return oddball; |
| } |
| |
| Handle<Oddball> Factory::NewSelfReferenceMarker(AllocationType allocation) { |
| return NewOddball(self_reference_marker_map(), "self_reference_marker", |
| handle(Smi::FromInt(-1), isolate()), "undefined", |
| Oddball::kSelfReferenceMarker, allocation); |
| } |
| |
| Handle<PropertyArray> Factory::NewPropertyArray(int length, |
| AllocationType allocation) { |
| DCHECK_LE(0, length); |
| if (length == 0) return empty_property_array(); |
| HeapObject result = AllocateRawFixedArray(length, allocation); |
| result.set_map_after_allocation(*property_array_map(), SKIP_WRITE_BARRIER); |
| Handle<PropertyArray> array(PropertyArray::cast(result), isolate()); |
| array->initialize_length(length); |
| MemsetTagged(array->data_start(), *undefined_value(), length); |
| return array; |
| } |
| |
| Handle<FixedArray> Factory::NewFixedArrayWithFiller(RootIndex map_root_index, |
| int length, Object filler, |
| AllocationType allocation) { |
| HeapObject result = AllocateRawFixedArray(length, allocation); |
| DCHECK(RootsTable::IsImmortalImmovable(map_root_index)); |
| Map map = Map::cast(isolate()->root(map_root_index)); |
| result.set_map_after_allocation(map, SKIP_WRITE_BARRIER); |
| Handle<FixedArray> array(FixedArray::cast(result), isolate()); |
| array->set_length(length); |
| MemsetTagged(array->data_start(), filler, length); |
| return array; |
| } |
| |
| template <typename T> |
| Handle<T> Factory::NewFixedArrayWithMap(RootIndex map_root_index, int length, |
| AllocationType allocation) { |
| static_assert(std::is_base_of<FixedArray, T>::value, |
| "T must be a descendant of FixedArray"); |
| // Zero-length case must be handled outside, where the knowledge about |
| // the map is. |
| DCHECK_LT(0, length); |
| return Handle<T>::cast(NewFixedArrayWithFiller( |
| map_root_index, length, *undefined_value(), allocation)); |
| } |
| |
| template <typename T> |
| Handle<T> Factory::NewWeakFixedArrayWithMap(RootIndex map_root_index, |
| int length, |
| AllocationType allocation) { |
| static_assert(std::is_base_of<WeakFixedArray, T>::value, |
| "T must be a descendant of WeakFixedArray"); |
| |
| // Zero-length case must be handled outside. |
| DCHECK_LT(0, length); |
| |
| HeapObject result = |
| AllocateRawArray(WeakFixedArray::SizeFor(length), allocation); |
| Map map = Map::cast(isolate()->root(map_root_index)); |
| result.set_map_after_allocation(map, SKIP_WRITE_BARRIER); |
| |
| Handle<WeakFixedArray> array(WeakFixedArray::cast(result), isolate()); |
| array->set_length(length); |
| MemsetTagged(ObjectSlot(array->data_start()), *undefined_value(), length); |
| |
| return Handle<T>::cast(array); |
| } |
| |
| template Handle<FixedArray> Factory::NewFixedArrayWithMap<FixedArray>( |
| RootIndex, int, AllocationType allocation); |
| |
| Handle<FixedArray> Factory::NewFixedArray(int length, |
| AllocationType allocation) { |
| DCHECK_LE(0, length); |
| if (length == 0) return empty_fixed_array(); |
| return NewFixedArrayWithFiller(RootIndex::kFixedArrayMap, length, |
| *undefined_value(), allocation); |
| } |
| |
| Handle<WeakFixedArray> Factory::NewWeakFixedArray(int length, |
| AllocationType allocation) { |
| DCHECK_LE(0, length); |
| if (length == 0) return empty_weak_fixed_array(); |
| HeapObject result = |
| AllocateRawArray(WeakFixedArray::SizeFor(length), allocation); |
| DCHECK(RootsTable::IsImmortalImmovable(RootIndex::kWeakFixedArrayMap)); |
| result.set_map_after_allocation(*weak_fixed_array_map(), SKIP_WRITE_BARRIER); |
| Handle<WeakFixedArray> array(WeakFixedArray::cast(result), isolate()); |
| array->set_length(length); |
| MemsetTagged(ObjectSlot(array->data_start()), *undefined_value(), length); |
| return array; |
| } |
| |
| MaybeHandle<FixedArray> Factory::TryNewFixedArray( |
| int length, AllocationType allocation_type) { |
| DCHECK_LE(0, length); |
| if (length == 0) return empty_fixed_array(); |
| |
| int size = FixedArray::SizeFor(length); |
| Heap* heap = isolate()->heap(); |
| AllocationResult allocation = heap->AllocateRaw(size, allocation_type); |
| HeapObject result; |
| if (!allocation.To(&result)) return MaybeHandle<FixedArray>(); |
| if (size > kMaxRegularHeapObjectSize && FLAG_use_marking_progress_bar) { |
| MemoryChunk* chunk = MemoryChunk::FromHeapObject(result); |
| chunk->SetFlag<AccessMode::ATOMIC>(MemoryChunk::HAS_PROGRESS_BAR); |
| } |
| result.set_map_after_allocation(*fixed_array_map(), SKIP_WRITE_BARRIER); |
| Handle<FixedArray> array(FixedArray::cast(result), isolate()); |
| array->set_length(length); |
| MemsetTagged(array->data_start(), ReadOnlyRoots(heap).undefined_value(), |
| length); |
| return array; |
| } |
| |
| Handle<FixedArray> Factory::NewFixedArrayWithHoles(int length, |
| AllocationType allocation) { |
| DCHECK_LE(0, length); |
| if (length == 0) return empty_fixed_array(); |
| return NewFixedArrayWithFiller(RootIndex::kFixedArrayMap, length, |
| *the_hole_value(), allocation); |
| } |
| |
| Handle<FixedArray> Factory::NewUninitializedFixedArray( |
| int length, AllocationType allocation) { |
| DCHECK_LE(0, length); |
| if (length == 0) return empty_fixed_array(); |
| |
| // TODO(ulan): As an experiment this temporarily returns an initialized fixed |
| // array. After getting canary/performance coverage, either remove the |
| // function or revert to returning uninitilized array. |
| return NewFixedArrayWithFiller(RootIndex::kFixedArrayMap, length, |
| *undefined_value(), allocation); |
| } |
| |
| Handle<ClosureFeedbackCellArray> Factory::NewClosureFeedbackCellArray( |
| int length, AllocationType allocation) { |
| if (length == 0) return empty_closure_feedback_cell_array(); |
| |
| Handle<ClosureFeedbackCellArray> feedback_cell_array = |
| NewFixedArrayWithMap<ClosureFeedbackCellArray>( |
| RootIndex::kClosureFeedbackCellArrayMap, length, allocation); |
| |
| return feedback_cell_array; |
| } |
| |
| Handle<FeedbackVector> Factory::NewFeedbackVector( |
| Handle<SharedFunctionInfo> shared, |
| Handle<ClosureFeedbackCellArray> closure_feedback_cell_array, |
| AllocationType allocation) { |
| int length = shared->feedback_metadata().slot_count(); |
| DCHECK_LE(0, length); |
| int size = FeedbackVector::SizeFor(length); |
| |
| HeapObject result = |
| AllocateRawWithImmortalMap(size, allocation, *feedback_vector_map()); |
| Handle<FeedbackVector> vector(FeedbackVector::cast(result), isolate()); |
| vector->set_shared_function_info(*shared); |
| vector->set_optimized_code_weak_or_smi(MaybeObject::FromSmi(Smi::FromEnum( |
| FLAG_log_function_events ? OptimizationMarker::kLogFirstExecution |
| : OptimizationMarker::kNone))); |
| vector->set_length(length); |
| vector->set_invocation_count(0); |
| vector->set_profiler_ticks(0); |
| vector->clear_padding(); |
| vector->set_closure_feedback_cell_array(*closure_feedback_cell_array); |
| |
| // TODO(leszeks): Initialize based on the feedback metadata. |
| MemsetTagged(ObjectSlot(vector->slots_start()), *undefined_value(), length); |
| return vector; |
| } |
| |
| Handle<EmbedderDataArray> Factory::NewEmbedderDataArray( |
| int length, AllocationType allocation) { |
| DCHECK_LE(0, length); |
| int size = EmbedderDataArray::SizeFor(length); |
| |
| HeapObject result = |
| AllocateRawWithImmortalMap(size, allocation, *embedder_data_array_map()); |
| Handle<EmbedderDataArray> array(EmbedderDataArray::cast(result), isolate()); |
| array->set_length(length); |
| |
| if (length > 0) { |
| ObjectSlot start(array->slots_start()); |
| ObjectSlot end(array->slots_end()); |
| size_t slot_count = end - start; |
| MemsetTagged(start, *undefined_value(), slot_count); |
| } |
| return array; |
| } |
| |
| Handle<ObjectBoilerplateDescription> Factory::NewObjectBoilerplateDescription( |
| int boilerplate, int all_properties, int index_keys, bool has_seen_proto) { |
| DCHECK_GE(boilerplate, 0); |
| DCHECK_GE(all_properties, index_keys); |
| DCHECK_GE(index_keys, 0); |
| |
| int backing_store_size = |
| all_properties - index_keys - (has_seen_proto ? 1 : 0); |
| DCHECK_GE(backing_store_size, 0); |
| bool has_different_size_backing_store = boilerplate != backing_store_size; |
| |
| // Space for name and value for every boilerplate property + LiteralType flag. |
| int size = |
| 2 * boilerplate + ObjectBoilerplateDescription::kDescriptionStartIndex; |
| |
| if (has_different_size_backing_store) { |
| // An extra entry for the backing store size. |
| size++; |
| } |
| |
| Handle<ObjectBoilerplateDescription> description = |
| Handle<ObjectBoilerplateDescription>::cast( |
| NewFixedArrayWithMap(RootIndex::kObjectBoilerplateDescriptionMap, |
| size, AllocationType::kOld)); |
| |
| if (has_different_size_backing_store) { |
| DCHECK_IMPLIES((boilerplate == (all_properties - index_keys)), |
| has_seen_proto); |
| description->set_backing_store_size(backing_store_size); |
| } |
| |
| description->set_flags(0); |
| |
| return description; |
| } |
| |
| Handle<FixedArrayBase> Factory::NewFixedDoubleArray(int length, |
| AllocationType allocation) { |
| if (length == 0) return empty_fixed_array(); |
| if (length < 0 || length > FixedDoubleArray::kMaxLength) { |
| isolate()->heap()->FatalProcessOutOfMemory("invalid array length"); |
| } |
| int size = FixedDoubleArray::SizeFor(length); |
| Map map = *fixed_double_array_map(); |
| HeapObject result = |
| AllocateRawWithImmortalMap(size, allocation, map, kDoubleAligned); |
| Handle<FixedDoubleArray> array(FixedDoubleArray::cast(result), isolate()); |
| array->set_length(length); |
| return array; |
| } |
| |
| Handle<FixedArrayBase> Factory::NewFixedDoubleArrayWithHoles( |
| int length, AllocationType allocation) { |
| DCHECK_LE(0, length); |
| Handle<FixedArrayBase> array = NewFixedDoubleArray(length, allocation); |
| if (length > 0) { |
| Handle<FixedDoubleArray>::cast(array)->FillWithHoles(0, length); |
| } |
| return array; |
| } |
| |
| Handle<FeedbackMetadata> Factory::NewFeedbackMetadata( |
| int slot_count, int feedback_cell_count, AllocationType allocation) { |
| DCHECK_LE(0, slot_count); |
| int size = FeedbackMetadata::SizeFor(slot_count); |
| HeapObject result = |
| AllocateRawWithImmortalMap(size, allocation, *feedback_metadata_map()); |
| Handle<FeedbackMetadata> data(FeedbackMetadata::cast(result), isolate()); |
| data->set_slot_count(slot_count); |
| data->set_closure_feedback_cell_count(feedback_cell_count); |
| |
| // Initialize the data section to 0. |
| int data_size = size - FeedbackMetadata::kHeaderSize; |
| Address data_start = data->address() + FeedbackMetadata::kHeaderSize; |
| memset(reinterpret_cast<byte*>(data_start), 0, data_size); |
| // Fields have been zeroed out but not initialized, so this object will not |
| // pass object verification at this point. |
| return data; |
| } |
| |
| Handle<FrameArray> Factory::NewFrameArray(int number_of_frames, |
| AllocationType allocation) { |
| DCHECK_LE(0, number_of_frames); |
| Handle<FixedArray> result = NewFixedArrayWithHoles( |
| FrameArray::LengthFor(number_of_frames), allocation); |
| result->set(FrameArray::kFrameCountIndex, Smi::kZero); |
| return Handle<FrameArray>::cast(result); |
| } |
| |
| template <typename T> |
| Handle<T> Factory::AllocateSmallOrderedHashTable(Handle<Map> map, int capacity, |
| AllocationType allocation) { |
| // Capacity must be a power of two, since we depend on being able |
| // to divide and multiple by 2 (kLoadFactor) to derive capacity |
| // from number of buckets. If we decide to change kLoadFactor |
| // to something other than 2, capacity should be stored as another |
| // field of this object. |
| DCHECK_EQ(T::kLoadFactor, 2); |
| capacity = base::bits::RoundUpToPowerOfTwo32(Max(T::kMinCapacity, capacity)); |
| capacity = Min(capacity, T::kMaxCapacity); |
| |
| DCHECK_LT(0, capacity); |
| DCHECK_EQ(0, capacity % T::kLoadFactor); |
| |
| int size = T::SizeFor(capacity); |
| HeapObject result = AllocateRawWithImmortalMap(size, allocation, *map); |
| Handle<T> table(T::cast(result), isolate()); |
| table->Initialize(isolate(), capacity); |
| return table; |
| } |
| |
| Handle<SmallOrderedHashSet> Factory::NewSmallOrderedHashSet( |
| int capacity, AllocationType allocation) { |
| return AllocateSmallOrderedHashTable<SmallOrderedHashSet>( |
| small_ordered_hash_set_map(), capacity, allocation); |
| } |
| |
| Handle<SmallOrderedHashMap> Factory::NewSmallOrderedHashMap( |
| int capacity, AllocationType allocation) { |
| return AllocateSmallOrderedHashTable<SmallOrderedHashMap>( |
| small_ordered_hash_map_map(), capacity, allocation); |
| } |
| |
| Handle<SmallOrderedNameDictionary> Factory::NewSmallOrderedNameDictionary( |
| int capacity, AllocationType allocation) { |
| Handle<SmallOrderedNameDictionary> dict = |
| AllocateSmallOrderedHashTable<SmallOrderedNameDictionary>( |
| small_ordered_name_dictionary_map(), capacity, allocation); |
| dict->SetHash(PropertyArray::kNoHashSentinel); |
| return dict; |
| } |
| |
| Handle<OrderedHashSet> Factory::NewOrderedHashSet() { |
| return OrderedHashSet::Allocate(isolate(), OrderedHashSet::kMinCapacity); |
| } |
| |
| Handle<OrderedHashMap> Factory::NewOrderedHashMap() { |
| return OrderedHashMap::Allocate(isolate(), OrderedHashMap::kMinCapacity); |
| } |
| |
| Handle<OrderedNameDictionary> Factory::NewOrderedNameDictionary() { |
| return OrderedNameDictionary::Allocate(isolate(), |
| OrderedNameDictionary::kMinCapacity); |
| } |
| |
| Handle<AccessorPair> Factory::NewAccessorPair() { |
| Handle<AccessorPair> accessors = Handle<AccessorPair>::cast( |
| NewStruct(ACCESSOR_PAIR_TYPE, AllocationType::kOld)); |
| accessors->set_getter(*null_value(), SKIP_WRITE_BARRIER); |
| accessors->set_setter(*null_value(), SKIP_WRITE_BARRIER); |
| return accessors; |
| } |
| |
| // Internalized strings are created in the old generation (data space). |
| Handle<String> Factory::InternalizeUtf8String( |
| const Vector<const char>& string) { |
| Vector<const uint8_t> utf8_data = Vector<const uint8_t>::cast(string); |
| Utf8Decoder decoder(utf8_data); |
| if (decoder.is_ascii()) return InternalizeString(utf8_data); |
| if (decoder.is_one_byte()) { |
| std::unique_ptr<uint8_t[]> buffer(new uint8_t[decoder.utf16_length()]); |
| decoder.Decode(buffer.get(), utf8_data); |
| return InternalizeString( |
| Vector<const uint8_t>(buffer.get(), decoder.utf16_length())); |
| } |
| std::unique_ptr<uint16_t[]> buffer(new uint16_t[decoder.utf16_length()]); |
| decoder.Decode(buffer.get(), utf8_data); |
| return InternalizeString( |
| Vector<const uc16>(buffer.get(), decoder.utf16_length())); |
| } |
| |
| template <typename Char> |
| Handle<String> Factory::InternalizeString(const Vector<const Char>& string, |
| bool convert_encoding) { |
| SequentialStringKey<Char> key(string, HashSeed(isolate()), convert_encoding); |
| return InternalizeStringWithKey(&key); |
| } |
| |
| template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE) |
| Handle<String> Factory::InternalizeString( |
| const Vector<const uint8_t>& string, bool convert_encoding); |
| template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE) |
| Handle<String> Factory::InternalizeString( |
| const Vector<const uint16_t>& string, bool convert_encoding); |
| |
| template <typename SeqString> |
| Handle<String> Factory::InternalizeString(Handle<SeqString> string, int from, |
| int length, bool convert_encoding) { |
| SeqSubStringKey<SeqString> key(isolate(), string, from, length, |
| convert_encoding); |
| return InternalizeStringWithKey(&key); |
| } |
| |
| template Handle<String> Factory::InternalizeString( |
| Handle<SeqOneByteString> string, int from, int length, |
| bool convert_encoding); |
| template Handle<String> Factory::InternalizeString( |
| Handle<SeqTwoByteString> string, int from, int length, |
| bool convert_encoding); |
| |
| template <class StringTableKey> |
| Handle<String> Factory::InternalizeStringWithKey(StringTableKey* key) { |
| return StringTable::LookupKey(isolate(), key); |
| } |
| |
| MaybeHandle<String> Factory::NewStringFromOneByte( |
| const Vector<const uint8_t>& string, AllocationType allocation) { |
| DCHECK_NE(allocation, AllocationType::kReadOnly); |
| int length = string.length(); |
| if (length == 0) return empty_string(); |
| if (length == 1) return LookupSingleCharacterStringFromCode(string[0]); |
| Handle<SeqOneByteString> result; |
| ASSIGN_RETURN_ON_EXCEPTION(isolate(), result, |
| NewRawOneByteString(string.length(), allocation), |
| String); |
| |
| DisallowHeapAllocation no_gc; |
| // Copy the characters into the new object. |
| CopyChars(SeqOneByteString::cast(*result).GetChars(no_gc), string.begin(), |
| length); |
| return result; |
| } |
| |
| MaybeHandle<String> Factory::NewStringFromUtf8(const Vector<const char>& string, |
| AllocationType allocation) { |
| Vector<const uint8_t> utf8_data = Vector<const uint8_t>::cast(string); |
| Utf8Decoder decoder(utf8_data); |
| |
| if (decoder.utf16_length() == 0) return empty_string(); |
| |
| if (decoder.is_one_byte()) { |
| // Allocate string. |
| Handle<SeqOneByteString> result; |
| ASSIGN_RETURN_ON_EXCEPTION( |
| isolate(), result, |
| NewRawOneByteString(decoder.utf16_length(), allocation), String); |
| |
| DisallowHeapAllocation no_gc; |
| decoder.Decode(result->GetChars(no_gc), utf8_data); |
| return result; |
| } |
| |
| // Allocate string. |
| Handle<SeqTwoByteString> result; |
| ASSIGN_RETURN_ON_EXCEPTION( |
| isolate(), result, |
| NewRawTwoByteString(decoder.utf16_length(), allocation), String); |
| |
| DisallowHeapAllocation no_gc; |
| decoder.Decode(result->GetChars(no_gc), utf8_data); |
| return result; |
| } |
| |
| MaybeHandle<String> Factory::NewStringFromUtf8SubString( |
| Handle<SeqOneByteString> str, int begin, int length, |
| AllocationType allocation) { |
| Vector<const uint8_t> utf8_data; |
| { |
| DisallowHeapAllocation no_gc; |
| utf8_data = Vector<const uint8_t>(str->GetChars(no_gc) + begin, length); |
| } |
| Utf8Decoder decoder(utf8_data); |
| |
| if (length == 1) { |
| uint16_t t; |
| // Decode even in the case of length 1 since it can be a bad character. |
| decoder.Decode(&t, utf8_data); |
| return LookupSingleCharacterStringFromCode(t); |
| } |
| |
| if (decoder.is_ascii()) { |
| // If the string is ASCII, we can just make a substring. |
| // TODO(v8): the allocation flag is ignored in this case. |
| return NewSubString(str, begin, begin + length); |
| } |
| |
| DCHECK_GT(decoder.utf16_length(), 0); |
| |
| if (decoder.is_one_byte()) { |
| // Allocate string. |
| Handle<SeqOneByteString> result; |
| ASSIGN_RETURN_ON_EXCEPTION( |
| isolate(), result, |
| NewRawOneByteString(decoder.utf16_length(), allocation), String); |
| DisallowHeapAllocation no_gc; |
| // Update pointer references, since the original string may have moved after |
| // allocation. |
| utf8_data = Vector<const uint8_t>(str->GetChars(no_gc) + begin, length); |
| decoder.Decode(result->GetChars(no_gc), utf8_data); |
| return result; |
| } |
| |
| // Allocate string. |
| Handle<SeqTwoByteString> result; |
| ASSIGN_RETURN_ON_EXCEPTION( |
| isolate(), result, |
| NewRawTwoByteString(decoder.utf16_length(), allocation), String); |
| |
| DisallowHeapAllocation no_gc; |
| // Update pointer references, since the original string may have moved after |
| // allocation. |
| utf8_data = Vector<const uint8_t>(str->GetChars(no_gc) + begin, length); |
| decoder.Decode(result->GetChars(no_gc), utf8_data); |
| return result; |
| } |
| |
| MaybeHandle<String> Factory::NewStringFromTwoByte(const uc16* string, |
| int length, |
| AllocationType allocation) { |
| DCHECK_NE(allocation, AllocationType::kReadOnly); |
| if (length == 0) return empty_string(); |
| if (String::IsOneByte(string, length)) { |
| if (length == 1) return LookupSingleCharacterStringFromCode(string[0]); |
| Handle<SeqOneByteString> result; |
| ASSIGN_RETURN_ON_EXCEPTION(isolate(), result, |
| NewRawOneByteString(length, allocation), String); |
| DisallowHeapAllocation no_gc; |
| CopyChars(result->GetChars(no_gc), string, length); |
| return result; |
| } else { |
| Handle<SeqTwoByteString> result; |
| ASSIGN_RETURN_ON_EXCEPTION(isolate(), result, |
| NewRawTwoByteString(length, allocation), String); |
| DisallowHeapAllocation no_gc; |
| CopyChars(result->GetChars(no_gc), string, length); |
| return result; |
| } |
| } |
| |
| MaybeHandle<String> Factory::NewStringFromTwoByte( |
| const Vector<const uc16>& string, AllocationType allocation) { |
| return NewStringFromTwoByte(string.begin(), string.length(), allocation); |
| } |
| |
| MaybeHandle<String> Factory::NewStringFromTwoByte( |
| const ZoneVector<uc16>* string, AllocationType allocation) { |
| return NewStringFromTwoByte(string->data(), static_cast<int>(string->size()), |
| allocation); |
| } |
| |
| namespace { |
| |
| bool inline IsOneByte(Handle<String> str) { |
| return str->IsOneByteRepresentation(); |
| } |
| |
| inline void WriteOneByteData(Handle<String> s, uint8_t* chars, int len) { |
| DCHECK(s->length() == len); |
| String::WriteToFlat(*s, chars, 0, len); |
| } |
| |
| inline void WriteTwoByteData(Handle<String> s, uint16_t* chars, int len) { |
| DCHECK(s->length() == len); |
| String::WriteToFlat(*s, chars, 0, len); |
| } |
| |
| } // namespace |
| |
| Handle<SeqOneByteString> Factory::AllocateRawOneByteInternalizedString( |
| int length, uint32_t hash_field) { |
| CHECK_GE(String::kMaxLength, length); |
| // The canonical empty_string is the only zero-length string we allow. |
| DCHECK_IMPLIES( |
| length == 0, |
| isolate()->roots_table()[RootIndex::kempty_string] == kNullAddress); |
| |
| Map map = *one_byte_internalized_string_map(); |
| int size = SeqOneByteString::SizeFor(length); |
| HeapObject result = |
| AllocateRawWithImmortalMap(size, |
| isolate()->heap()->CanAllocateInReadOnlySpace() |
| ? AllocationType::kReadOnly |
| : AllocationType::kOld, |
| map); |
| Handle<SeqOneByteString> answer(SeqOneByteString::cast(result), isolate()); |
| answer->set_length(length); |
| answer->set_hash_field(hash_field); |
| DCHECK_EQ(size, answer->Size()); |
| return answer; |
| } |
| |
| Handle<String> Factory::AllocateTwoByteInternalizedString( |
| const Vector<const uc16>& str, uint32_t hash_field) { |
| Handle<SeqTwoByteString> result = |
| AllocateRawTwoByteInternalizedString(str.length(), hash_field); |
| DisallowHeapAllocation no_gc; |
| |
| // Fill in the characters. |
| MemCopy(result->GetChars(no_gc), str.begin(), str.length() * kUC16Size); |
| |
| return result; |
| } |
| |
| Handle<SeqTwoByteString> Factory::AllocateRawTwoByteInternalizedString( |
| int length, uint32_t hash_field) { |
| CHECK_GE(String::kMaxLength, length); |
| DCHECK_NE(0, length); // Use Heap::empty_string() instead. |
| |
| Map map = *internalized_string_map(); |
| int size = SeqTwoByteString::SizeFor(length); |
| HeapObject result = |
| AllocateRawWithImmortalMap(size, AllocationType::kOld, map); |
| Handle<SeqTwoByteString> answer(SeqTwoByteString::cast(result), isolate()); |
| answer->set_length(length); |
| answer->set_hash_field(hash_field); |
| DCHECK_EQ(size, result.Size()); |
| return answer; |
| } |
| |
| template <bool is_one_byte, typename T> |
| Handle<String> Factory::AllocateInternalizedStringImpl(T t, int chars, |
| uint32_t hash_field) { |
| DCHECK_LE(0, chars); |
| DCHECK_GE(String::kMaxLength, chars); |
| |
| // Compute map and object size. |
| int size; |
| Map map; |
| if (is_one_byte) { |
| map = *one_byte_internalized_string_map(); |
| size = SeqOneByteString::SizeFor(chars); |
| } else { |
| map = *internalized_string_map(); |
| size = SeqTwoByteString::SizeFor(chars); |
| } |
| |
| HeapObject result = |
| AllocateRawWithImmortalMap(size, |
| isolate()->heap()->CanAllocateInReadOnlySpace() |
| ? AllocationType::kReadOnly |
| : AllocationType::kOld, |
| map); |
| Handle<String> answer(String::cast(result), isolate()); |
| answer->set_length(chars); |
| answer->set_hash_field(hash_field); |
| DCHECK_EQ(size, answer->Size()); |
| DisallowHeapAllocation no_gc; |
| |
| if (is_one_byte) { |
| WriteOneByteData(t, SeqOneByteString::cast(*answer).GetChars(no_gc), chars); |
| } else { |
| WriteTwoByteData(t, SeqTwoByteString::cast(*answer).GetChars(no_gc), chars); |
| } |
| return answer; |
| } |
| |
| Handle<String> Factory::NewOneByteInternalizedString( |
| const Vector<const uint8_t>& str, uint32_t hash_field) { |
| Handle<SeqOneByteString> result = |
| AllocateRawOneByteInternalizedString(str.length(), hash_field); |
| DisallowHeapAllocation no_allocation; |
| MemCopy(result->GetChars(no_allocation), str.begin(), str.length()); |
| return result; |
| } |
| |
| Handle<String> Factory::NewTwoByteInternalizedString( |
| const Vector<const uc16>& str, uint32_t hash_field) { |
| return AllocateTwoByteInternalizedString(str, hash_field); |
| } |
| |
| Handle<String> Factory::NewInternalizedStringImpl(Handle<String> string, |
| int chars, |
| uint32_t hash_field) { |
| if (IsOneByte(string)) { |
| return AllocateInternalizedStringImpl<true>(string, chars, hash_field); |
| } |
| return AllocateInternalizedStringImpl<false>(string, chars, hash_field); |
| } |
| |
| namespace { |
| |
| MaybeHandle<Map> GetInternalizedStringMap(Factory* f, Handle<String> string) { |
| switch (string->map().instance_type()) { |
| case STRING_TYPE: |
| return f->internalized_string_map(); |
| case ONE_BYTE_STRING_TYPE: |
| return f->one_byte_internalized_string_map(); |
| case EXTERNAL_STRING_TYPE: |
| return f->external_internalized_string_map(); |
| case EXTERNAL_ONE_BYTE_STRING_TYPE: |
| return f->external_one_byte_internalized_string_map(); |
| case UNCACHED_EXTERNAL_STRING_TYPE: |
| return f->uncached_external_internalized_string_map(); |
| case UNCACHED_EXTERNAL_ONE_BYTE_STRING_TYPE: |
| return f->uncached_external_one_byte_internalized_string_map(); |
| default: |
| return MaybeHandle<Map>(); // No match found. |
| } |
| } |
| |
| } // namespace |
| |
| MaybeHandle<Map> Factory::InternalizedStringMapForString( |
| Handle<String> string) { |
| // If the string is in the young generation, it cannot be used as |
| // internalized. |
| if (Heap::InYoungGeneration(*string)) return MaybeHandle<Map>(); |
| |
| return GetInternalizedStringMap(this, string); |
| } |
| |
| template <class StringClass> |
| Handle<StringClass> Factory::InternalizeExternalString(Handle<String> string) { |
| Handle<StringClass> cast_string = Handle<StringClass>::cast(string); |
| Handle<Map> map = GetInternalizedStringMap(this, string).ToHandleChecked(); |
| Handle<StringClass> external_string( |
| StringClass::cast(New(map, AllocationType::kOld)), isolate()); |
| external_string->set_length(cast_string->length()); |
| external_string->set_hash_field(cast_string->hash_field()); |
| external_string->SetResource(isolate(), nullptr); |
| isolate()->heap()->RegisterExternalString(*external_string); |
| return external_string; |
| } |
| |
| template Handle<ExternalOneByteString> |
| Factory::InternalizeExternalString<ExternalOneByteString>(Handle<String>); |
| template Handle<ExternalTwoByteString> |
| Factory::InternalizeExternalString<ExternalTwoByteString>(Handle<String>); |
| |
| MaybeHandle<SeqOneByteString> Factory::NewRawOneByteString( |
| int length, AllocationType allocation) { |
| if (length > String::kMaxLength || length < 0) { |
| THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), SeqOneByteString); |
| } |
| DCHECK_GT(length, 0); // Use Factory::empty_string() instead. |
| int size = SeqOneByteString::SizeFor(length); |
| DCHECK_GE(SeqOneByteString::kMaxSize, size); |
| |
| HeapObject result = |
| AllocateRawWithImmortalMap(size, allocation, *one_byte_string_map()); |
| Handle<SeqOneByteString> string(SeqOneByteString::cast(result), isolate()); |
| string->set_length(length); |
| string->set_hash_field(String::kEmptyHashField); |
| DCHECK_EQ(size, string->Size()); |
| return string; |
| } |
| |
| MaybeHandle<SeqTwoByteString> Factory::NewRawTwoByteString( |
| int length, AllocationType allocation) { |
| if (length > String::kMaxLength || length < 0) { |
| THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), SeqTwoByteString); |
| } |
| DCHECK_GT(length, 0); // Use Factory::empty_string() instead. |
| int size = SeqTwoByteString::SizeFor(length); |
| DCHECK_GE(SeqTwoByteString::kMaxSize, size); |
| |
| HeapObject result = |
| AllocateRawWithImmortalMap(size, allocation, *string_map()); |
| Handle<SeqTwoByteString> string(SeqTwoByteString::cast(result), isolate()); |
| string->set_length(length); |
| string->set_hash_field(String::kEmptyHashField); |
| DCHECK_EQ(size, string->Size()); |
| return string; |
| } |
| |
| Handle<String> Factory::LookupSingleCharacterStringFromCode(uint16_t code) { |
| if (code <= unibrow::Latin1::kMaxChar) { |
| { |
| DisallowHeapAllocation no_allocation; |
| Object value = single_character_string_cache()->get(code); |
| if (value != *undefined_value()) { |
| return handle(String::cast(value), isolate()); |
| } |
| } |
| uint8_t buffer[] = {static_cast<uint8_t>(code)}; |
| Handle<String> result = InternalizeString(Vector<const uint8_t>(buffer, 1)); |
| single_character_string_cache()->set(code, *result); |
| return result; |
| } |
| uint16_t buffer[] = {code}; |
| return InternalizeString(Vector<const uint16_t>(buffer, 1)); |
| } |
| |
| static inline Handle<String> MakeOrFindTwoCharacterString(Isolate* isolate, |
| uint16_t c1, |
| uint16_t c2) { |
| if ((c1 | c2) <= unibrow::Latin1::kMaxChar) { |
| uint8_t buffer[] = {static_cast<uint8_t>(c1), static_cast<uint8_t>(c2)}; |
| return isolate->factory()->InternalizeString( |
| Vector<const uint8_t>(buffer, 2)); |
| } |
| uint16_t buffer[] = {c1, c2}; |
| return isolate->factory()->InternalizeString( |
| Vector<const uint16_t>(buffer, 2)); |
| } |
| |
| template <typename SinkChar, typename StringType> |
| Handle<String> ConcatStringContent(Handle<StringType> result, |
| Handle<String> first, |
| Handle<String> second) { |
| DisallowHeapAllocation pointer_stays_valid; |
| SinkChar* sink = result->GetChars(pointer_stays_valid); |
| String::WriteToFlat(*first, sink, 0, first->length()); |
| String::WriteToFlat(*second, sink + first->length(), 0, second->length()); |
| return result; |
| } |
| |
| MaybeHandle<String> Factory::NewConsString(Handle<String> left, |
| Handle<String> right) { |
| if (left->IsThinString()) { |
| left = handle(Handle<ThinString>::cast(left)->actual(), isolate()); |
| } |
| if (right->IsThinString()) { |
| right = handle(Handle<ThinString>::cast(right)->actual(), isolate()); |
| } |
| int left_length = left->length(); |
| if (left_length == 0) return right; |
| int right_length = right->length(); |
| if (right_length == 0) return left; |
| |
| int length = left_length + right_length; |
| |
| if (length == 2) { |
| uint16_t c1 = left->Get(0); |
| uint16_t c2 = right->Get(0); |
| return MakeOrFindTwoCharacterString(isolate(), c1, c2); |
| } |
| |
| // Make sure that an out of memory exception is thrown if the length |
| // of the new cons string is too large. |
| if (length > String::kMaxLength || length < 0) { |
| THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String); |
| } |
| |
| bool left_is_one_byte = left->IsOneByteRepresentation(); |
| bool right_is_one_byte = right->IsOneByteRepresentation(); |
| bool is_one_byte = left_is_one_byte && right_is_one_byte; |
| |
| // If the resulting string is small make a flat string. |
| if (length < ConsString::kMinLength) { |
| // Note that neither of the two inputs can be a slice because: |
| STATIC_ASSERT(ConsString::kMinLength <= SlicedString::kMinLength); |
| DCHECK(left->IsFlat()); |
| DCHECK(right->IsFlat()); |
| |
| STATIC_ASSERT(ConsString::kMinLength <= String::kMaxLength); |
| if (is_one_byte) { |
| Handle<SeqOneByteString> result = |
| NewRawOneByteString(length).ToHandleChecked(); |
| DisallowHeapAllocation no_gc; |
| uint8_t* dest = result->GetChars(no_gc); |
| // Copy left part. |
| const uint8_t* src = |
| left->IsExternalString() |
| ? Handle<ExternalOneByteString>::cast(left)->GetChars() |
| : Handle<SeqOneByteString>::cast(left)->GetChars(no_gc); |
| for (int i = 0; i < left_length; i++) *dest++ = src[i]; |
| // Copy right part. |
| src = right->IsExternalString() |
| ? Handle<ExternalOneByteString>::cast(right)->GetChars() |
| : Handle<SeqOneByteString>::cast(right)->GetChars(no_gc); |
| for (int i = 0; i < right_length; i++) *dest++ = src[i]; |
| return result; |
| } |
| |
| return ConcatStringContent<uc16>( |
| NewRawTwoByteString(length).ToHandleChecked(), left, right); |
| } |
| |
| return NewConsString(left, right, length, is_one_byte); |
| } |
| |
| Handle<String> Factory::NewConsString(Handle<String> left, Handle<String> right, |
| int length, bool one_byte) { |
| DCHECK(!left->IsThinString()); |
| DCHECK(!right->IsThinString()); |
| DCHECK_GE(length, ConsString::kMinLength); |
| DCHECK_LE(length, String::kMaxLength); |
| |
| Handle<ConsString> result( |
| ConsString::cast( |
| one_byte ? New(cons_one_byte_string_map(), AllocationType::kYoung) |
| : New(cons_string_map(), AllocationType::kYoung)), |
| isolate()); |
| |
| DisallowHeapAllocation no_gc; |
| WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc); |
| |
| result->set_hash_field(String::kEmptyHashField); |
| result->set_length(length); |
| result->set_first(*left, mode); |
| result->set_second(*right, mode); |
| return result; |
| } |
| |
| Handle<String> Factory::NewSurrogatePairString(uint16_t lead, uint16_t trail) { |
| DCHECK_GE(lead, 0xD800); |
| DCHECK_LE(lead, 0xDBFF); |
| DCHECK_GE(trail, 0xDC00); |
| DCHECK_LE(trail, 0xDFFF); |
| |
| Handle<SeqTwoByteString> str = |
| isolate()->factory()->NewRawTwoByteString(2).ToHandleChecked(); |
| DisallowHeapAllocation no_allocation; |
| uc16* dest = str->GetChars(no_allocation); |
| dest[0] = lead; |
| dest[1] = trail; |
| return str; |
| } |
| |
| Handle<String> Factory::NewProperSubString(Handle<String> str, int begin, |
| int end) { |
| #if VERIFY_HEAP |
| if (FLAG_verify_heap) str->StringVerify(isolate()); |
| #endif |
| DCHECK(begin > 0 || end < str->length()); |
| |
| str = String::Flatten(isolate(), str); |
| |
| int length = end - begin; |
| if (length <= 0) return empty_string(); |
| if (length == 1) { |
| return LookupSingleCharacterStringFromCode(str->Get(begin)); |
| } |
| if (length == 2) { |
| // Optimization for 2-byte strings often used as keys in a decompression |
| // dictionary. Check whether we already have the string in the string |
| // table to prevent creation of many unnecessary strings. |
| uint16_t c1 = str->Get(begin); |
| uint16_t c2 = str->Get(begin + 1); |
| return MakeOrFindTwoCharacterString(isolate(), c1, c2); |
| } |
| |
| if (!FLAG_string_slices || length < SlicedString::kMinLength) { |
| if (str->IsOneByteRepresentation()) { |
| Handle<SeqOneByteString> result = |
| NewRawOneByteString(length).ToHandleChecked(); |
| DisallowHeapAllocation no_gc; |
| uint8_t* dest = result->GetChars(no_gc); |
| String::WriteToFlat(*str, dest, begin, end); |
| return result; |
| } else { |
| Handle<SeqTwoByteString> result = |
| NewRawTwoByteString(length).ToHandleChecked(); |
| DisallowHeapAllocation no_gc; |
| uc16* dest = result->GetChars(no_gc); |
| String::WriteToFlat(*str, dest, begin, end); |
| return result; |
| } |
| } |
| |
| int offset = begin; |
| |
| if (str->IsSlicedString()) { |
| Handle<SlicedString> slice = Handle<SlicedString>::cast(str); |
| str = Handle<String>(slice->parent(), isolate()); |
| offset += slice->offset(); |
| } |
| if (str->IsThinString()) { |
| Handle<ThinString> thin = Handle<ThinString>::cast(str); |
| str = handle(thin->actual(), isolate()); |
| } |
| |
| DCHECK(str->IsSeqString() || str->IsExternalString()); |
| Handle<Map> map = str->IsOneByteRepresentation() |
| ? sliced_one_byte_string_map() |
| : sliced_string_map(); |
| Handle<SlicedString> slice( |
| SlicedString::cast(New(map, AllocationType::kYoung)), isolate()); |
| |
| slice->set_hash_field(String::kEmptyHashField); |
| slice->set_length(length); |
| slice->set_parent(*str); |
| slice->set_offset(offset); |
| return slice; |
| } |
| |
| MaybeHandle<String> Factory::NewExternalStringFromOneByte( |
| const ExternalOneByteString::Resource* resource) { |
| size_t length = resource->length(); |
| if (length > static_cast<size_t>(String::kMaxLength)) { |
| THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String); |
| } |
| if (length == 0) return empty_string(); |
| |
| Handle<Map> map = resource->IsCacheable() |
| ? external_one_byte_string_map() |
| : uncached_external_one_byte_string_map(); |
| Handle<ExternalOneByteString> external_string( |
| ExternalOneByteString::cast(New(map, AllocationType::kOld)), isolate()); |
| external_string->set_length(static_cast<int>(length)); |
| external_string->set_hash_field(String::kEmptyHashField); |
| external_string->SetResource(isolate(), resource); |
| isolate()->heap()->RegisterExternalString(*external_string); |
| |
| return external_string; |
| } |
| |
| MaybeHandle<String> Factory::NewExternalStringFromTwoByte( |
| const ExternalTwoByteString::Resource* resource) { |
| size_t length = resource->length(); |
| if (length > static_cast<size_t>(String::kMaxLength)) { |
| THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String); |
| } |
| if (length == 0) return empty_string(); |
| |
| Handle<Map> map = resource->IsCacheable() ? external_string_map() |
| : uncached_external_string_map(); |
| Handle<ExternalTwoByteString> external_string( |
| ExternalTwoByteString::cast(New(map, AllocationType::kOld)), isolate()); |
| external_string->set_length(static_cast<int>(length)); |
| external_string->set_hash_field(String::kEmptyHashField); |
| external_string->SetResource(isolate(), resource); |
| isolate()->heap()->RegisterExternalString(*external_string); |
| |
| return external_string; |
| } |
| |
| Handle<ExternalOneByteString> Factory::NewNativeSourceString( |
| const ExternalOneByteString::Resource* resource) { |
| size_t length = resource->length(); |
| DCHECK_LE(length, static_cast<size_t>(String::kMaxLength)); |
| |
| Handle<Map> map = native_source_string_map(); |
| Handle<ExternalOneByteString> external_string( |
| ExternalOneByteString::cast(New(map, AllocationType::kOld)), isolate()); |
| external_string->set_length(static_cast<int>(length)); |
| external_string->set_hash_field(String::kEmptyHashField); |
| external_string->SetResource(isolate(), resource); |
| isolate()->heap()->RegisterExternalString(*external_string); |
| |
| return external_string; |
| } |
| |
| Handle<JSStringIterator> Factory::NewJSStringIterator(Handle<String> string) { |
| Handle<Map> map(isolate()->native_context()->initial_string_iterator_map(), |
| isolate()); |
| Handle<String> flat_string = String::Flatten(isolate(), string); |
| Handle<JSStringIterator> iterator = |
| Handle<JSStringIterator>::cast(NewJSObjectFromMap(map)); |
| iterator->set_string(*flat_string); |
| iterator->set_index(0); |
| |
| return iterator; |
| } |
| |
| Handle<Symbol> Factory::NewSymbol(AllocationType allocation) { |
| DCHECK(allocation != AllocationType::kYoung); |
| // Statically ensure that it is safe to allocate symbols in paged spaces. |
| STATIC_ASSERT(Symbol::kSize <= kMaxRegularHeapObjectSize); |
| |
| HeapObject result = |
| AllocateRawWithImmortalMap(Symbol::kSize, allocation, *symbol_map()); |
| |
| // Generate a random hash value. |
| int hash = isolate()->GenerateIdentityHash(Name::kHashBitMask); |
| |
| Handle<Symbol> symbol(Symbol::cast(result), isolate()); |
| symbol->set_hash_field(Name::kIsNotArrayIndexMask | |
| (hash << Name::kHashShift)); |
| symbol->set_name(*undefined_value()); |
| symbol->set_flags(0); |
| DCHECK(!symbol->is_private()); |
| return symbol; |
| } |
| |
| Handle<Symbol> Factory::NewPrivateSymbol(AllocationType allocation) { |
| DCHECK(allocation != AllocationType::kYoung); |
| Handle<Symbol> symbol = NewSymbol(allocation); |
| symbol->set_is_private(true); |
| return symbol; |
| } |
| |
| Handle<Symbol> Factory::NewPrivateNameSymbol(Handle<String> name) { |
| Handle<Symbol> symbol = NewSymbol(); |
| symbol->set_is_private_name(); |
| symbol->set_name(*name); |
| return symbol; |
| } |
| |
| Handle<Context> Factory::NewContext(RootIndex map_root_index, int size, |
| int variadic_part_length, |
| AllocationType allocation) { |
| DCHECK(RootsTable::IsImmortalImmovable(map_root_index)); |
| DCHECK_LE(Context::kTodoHeaderSize, size); |
| DCHECK(IsAligned(size, kTaggedSize)); |
| DCHECK_LE(Context::MIN_CONTEXT_SLOTS, variadic_part_length); |
| DCHECK_LE(Context::SizeFor(variadic_part_length), size); |
| |
| Map map = Map::cast(isolate()->root(map_root_index)); |
| HeapObject result = AllocateRawWithImmortalMap(size, allocation, map); |
| Handle<Context> context(Context::cast(result), isolate()); |
| context->set_length(variadic_part_length); |
| DCHECK_EQ(context->SizeFromMap(map), size); |
| if (size > Context::kTodoHeaderSize) { |
| ObjectSlot start = context->RawField(Context::kTodoHeaderSize); |
| ObjectSlot end = context->RawField(size); |
| size_t slot_count = end - start; |
| MemsetTagged(start, *undefined_value(), slot_count); |
| } |
| return context; |
| } |
| |
| Handle<NativeContext> Factory::NewNativeContext() { |
| Handle<NativeContext> context = Handle<NativeContext>::cast( |
| NewContext(RootIndex::kNativeContextMap, NativeContext::kSize, |
| NativeContext::NATIVE_CONTEXT_SLOTS, AllocationType::kOld)); |
| context->set_scope_info(ReadOnlyRoots(isolate()).empty_scope_info()); |
| context->set_previous(Context::unchecked_cast(Smi::zero())); |
| context->set_extension(*the_hole_value()); |
| context->set_native_context(*context); |
| context->set_errors_thrown(Smi::zero()); |
| context->set_math_random_index(Smi::zero()); |
| context->set_serialized_objects(*empty_fixed_array()); |
| context->set_microtask_queue(nullptr); |
| return context; |
| } |
| |
| Handle<Context> Factory::NewScriptContext(Handle<NativeContext> outer, |
| Handle<ScopeInfo> scope_info) { |
| DCHECK_EQ(scope_info->scope_type(), SCRIPT_SCOPE); |
| int variadic_part_length = scope_info->ContextLength(); |
| Handle<Context> context = NewContext( |
| RootIndex::kScriptContextMap, Context::SizeFor(variadic_part_length), |
| variadic_part_length, AllocationType::kOld); |
| context->set_scope_info(*scope_info); |
| context->set_previous(*outer); |
| context->set_extension(*the_hole_value()); |
| context->set_native_context(*outer); |
| DCHECK(context->IsScriptContext()); |
| return context; |
| } |
| |
| Handle<ScriptContextTable> Factory::NewScriptContextTable() { |
| Handle<ScriptContextTable> context_table = |
| NewFixedArrayWithMap<ScriptContextTable>( |
| RootIndex::kScriptContextTableMap, ScriptContextTable::kMinLength); |
| context_table->set_used(0); |
| return context_table; |
| } |
| |
| Handle<Context> Factory::NewModuleContext(Handle<SourceTextModule> module, |
| Handle<NativeContext> outer, |
| Handle<ScopeInfo> scope_info) { |
| DCHECK_EQ(scope_info->scope_type(), MODULE_SCOPE); |
| int variadic_part_length = scope_info->ContextLength(); |
| Handle<Context> context = NewContext( |
| RootIndex::kModuleContextMap, Context::SizeFor(variadic_part_length), |
| variadic_part_length, AllocationType::kOld); |
| context->set_scope_info(*scope_info); |
| context->set_previous(*outer); |
| context->set_extension(*module); |
| context->set_native_context(*outer); |
| DCHECK(context->IsModuleContext()); |
| return context; |
| } |
| |
| Handle<Context> Factory::NewFunctionContext(Handle<Context> outer, |
| Handle<ScopeInfo> scope_info) { |
| RootIndex mapRootIndex; |
| switch (scope_info->scope_type()) { |
| case EVAL_SCOPE: |
| mapRootIndex = RootIndex::kEvalContextMap; |
| break; |
| case FUNCTION_SCOPE: |
| mapRootIndex = RootIndex::kFunctionContextMap; |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| int variadic_part_length = scope_info->ContextLength(); |
| Handle<Context> context = |
| NewContext(mapRootIndex, Context::SizeFor(variadic_part_length), |
| variadic_part_length, AllocationType::kYoung); |
| context->set_scope_info(*scope_info); |
| context->set_previous(*outer); |
| context->set_extension(*the_hole_value()); |
| context->set_native_context(outer->native_context()); |
| return context; |
| } |
| |
| Handle<Context> Factory::NewCatchContext(Handle<Context> previous, |
| Handle<ScopeInfo> scope_info, |
| Handle<Object> thrown_object) { |
| DCHECK_EQ(scope_info->scope_type(), CATCH_SCOPE); |
| STATIC_ASSERT(Context::MIN_CONTEXT_SLOTS == Context::THROWN_OBJECT_INDEX); |
| // TODO(ishell): Take the details from CatchContext class. |
| int variadic_part_length = Context::MIN_CONTEXT_SLOTS + 1; |
| Handle<Context> context = NewContext( |
| RootIndex::kCatchContextMap, Context::SizeFor(variadic_part_length), |
| variadic_part_length, AllocationType::kYoung); |
| context->set_scope_info(*scope_info); |
| context->set_previous(*previous); |
| context->set_extension(*the_hole_value()); |
| context->set_native_context(previous->native_context()); |
| context->set(Context::THROWN_OBJECT_INDEX, *thrown_object); |
| return context; |
| } |
| |
| Handle<Context> Factory::NewDebugEvaluateContext(Handle<Context> previous, |
| Handle<ScopeInfo> scope_info, |
| Handle<JSReceiver> extension, |
| Handle<Context> wrapped, |
| Handle<StringSet> whitelist) { |
| STATIC_ASSERT(Context::WHITE_LIST_INDEX == Context::MIN_CONTEXT_SLOTS + 1); |
| DCHECK(scope_info->IsDebugEvaluateScope()); |
| Handle<HeapObject> ext = extension.is_null() |
| ? Handle<HeapObject>::cast(the_hole_value()) |
| : Handle<HeapObject>::cast(extension); |
| // TODO(ishell): Take the details from DebugEvaluateContextContext class. |
| int variadic_part_length = Context::MIN_CONTEXT_SLOTS + 2; |
| Handle<Context> c = NewContext(RootIndex::kDebugEvaluateContextMap, |
| Context::SizeFor(variadic_part_length), |
| variadic_part_length, AllocationType::kYoung); |
| c->set_scope_info(*scope_info); |
| c->set_previous(*previous); |
| c->set_native_context(previous->native_context()); |
| c->set_extension(*ext); |
| if (!wrapped.is_null()) c->set(Context::WRAPPED_CONTEXT_INDEX, *wrapped); |
| if (!whitelist.is_null()) c->set(Context::WHITE_LIST_INDEX, *whitelist); |
| return c; |
| } |
| |
| Handle<Context> Factory::NewWithContext(Handle<Context> previous, |
| Handle<ScopeInfo> scope_info, |
| Handle<JSReceiver> extension) { |
| DCHECK_EQ(scope_info->scope_type(), WITH_SCOPE); |
| // TODO(ishell): Take the details from WithContext class. |
| int variadic_part_length = Context::MIN_CONTEXT_SLOTS; |
| Handle<Context> context = NewContext( |
| RootIndex::kWithContextMap, Context::SizeFor(variadic_part_length), |
| variadic_part_length, AllocationType::kYoung); |
| context->set_scope_info(*scope_info); |
| context->set_previous(*previous); |
| context->set_extension(*extension); |
| context->set_native_context(previous->native_context()); |
| return context; |
| } |
| |
| Handle<Context> Factory::NewBlockContext(Handle<Context> previous, |
| Handle<ScopeInfo> scope_info) { |
| DCHECK_IMPLIES(scope_info->scope_type() != BLOCK_SCOPE, |
| scope_info->scope_type() == CLASS_SCOPE); |
| int variadic_part_length = scope_info->ContextLength(); |
| Handle<Context> context = NewContext( |
| RootIndex::kBlockContextMap, Context::SizeFor(variadic_part_length), |
| variadic_part_length, AllocationType::kYoung); |
| context->set_scope_info(*scope_info); |
| context->set_previous(*previous); |
| context->set_extension(*the_hole_value()); |
| context->set_native_context(previous->native_context()); |
| return context; |
| } |
| |
| Handle<Context> Factory::NewBuiltinContext(Handle<NativeContext> native_context, |
| int variadic_part_length) { |
| DCHECK_LE(Context::MIN_CONTEXT_SLOTS, variadic_part_length); |
| Handle<Context> context = NewContext( |
| RootIndex::kFunctionContextMap, Context::SizeFor(variadic_part_length), |
| variadic_part_length, AllocationType::kYoung); |
| context->set_scope_info(ReadOnlyRoots(isolate()).empty_scope_info()); |
| context->set_previous(*native_context); |
| context->set_extension(*the_hole_value()); |
| context->set_native_context(*native_context); |
| return context; |
| } |
| |
| Handle<Struct> Factory::NewStruct(InstanceType type, |
| AllocationType allocation) { |
| Map map = Map::GetStructMap(isolate(), type); |
| int size = map.instance_size(); |
| HeapObject result = AllocateRawWithImmortalMap(size, allocation, map); |
| Handle<Struct> str(Struct::cast(result), isolate()); |
| str->InitializeBody(size); |
| return str; |
| } |
| |
| Handle<AliasedArgumentsEntry> Factory::NewAliasedArgumentsEntry( |
| int aliased_context_slot) { |
| Handle<AliasedArgumentsEntry> entry = Handle<AliasedArgumentsEntry>::cast( |
| NewStruct(ALIASED_ARGUMENTS_ENTRY_TYPE, AllocationType::kYoung)); |
| entry->set_aliased_context_slot(aliased_context_slot); |
| return entry; |
| } |
| |
| Handle<AccessorInfo> Factory::NewAccessorInfo() { |
| Handle<AccessorInfo> info = Handle<AccessorInfo>::cast( |
| NewStruct(ACCESSOR_INFO_TYPE, AllocationType::kOld)); |
| DisallowHeapAllocation no_gc; |
| info->set_name(*empty_string()); |
| info->set_flags(0); // Must clear the flags, it was initialized as undefined. |
| info->set_is_sloppy(true); |
| info->set_initial_property_attributes(NONE); |
| |
| // Clear some other fields that should not be undefined. |
| info->set_getter(Smi::kZero); |
| info->set_setter(Smi::kZero); |
| info->set_js_getter(Smi::kZero); |
| |
| return info; |
| } |
| |
| Handle<Script> Factory::NewScript(Handle<String> source, |
| AllocationType allocation) { |
| return NewScriptWithId(source, isolate()->heap()->NextScriptId(), allocation); |
| } |
| |
| Handle<Script> Factory::NewScriptWithId(Handle<String> source, int script_id, |
| AllocationType allocation) { |
| DCHECK(allocation == AllocationType::kOld || |
| allocation == AllocationType::kReadOnly); |
| // Create and initialize script object. |
| Heap* heap = isolate()->heap(); |
| ReadOnlyRoots roots(heap); |
| Handle<Script> script = |
| Handle<Script>::cast(NewStruct(SCRIPT_TYPE, allocation)); |
| script->set_source(*source); |
| script->set_name(roots.undefined_value()); |
| script->set_id(script_id); |
| script->set_line_offset(0); |
| script->set_column_offset(0); |
| script->set_context_data(roots.undefined_value()); |
| script->set_type(Script::TYPE_NORMAL); |
| script->set_line_ends(roots.undefined_value()); |
| script->set_eval_from_shared_or_wrapped_arguments(roots.undefined_value()); |
| script->set_eval_from_position(0); |
| script->set_shared_function_infos(*empty_weak_fixed_array(), |
| SKIP_WRITE_BARRIER); |
| script->set_flags(0); |
| script->set_host_defined_options(*empty_fixed_array()); |
| Handle<WeakArrayList> scripts = script_list(); |
| scripts = WeakArrayList::AddToEnd(isolate(), scripts, |
| MaybeObjectHandle::Weak(script)); |
| heap->set_script_list(*scripts); |
| LOG(isolate(), ScriptEvent(Logger::ScriptEventType::kCreate, script_id)); |
| TRACE_EVENT_OBJECT_CREATED_WITH_ID( |
| TRACE_DISABLED_BY_DEFAULT("v8.compile"), "Script", |
| TRACE_ID_WITH_SCOPE(Script::kTraceScope, script_id)); |
| return script; |
| } |
| |
| Handle<Script> Factory::CloneScript(Handle<Script> script) { |
| Heap* heap = isolate()->heap(); |
| int script_id = isolate()->heap()->NextScriptId(); |
| Handle<Script> new_script = |
| Handle<Script>::cast(NewStruct(SCRIPT_TYPE, AllocationType::kOld)); |
| new_script->set_source(script->source()); |
| new_script->set_name(script->name()); |
| new_script->set_id(script_id); |
| new_script->set_line_offset(script->line_offset()); |
| new_script->set_column_offset(script->column_offset()); |
| new_script->set_context_data(script->context_data()); |
| new_script->set_type(script->type()); |
| new_script->set_line_ends(ReadOnlyRoots(heap).undefined_value()); |
| new_script->set_eval_from_shared_or_wrapped_arguments( |
| script->eval_from_shared_or_wrapped_arguments()); |
| new_script->set_shared_function_infos(*empty_weak_fixed_array(), |
| SKIP_WRITE_BARRIER); |
| new_script->set_eval_from_position(script->eval_from_position()); |
| new_script->set_flags(script->flags()); |
| new_script->set_host_defined_options(script->host_defined_options()); |
| Handle<WeakArrayList> scripts = script_list(); |
| scripts = WeakArrayList::AddToEnd(isolate(), scripts, |
| MaybeObjectHandle::Weak(new_script)); |
| heap->set_script_list(*scripts); |
| LOG(isolate(), ScriptEvent(Logger::ScriptEventType::kCreate, script_id)); |
| return new_script; |
| } |
| |
| Handle<CallableTask> Factory::NewCallableTask(Handle<JSReceiver> callable, |
| Handle<Context> context) { |
| DCHECK(callable->IsCallable()); |
| Handle<CallableTask> microtask = |
| Handle<CallableTask>::cast(NewStruct(CALLABLE_TASK_TYPE)); |
| microtask->set_callable(*callable); |
| microtask->set_context(*context); |
| return microtask; |
| } |
| |
| Handle<CallbackTask> Factory::NewCallbackTask(Handle<Foreign> callback, |
| Handle<Foreign> data) { |
| Handle<CallbackTask> microtask = |
| Handle<CallbackTask>::cast(NewStruct(CALLBACK_TASK_TYPE)); |
| microtask->set_callback(*callback); |
| microtask->set_data(*data); |
| return microtask; |
| } |
| |
| Handle<PromiseResolveThenableJobTask> Factory::NewPromiseResolveThenableJobTask( |
| Handle<JSPromise> promise_to_resolve, Handle<JSReceiver> then, |
| Handle<JSReceiver> thenable, Handle<Context> context) { |
| DCHECK(then->IsCallable()); |
| Handle<PromiseResolveThenableJobTask> microtask = |
| Handle<PromiseResolveThenableJobTask>::cast( |
| NewStruct(PROMISE_RESOLVE_THENABLE_JOB_TASK_TYPE)); |
| microtask->set_promise_to_resolve(*promise_to_resolve); |
| microtask->set_then(*then); |
| microtask->set_thenable(*thenable); |
| microtask->set_context(*context); |
| return microtask; |
| } |
| |
| Handle<FinalizationGroupCleanupJobTask> |
| Factory::NewFinalizationGroupCleanupJobTask( |
| Handle<JSFinalizationGroup> finalization_group) { |
| Handle<FinalizationGroupCleanupJobTask> microtask = |
| Handle<FinalizationGroupCleanupJobTask>::cast( |
| NewStruct(FINALIZATION_GROUP_CLEANUP_JOB_TASK_TYPE)); |
| microtask->set_finalization_group(*finalization_group); |
| return microtask; |
| } |
| |
| Handle<Foreign> Factory::NewForeign(Address addr, AllocationType allocation) { |
| // Statically ensure that it is safe to allocate foreigns in paged spaces. |
| STATIC_ASSERT(Foreign::kSize <= kMaxRegularHeapObjectSize); |
| Map map = *foreign_map(); |
| HeapObject result = |
| AllocateRawWithImmortalMap(map.instance_size(), allocation, map); |
| Handle<Foreign> foreign(Foreign::cast(result), isolate()); |
| foreign->set_foreign_address(addr); |
| return foreign; |
| } |
| |
| Handle<ByteArray> Factory::NewByteArray(int length, AllocationType allocation) { |
| DCHECK_LE(0, length); |
| if (length > ByteArray::kMaxLength) { |
| isolate()->heap()->FatalProcessOutOfMemory("invalid array length"); |
| } |
| int size = ByteArray::SizeFor(length); |
| HeapObject result = |
| AllocateRawWithImmortalMap(size, allocation, *byte_array_map()); |
| Handle<ByteArray> array(ByteArray::cast(result), isolate()); |
| array->set_length(length); |
| array->clear_padding(); |
| return array; |
| } |
| |
| Handle<BytecodeArray> Factory::NewBytecodeArray( |
| int length, const byte* raw_bytecodes, int frame_size, int parameter_count, |
| Handle<FixedArray> constant_pool) { |
| DCHECK_LE(0, length); |
| if (length > BytecodeArray::kMaxLength) { |
| isolate()->heap()->FatalProcessOutOfMemory("invalid array length"); |
| } |
| // Bytecode array is AllocationType::kOld, so constant pool array should be |
| // too. |
| DCHECK(!Heap::InYoungGeneration(*constant_pool)); |
| |
| int size = BytecodeArray::SizeFor(length); |
| HeapObject result = AllocateRawWithImmortalMap(size, AllocationType::kOld, |
| *bytecode_array_map()); |
| Handle<BytecodeArray> instance(BytecodeArray::cast(result), isolate()); |
| instance->set_length(length); |
| instance->set_frame_size(frame_size); |
| instance->set_parameter_count(parameter_count); |
| instance->set_incoming_new_target_or_generator_register( |
| interpreter::Register::invalid_value()); |
| instance->set_osr_loop_nesting_level(0); |
| instance->set_bytecode_age(BytecodeArray::kNoAgeBytecodeAge); |
| instance->set_constant_pool(*constant_pool); |
| instance->set_handler_table(*empty_byte_array()); |
| instance->set_source_position_table(*undefined_value()); |
| CopyBytes(reinterpret_cast<byte*>(instance->GetFirstBytecodeAddress()), |
| raw_bytecodes, length); |
| instance->clear_padding(); |
| |
| return instance; |
| } |
| |
| Handle<Cell> Factory::NewCell(Handle<Object> value) { |
| AllowDeferredHandleDereference convert_to_cell; |
| STATIC_ASSERT(Cell::kSize <= kMaxRegularHeapObjectSize); |
| HeapObject result = AllocateRawWithImmortalMap( |
| Cell::kSize, AllocationType::kOld, *cell_map()); |
| Handle<Cell> cell(Cell::cast(result), isolate()); |
| cell->set_value(*value); |
| return cell; |
| } |
| |
| Handle<FeedbackCell> Factory::NewNoClosuresCell(Handle<HeapObject> value) { |
| AllowDeferredHandleDereference convert_to_cell; |
| HeapObject result = AllocateRawWithImmortalMap(FeedbackCell::kAlignedSize, |
| AllocationType::kOld, *no_closures_cell_map()); |
| Handle<FeedbackCell> cell(FeedbackCell::cast(result), isolate()); |
| cell->set_value(*value); |
| cell->set_interrupt_budget(FeedbackCell::GetInitialInterruptBudget()); |
| cell->clear_padding(); |
| return cell; |
| } |
| |
| Handle<FeedbackCell> Factory::NewOneClosureCell(Handle<HeapObject> value) { |
| AllowDeferredHandleDereference convert_to_cell; |
| HeapObject result = AllocateRawWithImmortalMap(FeedbackCell::kAlignedSize, |
| AllocationType::kOld, *one_closure_cell_map()); |
| Handle<FeedbackCell> cell(FeedbackCell::cast(result), isolate()); |
| cell->set_value(*value); |
| cell->set_interrupt_budget(FeedbackCell::GetInitialInterruptBudget()); |
| cell->clear_padding(); |
| return cell; |
| } |
| |
| Handle<FeedbackCell> Factory::NewManyClosuresCell(Handle<HeapObject> value) { |
| AllowDeferredHandleDereference convert_to_cell; |
| HeapObject result = AllocateRawWithImmortalMap(FeedbackCell::kAlignedSize, |
| AllocationType::kOld, *many_closures_cell_map()); |
| Handle<FeedbackCell> cell(FeedbackCell::cast(result), isolate()); |
| cell->set_value(*value); |
| cell->set_interrupt_budget(FeedbackCell::GetInitialInterruptBudget()); |
| cell->clear_padding(); |
| return cell; |
| } |
| |
| Handle<PropertyCell> Factory::NewPropertyCell(Handle<Name> name, |
| AllocationType allocation) { |
| DCHECK(name->IsUniqueName()); |
| STATIC_ASSERT(PropertyCell::kSize <= kMaxRegularHeapObjectSize); |
| HeapObject result = AllocateRawWithImmortalMap( |
| PropertyCell::kSize, allocation, *global_property_cell_map()); |
| Handle<PropertyCell> cell(PropertyCell::cast(result), isolate()); |
| cell->set_dependent_code(DependentCode::cast(*empty_weak_fixed_array()), |
| SKIP_WRITE_BARRIER); |
| cell->set_property_details(PropertyDetails(Smi::zero())); |
| cell->set_name(*name); |
| cell->set_value(*the_hole_value()); |
| return cell; |
| } |
| |
| Handle<DescriptorArray> Factory::NewDescriptorArray(int number_of_descriptors, |
| int slack, |
| AllocationType allocation) { |
| DCHECK(Heap::IsRegularObjectAllocation(allocation)); |
| int number_of_all_descriptors = number_of_descriptors + slack; |
| // Zero-length case must be handled outside. |
| DCHECK_LT(0, number_of_all_descriptors); |
| int size = DescriptorArray::SizeFor(number_of_all_descriptors); |
| HeapObject obj = |
| isolate()->heap()->AllocateRawWithRetryOrFail(size, allocation); |
| obj.set_map_after_allocation(*descriptor_array_map(), SKIP_WRITE_BARRIER); |
| DescriptorArray array = DescriptorArray::cast(obj); |
| array.Initialize(*empty_enum_cache(), *undefined_value(), |
| number_of_descriptors, slack); |
| return Handle<DescriptorArray>(array, isolate()); |
| } |
| |
| Handle<TransitionArray> Factory::NewTransitionArray(int number_of_transitions, |
| int slack) { |
| int capacity = TransitionArray::LengthFor(number_of_transitions + slack); |
| Handle<TransitionArray> array = NewWeakFixedArrayWithMap<TransitionArray>( |
| RootIndex::kTransitionArrayMap, capacity, AllocationType::kOld); |
| // Transition arrays are AllocationType::kOld. When black allocation is on we |
| // have to add the transition array to the list of |
| // encountered_transition_arrays. |
| Heap* heap = isolate()->heap(); |
| if (heap->incremental_marking()->black_allocation()) { |
| heap->mark_compact_collector()->AddTransitionArray(*array); |
| } |
| array->WeakFixedArray::Set(TransitionArray::kPrototypeTransitionsIndex, |
| MaybeObject::FromObject(Smi::kZero)); |
| array->WeakFixedArray::Set( |
| TransitionArray::kTransitionLengthIndex, |
| MaybeObject::FromObject(Smi::FromInt(number_of_transitions))); |
| return array; |
| } |
| |
| Handle<AllocationSite> Factory::NewAllocationSite(bool with_weak_next) { |
| Handle<Map> map = with_weak_next ? allocation_site_map() |
| : allocation_site_without_weaknext_map(); |
| Handle<AllocationSite> site( |
| AllocationSite::cast(New(map, AllocationType::kOld)), isolate()); |
| site->Initialize(); |
| |
| if (with_weak_next) { |
| // Link the site |
| site->set_weak_next(isolate()->heap()->allocation_sites_list()); |
| isolate()->heap()->set_allocation_sites_list(*site); |
| } |
| return site; |
| } |
| |
| Handle<Map> Factory::NewMap(InstanceType type, int instance_size, |
| ElementsKind elements_kind, |
| int inobject_properties) { |
| STATIC_ASSERT(LAST_JS_OBJECT_TYPE == LAST_TYPE); |
| DCHECK_IMPLIES(InstanceTypeChecker::IsJSObject(type) && |
| !Map::CanHaveFastTransitionableElementsKind(type), |
| IsDictionaryElementsKind(elements_kind) || |
| IsTerminalElementsKind(elements_kind)); |
| HeapObject result = isolate()->heap()->AllocateRawWithRetryOrFail( |
| Map::kSize, AllocationType::kMap); |
| result.set_map_after_allocation(*meta_map(), SKIP_WRITE_BARRIER); |
| return handle(InitializeMap(Map::cast(result), type, instance_size, |
| elements_kind, inobject_properties), |
| isolate()); |
| } |
| |
| Map Factory::InitializeMap(Map map, InstanceType type, int instance_size, |
| ElementsKind elements_kind, |
| int inobject_properties) { |
| map.set_instance_type(type); |
| map.set_prototype(*null_value(), SKIP_WRITE_BARRIER); |
| map.set_constructor_or_backpointer(*null_value(), SKIP_WRITE_BARRIER); |
| map.set_instance_size(instance_size); |
| if (map.IsJSObjectMap()) { |
| DCHECK(!ReadOnlyHeap::Contains(map)); |
| map.SetInObjectPropertiesStartInWords(instance_size / kTaggedSize - |
| inobject_properties); |
| DCHECK_EQ(map.GetInObjectProperties(), inobject_properties); |
| map.set_prototype_validity_cell(*invalid_prototype_validity_cell()); |
| } else { |
| DCHECK_EQ(inobject_properties, 0); |
| map.set_inobject_properties_start_or_constructor_function_index(0); |
| map.set_prototype_validity_cell(Smi::FromInt(Map::kPrototypeChainValid)); |
| } |
| map.set_dependent_code(DependentCode::cast(*empty_weak_fixed_array()), |
| SKIP_WRITE_BARRIER); |
| map.set_raw_transitions(MaybeObject::FromSmi(Smi::zero())); |
| map.SetInObjectUnusedPropertyFields(inobject_properties); |
| map.SetInstanceDescriptors(isolate(), *empty_descriptor_array(), 0); |
| if (FLAG_unbox_double_fields) { |
| map.set_layout_descriptor(LayoutDescriptor::FastPointerLayout()); |
| } |
| // Must be called only after |instance_type|, |instance_size| and |
| // |layout_descriptor| are set. |
| map.set_visitor_id(Map::GetVisitorId(map)); |
| map.set_bit_field(0); |
| map.set_bit_field2(Map::NewTargetIsBaseBit::encode(true)); |
| int bit_field3 = Map::EnumLengthBits::encode(kInvalidEnumCacheSentinel) | |
| Map::OwnsDescriptorsBit::encode(true) | |
| Map::ConstructionCounterBits::encode(Map::kNoSlackTracking) | |
| Map::IsExtensibleBit::encode(true); |
| map.set_bit_field3(bit_field3); |
| DCHECK(!map.is_in_retained_map_list()); |
| map.clear_padding(); |
| map.set_elements_kind(elements_kind); |
| isolate()->counters()->maps_created()->Increment(); |
| if (FLAG_trace_maps) LOG(isolate(), MapCreate(map)); |
| return map; |
| } |
| |
| Handle<JSObject> Factory::CopyJSObject(Handle<JSObject> source) { |
| return CopyJSObjectWithAllocationSite(source, Handle<AllocationSite>()); |
| } |
| |
| Handle<JSObject> Factory::CopyJSObjectWithAllocationSite( |
| Handle<JSObject> source, Handle<AllocationSite> site) { |
| Handle<Map> map(source->map(), isolate()); |
| |
| // We can only clone regexps, normal objects, api objects, errors or arrays. |
| // Copying anything else will break invariants. |
| CHECK(map->instance_type() == JS_REGEXP_TYPE || |
| map->instance_type() == JS_OBJECT_TYPE || |
| map->instance_type() == JS_ERROR_TYPE || |
| map->instance_type() == JS_ARRAY_TYPE || |
| map->instance_type() == JS_API_OBJECT_TYPE || |
| map->instance_type() == WASM_GLOBAL_TYPE || |
| map->instance_type() == WASM_INSTANCE_TYPE || |
| map->instance_type() == WASM_MEMORY_TYPE || |
| map->instance_type() == WASM_MODULE_TYPE || |
| map->instance_type() == WASM_TABLE_TYPE || |
| map->instance_type() == JS_SPECIAL_API_OBJECT_TYPE); |
| DCHECK(site.is_null() || AllocationSite::CanTrack(map->instance_type())); |
| |
| int object_size = map->instance_size(); |
| int adjusted_object_size = |
| site.is_null() ? object_size : object_size + AllocationMemento::kSize; |
| HeapObject raw_clone = isolate()->heap()->AllocateRawWithRetryOrFail( |
| adjusted_object_size, AllocationType::kYoung); |
| |
| DCHECK(Heap::InYoungGeneration(raw_clone)); |
| // Since we know the clone is allocated in new space, we can copy |
| // the contents without worrying about updating the write barrier. |
| Heap::CopyBlock(raw_clone.address(), source->address(), object_size); |
| Handle<JSObject> clone(JSObject::cast(raw_clone), isolate()); |
| |
| if (!site.is_null()) { |
| AllocationMemento alloc_memento = AllocationMemento::unchecked_cast( |
| Object(raw_clone.ptr() + object_size)); |
| InitializeAllocationMemento(alloc_memento, *site); |
| } |
| |
| SLOW_DCHECK(clone->GetElementsKind() == source->GetElementsKind()); |
| FixedArrayBase elements = source->elements(); |
| // Update elements if necessary. |
| if (elements.length() > 0) { |
| FixedArrayBase elem; |
| if (elements.map() == *fixed_cow_array_map()) { |
| elem = elements; |
| } else if (source->HasDoubleElements()) { |
| elem = *CopyFixedDoubleArray( |
| handle(FixedDoubleArray::cast(elements), isolate())); |
| } else { |
| elem = *CopyFixedArray(handle(FixedArray::cast(elements), isolate())); |
| } |
| clone->set_elements(elem); |
| } |
| |
| // Update properties if necessary. |
| if (source->HasFastProperties()) { |
| PropertyArray properties = source->property_array(); |
| if (properties.length() > 0) { |
| // TODO(gsathya): Do not copy hash code. |
| Handle<PropertyArray> prop = CopyArrayWithMap( |
| handle(properties, isolate()), handle(properties.map(), isolate())); |
| clone->set_raw_properties_or_hash(*prop); |
| } |
| } else { |
| Handle<FixedArray> properties( |
| FixedArray::cast(source->property_dictionary()), isolate()); |
| Handle<FixedArray> prop = CopyFixedArray(properties); |
| clone->set_raw_properties_or_hash(*prop); |
| } |
| return clone; |
| } |
| |
| namespace { |
| template <typename T> |
| void initialize_length(Handle<T> array, int length) { |
| array->set_length(length); |
| } |
| |
| template <> |
| void initialize_length<PropertyArray>(Handle<PropertyArray> array, int length) { |
| array->initialize_length(length); |
| } |
| |
| } // namespace |
| |
| template <typename T> |
| Handle<T> Factory::CopyArrayWithMap(Handle<T> src, Handle<Map> map) { |
| int len = src->length(); |
| HeapObject obj = AllocateRawFixedArray(len, AllocationType::kYoung); |
| obj.set_map_after_allocation(*map, SKIP_WRITE_BARRIER); |
| |
| Handle<T> result(T::cast(obj), isolate()); |
| initialize_length(result, len); |
| |
| DisallowHeapAllocation no_gc; |
| WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc); |
| result->CopyElements(isolate(), 0, *src, 0, len, mode); |
| return result; |
| } |
| |
| template <typename T> |
| Handle<T> Factory::CopyArrayAndGrow(Handle<T> src, int grow_by, |
| AllocationType allocation) { |
| DCHECK_LT(0, grow_by); |
| DCHECK_LE(grow_by, kMaxInt - src->length()); |
| int old_len = src->length(); |
| int new_len = old_len + grow_by; |
| HeapObject obj = AllocateRawFixedArray(new_len, allocation); |
| obj.set_map_after_allocation(src->map(), SKIP_WRITE_BARRIER); |
| |
| Handle<T> result(T::cast(obj), isolate()); |
| initialize_length(result, new_len); |
| |
| // Copy the content. |
| DisallowHeapAllocation no_gc; |
| WriteBarrierMode mode = obj.GetWriteBarrierMode(no_gc); |
| result->CopyElements(isolate(), 0, *src, 0, old_len, mode); |
| MemsetTagged(ObjectSlot(result->data_start() + old_len), |
| ReadOnlyRoots(isolate()).undefined_value(), grow_by); |
| return result; |
| } |
| |
| Handle<FixedArray> Factory::CopyFixedArrayWithMap(Handle<FixedArray> array, |
| Handle<Map> map) { |
| return CopyArrayWithMap(array, map); |
| } |
| |
| Handle<FixedArray> Factory::CopyFixedArrayAndGrow(Handle<FixedArray> array, |
| int grow_by, |
| AllocationType allocation) { |
| return CopyArrayAndGrow(array, grow_by, allocation); |
| } |
| |
| Handle<WeakFixedArray> Factory::CopyWeakFixedArrayAndGrow( |
| Handle<WeakFixedArray> src, int grow_by, AllocationType allocation) { |
| DCHECK(!src->IsTransitionArray()); // Compacted by GC, this code doesn't work |
| return CopyArrayAndGrow(src, grow_by, allocation); |
| } |
| |
| Handle<WeakArrayList> Factory::CopyWeakArrayListAndGrow( |
| Handle<WeakArrayList> src, int grow_by, AllocationType allocation) { |
| int old_capacity = src->capacity(); |
| int new_capacity = old_capacity + grow_by; |
| DCHECK_GE(new_capacity, old_capacity); |
| HeapObject obj = AllocateRawWeakArrayList(new_capacity, allocation); |
| obj.set_map_after_allocation(src->map(), SKIP_WRITE_BARRIER); |
| |
| WeakArrayList result = WeakArrayList::cast(obj); |
| int old_len = src->length(); |
| result.set_length(old_len); |
| result.set_capacity(new_capacity); |
| |
| // Copy the content. |
| DisallowHeapAllocation no_gc; |
| WriteBarrierMode mode = obj.GetWriteBarrierMode(no_gc); |
| result.CopyElements(isolate(), 0, *src, 0, old_len, mode); |
| MemsetTagged(ObjectSlot(result.data_start() + old_len), |
| ReadOnlyRoots(isolate()).undefined_value(), |
| new_capacity - old_len); |
| return Handle<WeakArrayList>(result, isolate()); |
| } |
| |
| Handle<PropertyArray> Factory::CopyPropertyArrayAndGrow( |
| Handle<PropertyArray> array, int grow_by, AllocationType allocation) { |
| return CopyArrayAndGrow(array, grow_by, allocation); |
| } |
| |
| Handle<FixedArray> Factory::CopyFixedArrayUpTo(Handle<FixedArray> array, |
| int new_len, |
| AllocationType allocation) { |
| DCHECK_LE(0, new_len); |
| DCHECK_LE(new_len, array->length()); |
| if (new_len == 0) return empty_fixed_array(); |
| |
| HeapObject obj = AllocateRawFixedArray(new_len, allocation); |
| obj.set_map_after_allocation(*fixed_array_map(), SKIP_WRITE_BARRIER); |
| Handle<FixedArray> result(FixedArray::cast(obj), isolate()); |
| result->set_length(new_len); |
| |
| // Copy the content. |
| DisallowHeapAllocation no_gc; |
| WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc); |
| result->CopyElements(isolate(), 0, *array, 0, new_len, mode); |
| return result; |
| } |
| |
| Handle<FixedArray> Factory::CopyFixedArray(Handle<FixedArray> array) { |
| if (array->length() == 0) return array; |
| return CopyArrayWithMap(array, handle(array->map(), isolate())); |
| } |
| |
| Handle<FixedArray> Factory::CopyAndTenureFixedCOWArray( |
| Handle<FixedArray> array) { |
| DCHECK(Heap::InYoungGeneration(*array)); |
| Handle<FixedArray> result = |
| CopyFixedArrayUpTo(array, array->length(), AllocationType::kOld); |
| |
| // TODO(mvstanton): The map is set twice because of protection against calling |
| // set() on a COW FixedArray. Issue v8:3221 created to track this, and |
| // we might then be able to remove this whole method. |
| result->set_map_after_allocation(*fixed_cow_array_map(), SKIP_WRITE_BARRIER); |
| return result; |
| } |
| |
| Handle<FixedDoubleArray> Factory::CopyFixedDoubleArray( |
| Handle<FixedDoubleArray> array) { |
| int len = array->length(); |
| if (len == 0) return array; |
| Handle<FixedDoubleArray> result = Handle<FixedDoubleArray>::cast( |
| NewFixedDoubleArray(len, AllocationType::kYoung)); |
| Heap::CopyBlock( |
| result->address() + FixedDoubleArray::kLengthOffset, |
| array->address() + FixedDoubleArray::kLengthOffset, |
| FixedDoubleArray::SizeFor(len) - FixedDoubleArray::kLengthOffset); |
| return result; |
| } |
| |
| Handle<Object> Factory::NewNumber(double value, AllocationType allocation) { |
| // Materialize as a SMI if possible. |
| int32_t int_value; |
| if (DoubleToSmiInteger(value, &int_value)) { |
| return handle(Smi::FromInt(int_value), isolate()); |
| } |
| return NewHeapNumber(value, allocation); |
| } |
| |
| Handle<Object> Factory::NewNumberFromInt(int32_t value, |
| AllocationType allocation) { |
| if (Smi::IsValid(value)) return handle(Smi::FromInt(value), isolate()); |
| // Bypass NewNumber to avoid various redundant checks. |
| return NewHeapNumber(FastI2D(value), allocation); |
| } |
| |
| Handle<Object> Factory::NewNumberFromUint(uint32_t value, |
| AllocationType allocation) { |
| int32_t int32v = static_cast<int32_t>(value); |
| if (int32v >= 0 && Smi::IsValid(int32v)) { |
| return handle(Smi::FromInt(int32v), isolate()); |
| } |
| return NewHeapNumber(FastUI2D(value), allocation); |
| } |
| |
| Handle<HeapNumber> Factory::NewHeapNumber(AllocationType allocation) { |
| STATIC_ASSERT(HeapNumber::kSize <= kMaxRegularHeapObjectSize); |
| Map map = *heap_number_map(); |
| HeapObject result = AllocateRawWithImmortalMap(HeapNumber::kSize, allocation, |
| map, kDoubleUnaligned); |
| return handle(HeapNumber::cast(result), isolate()); |
| } |
| |
| Handle<MutableHeapNumber> Factory::NewMutableHeapNumber( |
| AllocationType allocation) { |
| STATIC_ASSERT(HeapNumber::kSize <= kMaxRegularHeapObjectSize); |
| Map map = *mutable_heap_number_map(); |
| HeapObject result = AllocateRawWithImmortalMap( |
| MutableHeapNumber::kSize, allocation, map, kDoubleUnaligned); |
| return handle(MutableHeapNumber::cast(result), isolate()); |
| } |
| |
| Handle<FreshlyAllocatedBigInt> Factory::NewBigInt(int length, |
| AllocationType allocation) { |
| if (length < 0 || length > BigInt::kMaxLength) { |
| isolate()->heap()->FatalProcessOutOfMemory("invalid BigInt length"); |
| } |
| HeapObject result = AllocateRawWithImmortalMap(BigInt::SizeFor(length), |
| allocation, *bigint_map()); |
| FreshlyAllocatedBigInt bigint = FreshlyAllocatedBigInt::cast(result); |
| bigint.clear_padding(); |
| return handle(bigint, isolate()); |
| } |
| |
| Handle<Object> Factory::NewError(Handle<JSFunction> constructor, |
| MessageTemplate template_index, |
| Handle<Object> arg0, Handle<Object> arg1, |
| Handle<Object> arg2) { |
| HandleScope scope(isolate()); |
| if (isolate()->bootstrapper()->IsActive()) { |
| // During bootstrapping we cannot construct error objects. |
| return scope.CloseAndEscape(NewStringFromAsciiChecked( |
| MessageFormatter::TemplateString(template_index))); |
| } |
| |
| if (arg0.is_null()) arg0 = undefined_value(); |
| if (arg1.is_null()) arg1 = undefined_value(); |
| if (arg2.is_null()) arg2 = undefined_value(); |
| |
| Handle<Object> result; |
| if (!ErrorUtils::MakeGenericError(isolate(), constructor, template_index, |
| arg0, arg1, arg2, SKIP_NONE) |
| .ToHandle(&result)) { |
| // If an exception is thrown while |
| // running the factory method, use the exception as the result. |
| DCHECK(isolate()->has_pending_exception()); |
| result = handle(isolate()->pending_exception(), isolate()); |
| isolate()->clear_pending_exception(); |
| } |
| |
| return scope.CloseAndEscape(result); |
| } |
| |
| Handle<Object> Factory::NewError(Handle<JSFunction> constructor, |
| Handle<String> message) { |
| // Construct a new error object. If an exception is thrown, use the exception |
| // as the result. |
| |
| Handle<Object> no_caller; |
| MaybeHandle<Object> maybe_error = ErrorUtils::Construct( |
| isolate(), constructor, constructor, message, SKIP_NONE, no_caller, |
| ErrorUtils::StackTraceCollection::kDetailed); |
| if (maybe_error.is_null()) { |
| DCHECK(isolate()->has_pending_exception()); |
| maybe_error = handle(isolate()->pending_exception(), isolate()); |
| isolate()->clear_pending_exception(); |
| } |
| |
| return maybe_error.ToHandleChecked(); |
| } |
| |
| Handle<Object> Factory::NewInvalidStringLengthError() { |
| if (FLAG_correctness_fuzzer_suppressions) { |
| FATAL("Aborting on invalid string length"); |
| } |
| // Invalidate the "string length" protector. |
| if (isolate()->IsStringLengthOverflowIntact()) { |
| isolate()->InvalidateStringLengthOverflowProtector(); |
| } |
| return NewRangeError(MessageTemplate::kInvalidStringLength); |
| } |
| |
| #define DEFINE_ERROR(NAME, name) \ |
| Handle<Object> Factory::New##NAME(MessageTemplate template_index, \ |
| Handle<Object> arg0, Handle<Object> arg1, \ |
| Handle<Object> arg2) { \ |
| return NewError(isolate()->name##_function(), template_index, arg0, arg1, \ |
| arg2); \ |
| } |
| DEFINE_ERROR(Error, error) |
| DEFINE_ERROR(EvalError, eval_error) |
| DEFINE_ERROR(RangeError, range_error) |
| DEFINE_ERROR(ReferenceError, reference_error) |
| DEFINE_ERROR(SyntaxError, syntax_error) |
| DEFINE_ERROR(TypeError, type_error) |
| DEFINE_ERROR(WasmCompileError, wasm_compile_error) |
| DEFINE_ERROR(WasmLinkError, wasm_link_error) |
| DEFINE_ERROR(WasmRuntimeError, wasm_runtime_error) |
| #undef DEFINE_ERROR |
| |
| Handle<JSFunction> Factory::NewFunction(Handle<Map> map, |
| Handle<SharedFunctionInfo> info, |
| Handle<Context> context, |
| AllocationType allocation) { |
| Handle<JSFunction> function(JSFunction::cast(New(map, allocation)), |
| isolate()); |
| |
| function->initialize_properties(isolate()); |
| function->initialize_elements(); |
| function->set_shared(*info); |
| function->set_code(info->GetCode()); |
| function->set_context(*context); |
| function->set_raw_feedback_cell(*many_closures_cell()); |
| int header_size; |
| if (map->has_prototype_slot()) { |
| header_size = JSFunction::kSizeWithPrototype; |
| function->set_prototype_or_initial_map(*the_hole_value()); |
| } else { |
| header_size = JSFunction::kSizeWithoutPrototype; |
| } |
| InitializeJSObjectBody(function, map, header_size); |
| return function; |
| } |
| |
| Handle<JSFunction> Factory::NewFunctionForTest(Handle<String> name) { |
| NewFunctionArgs args = NewFunctionArgs::ForFunctionWithoutCode( |
| name, isolate()->sloppy_function_map(), LanguageMode::kSloppy); |
| Handle<JSFunction> result = NewFunction(args); |
| DCHECK(is_sloppy(result->shared().language_mode())); |
| return result; |
| } |
| |
| Handle<JSFunction> Factory::NewFunction(const NewFunctionArgs& args) { |
| DCHECK(!args.name_.is_null()); |
| |
| // Create the SharedFunctionInfo. |
| Handle<NativeContext> context(isolate()->native_context()); |
| Handle<Map> map = args.GetMap(isolate()); |
| Handle<SharedFunctionInfo> info = |
| NewSharedFunctionInfo(args.name_, args.maybe_wasm_function_data_, |
| args.maybe_builtin_id_, kNormalFunction); |
| |
| // Proper language mode in shared function info will be set later. |
| DCHECK(is_sloppy(info->language_mode())); |
| DCHECK(!map->IsUndefined(isolate())); |
| |
| #ifdef DEBUG |
| if (isolate()->bootstrapper()->IsActive()) { |
| Handle<Code> code; |
| DCHECK( |
| // During bootstrapping some of these maps could be not created yet. |
| (*map == context->get(Context::STRICT_FUNCTION_MAP_INDEX)) || |
| (*map == |
| context->get(Context::STRICT_FUNCTION_WITHOUT_PROTOTYPE_MAP_INDEX)) || |
| (*map == |
| context->get( |
| Context::STRICT_FUNCTION_WITH_READONLY_PROTOTYPE_MAP_INDEX)) || |
| // Check if it's a creation of an empty or Proxy function during |
| // bootstrapping. |
| (args.maybe_builtin_id_ == Builtins::kEmptyFunction || |
| args.maybe_builtin_id_ == Builtins::kProxyConstructor)); |
| } else { |
| DCHECK( |
| (*map == *isolate()->sloppy_function_map()) || |
| (*map == *isolate()->sloppy_function_without_prototype_map()) || |
| (*map == *isolate()->sloppy_function_with_readonly_prototype_map()) || |
| (*map == *isolate()->strict_function_map()) || |
| (*map == *isolate()->strict_function_without_prototype_map()) || |
| (*map == *isolate()->wasm_exported_function_map())); |
| } |
| #endif |
| |
| Handle<JSFunction> result = NewFunction(map, info, context); |
| |
| if (args.should_set_prototype_) { |
| result->set_prototype_or_initial_map( |
| *args.maybe_prototype_.ToHandleChecked()); |
| } |
| |
| if (args.should_set_language_mode_) { |
| result->shared().set_language_mode(args.language_mode_); |
| } |
| |
| if (args.should_create_and_set_initial_map_) { |
| ElementsKind elements_kind; |
| switch (args.type_) { |
| case JS_ARRAY_TYPE: |
| elements_kind = PACKED_SMI_ELEMENTS; |
| break; |
| case JS_ARGUMENTS_TYPE: |
| elements_kind = PACKED_ELEMENTS; |
| break; |
| default: |
| elements_kind = TERMINAL_FAST_ELEMENTS_KIND; |
| break; |
| } |
| Handle<Map> initial_map = NewMap(args.type_, args.instance_size_, |
| elements_kind, args.inobject_properties_); |
| result->shared().set_expected_nof_properties(args.inobject_properties_); |
| // TODO(littledan): Why do we have this is_generator test when |
| // NewFunctionPrototype already handles finding an appropriately |
| // shared prototype? |
| Handle<HeapObject> prototype = args.maybe_prototype_.ToHandleChecked(); |
| if (!IsResumableFunction(result->shared().kind())) { |
| if (prototype->IsTheHole(isolate())) { |
| prototype = NewFunctionPrototype(result); |
| } |
| } |
| JSFunction::SetInitialMap(result, initial_map, prototype); |
| } |
| |
| return result; |
| } |
| |
| Handle<JSObject> Factory::NewFunctionPrototype(Handle<JSFunction> function) { |
| // Make sure to use globals from the function's context, since the function |
| // can be from a different context. |
| Handle<NativeContext> native_context(function->context().native_context(), |
| isolate()); |
| Handle<Map> new_map; |
| if (V8_UNLIKELY(IsAsyncGeneratorFunction(function->shared().kind()))) { |
| new_map = handle(native_context->async_generator_object_prototype_map(), |
| isolate()); |
| } else if (IsResumableFunction(function->shared().kind())) { |
| // Generator and async function prototypes can share maps since they |
| // don't have "constructor" properties. |
| new_map = |
| handle(native_context->generator_object_prototype_map(), isolate()); |
| } else { |
| // Each function prototype gets a fresh map to avoid unwanted sharing of |
| // maps between prototypes of different constructors. |
| Handle<JSFunction> object_function(native_context->object_function(), |
| isolate()); |
| DCHECK(object_function->has_initial_map()); |
| new_map = handle(object_function->initial_map(), isolate()); |
| } |
| |
| DCHECK(!new_map->is_prototype_map()); |
| Handle<JSObject> prototype = NewJSObjectFromMap(new_map); |
| |
| if (!IsResumableFunction(function->shared().kind())) { |
| JSObject::AddProperty(isolate(), prototype, constructor_string(), function, |
| DONT_ENUM); |
| } |
| |
| return prototype; |
| } |
| |
| Handle<WeakCell> Factory::NewWeakCell() { |
| // Allocate the WeakCell object in the old space, because 1) WeakCell weakness |
| // handling is only implemented in the old space 2) they're supposedly |
| // long-living. TODO(marja, gsathya): Support WeakCells in Scavenger. |
| Handle<WeakCell> result( |
| WeakCell::cast(AllocateRawWithImmortalMap( |
| WeakCell::kSize, AllocationType::kOld, *weak_cell_map())), |
| isolate()); |
| return result; |
| } |
| |
| Handle<JSFunction> Factory::NewFunctionFromSharedFunctionInfo( |
| Handle<SharedFunctionInfo> info, Handle<Context> context, |
| AllocationType allocation) { |
| Handle<Map> initial_map( |
| Map::cast(context->native_context().get(info->function_map_index())), |
| isolate()); |
| return NewFunctionFromSharedFunctionInfo(initial_map, info, context, |
| allocation); |
| } |
| |
| Handle<JSFunction> Factory::NewFunctionFromSharedFunctionInfo( |
| Handle<SharedFunctionInfo> info, Handle<Context> context, |
| Handle<FeedbackCell> feedback_cell, AllocationType allocation) { |
| Handle<Map> initial_map( |
| Map::cast(context->native_context().get(info->function_map_index())), |
| isolate()); |
| return NewFunctionFromSharedFunctionInfo(initial_map, info, context, |
| feedback_cell, allocation); |
| } |
| |
| Handle<JSFunction> Factory::NewFunctionFromSharedFunctionInfo( |
| Handle<Map> initial_map, Handle<SharedFunctionInfo> info, |
| Handle<Context> context, AllocationType allocation) { |
| DCHECK_EQ(JS_FUNCTION_TYPE, initial_map->instance_type()); |
| Handle<JSFunction> result = |
| NewFunction(initial_map, info, context, allocation); |
| |
| // Give compiler a chance to pre-initialize. |
| Compiler::PostInstantiation(result, allocation); |
| |
| return result; |
| } |
| |
| Handle<JSFunction> Factory::NewFunctionFromSharedFunctionInfo( |
| Handle<Map> initial_map, Handle<SharedFunctionInfo> info, |
| Handle<Context> context, Handle<FeedbackCell> feedback_cell, |
| AllocationType allocation) { |
| DCHECK_EQ(JS_FUNCTION_TYPE, initial_map->instance_type()); |
| Handle<JSFunction> result = |
| NewFunction(initial_map, info, context, allocation); |
| |
| // Bump the closure count that is encoded in the feedback cell's map. |
| if (feedback_cell->map() == *no_closures_cell_map()) { |
| feedback_cell->set_map(*one_closure_cell_map()); |
| } else if (feedback_cell->map() == *one_closure_cell_map()) { |
| feedback_cell->set_map(*many_closures_cell_map()); |
| } else { |
| DCHECK(feedback_cell->map() == *many_closures_cell_map()); |
| } |
| |
| // Check that the optimized code in the feedback cell wasn't marked for |
| // deoptimization while not pointed to by any live JSFunction. |
| if (feedback_cell->value().IsFeedbackVector()) { |
| FeedbackVector::cast(feedback_cell->value()) |
| .EvictOptimizedCodeMarkedForDeoptimization( |
| *info, "new function from shared function info"); |
| } |
| result->set_raw_feedback_cell(*feedback_cell); |
| |
| // Give compiler a chance to pre-initialize. |
| Compiler::PostInstantiation(result, allocation); |
| |
| return result; |
| } |
| |
| Handle<ScopeInfo> Factory::NewScopeInfo(int length) { |
| return NewFixedArrayWithMap<ScopeInfo>(RootIndex::kScopeInfoMap, length, |
| AllocationType::kOld); |
| } |
| |
| Handle<SourceTextModuleInfo> Factory::NewSourceTextModuleInfo() { |
| return NewFixedArrayWithMap<SourceTextModuleInfo>( |
| RootIndex::kModuleInfoMap, SourceTextModuleInfo::kLength, |
| AllocationType::kOld); |
| } |
| |
| Handle<PreparseData> Factory::NewPreparseData(int data_length, |
| int children_length) { |
| int size = PreparseData::SizeFor(data_length, children_length); |
| Handle<PreparseData> result( |
| PreparseData::cast(AllocateRawWithImmortalMap(size, AllocationType::kOld, |
| *preparse_data_map())), |
| isolate()); |
| result->set_data_length(data_length); |
| result->set_children_length(children_length); |
| MemsetTagged(result->inner_data_start(), *null_value(), children_length); |
| result->clear_padding(); |
| return result; |
| } |
| |
| Handle<UncompiledDataWithoutPreparseData> |
| Factory::NewUncompiledDataWithoutPreparseData(Handle<String> inferred_name, |
| int32_t start_position, |
| int32_t end_position) { |
| Handle<UncompiledDataWithoutPreparseData> result( |
| UncompiledDataWithoutPreparseData::cast(New( |
| uncompiled_data_without_preparse_data_map(), AllocationType::kOld)), |
| isolate()); |
| |
| UncompiledData::Initialize(*result, *inferred_name, start_position, |
| end_position); |
| return result; |
| } |
| |
| Handle<UncompiledDataWithPreparseData> |
| Factory::NewUncompiledDataWithPreparseData(Handle<String> inferred_name, |
| int32_t start_position, |
| int32_t end_position, |
| Handle<PreparseData> preparse_data) { |
| Handle<UncompiledDataWithPreparseData> result( |
| UncompiledDataWithPreparseData::cast( |
| New(uncompiled_data_with_preparse_data_map(), AllocationType::kOld)), |
| isolate()); |
| |
| UncompiledDataWithPreparseData::Initialize( |
| *result, *inferred_name, start_position, end_position, *preparse_data); |
| |
| return result; |
| } |
| |
| Handle<JSObject> Factory::NewExternal(void* value) { |
| Handle<Foreign> foreign = NewForeign(reinterpret_cast<Address>(value)); |
| Handle<JSObject> external = NewJSObjectFromMap(external_map()); |
| external->SetEmbedderField(0, *foreign); |
| return external; |
| } |
| |
| Handle<CodeDataContainer> Factory::NewCodeDataContainer( |
| int flags, AllocationType allocation) { |
| Handle<CodeDataContainer> data_container( |
| CodeDataContainer::cast(New(code_data_container_map(), allocation)), |
| isolate()); |
| data_container->set_next_code_link(*undefined_value(), SKIP_WRITE_BARRIER); |
| data_container->set_kind_specific_flags(flags); |
| data_container->clear_padding(); |
| return data_container; |
| } |
| |
| Handle<Code> Factory::NewOffHeapTrampolineFor(Handle<Code> code, |
| Address off_heap_entry) { |
| CHECK_NOT_NULL(isolate()->embedded_blob()); |
| CHECK_NE(0, isolate()->embedded_blob_size()); |
| CHECK(Builtins::IsIsolateIndependentBuiltin(*code)); |
| |
| Ha
|