Kaido Kert | f309f9a | 2021-04-30 12:09:15 -0700 | [diff] [blame] | 1 | // Copyright 2018 the V8 project authors. All rights reserved. |
| 2 | // Use of this source code is governed by a BSD-style license that can be |
| 3 | // found in the LICENSE file. |
| 4 | |
| 5 | #ifndef V8_UTILS_MEMCOPY_H_ |
| 6 | #define V8_UTILS_MEMCOPY_H_ |
| 7 | |
| 8 | #include <stdint.h> |
| 9 | #include <stdlib.h> |
| 10 | #include <string.h> |
Kaido Kert | f309f9a | 2021-04-30 12:09:15 -0700 | [diff] [blame] | 11 | #include <algorithm> |
| 12 | |
| 13 | #include "src/base/logging.h" |
| 14 | #include "src/base/macros.h" |
Kaido Kert | f309f9a | 2021-04-30 12:09:15 -0700 | [diff] [blame] | 15 | |
| 16 | namespace v8 { |
| 17 | namespace internal { |
| 18 | |
| 19 | using Address = uintptr_t; |
| 20 | |
| 21 | // ---------------------------------------------------------------------------- |
| 22 | // Generated memcpy/memmove for ia32, arm, and mips. |
| 23 | |
| 24 | void init_memcopy_functions(); |
| 25 | |
| 26 | #if defined(V8_TARGET_ARCH_IA32) |
| 27 | // Limit below which the extra overhead of the MemCopy function is likely |
| 28 | // to outweigh the benefits of faster copying. |
| 29 | const size_t kMinComplexMemCopy = 64; |
| 30 | |
| 31 | // Copy memory area. No restrictions. |
| 32 | V8_EXPORT_PRIVATE void MemMove(void* dest, const void* src, size_t size); |
| 33 | using MemMoveFunction = void (*)(void* dest, const void* src, size_t size); |
| 34 | |
| 35 | // Keep the distinction of "move" vs. "copy" for the benefit of other |
| 36 | // architectures. |
| 37 | V8_INLINE void MemCopy(void* dest, const void* src, size_t size) { |
| 38 | MemMove(dest, src, size); |
| 39 | } |
| 40 | #elif defined(V8_HOST_ARCH_ARM) |
| 41 | using MemCopyUint8Function = void (*)(uint8_t* dest, const uint8_t* src, |
| 42 | size_t size); |
| 43 | V8_EXPORT_PRIVATE extern MemCopyUint8Function memcopy_uint8_function; |
| 44 | V8_INLINE void MemCopyUint8Wrapper(uint8_t* dest, const uint8_t* src, |
| 45 | size_t chars) { |
Kaido Kert | 6f3fc44 | 2021-06-25 11:58:59 -0700 | [diff] [blame] | 46 | memcpy(dest, src, chars); |
Kaido Kert | f309f9a | 2021-04-30 12:09:15 -0700 | [diff] [blame] | 47 | } |
| 48 | // For values < 16, the assembler function is slower than the inlined C code. |
| 49 | const size_t kMinComplexMemCopy = 16; |
| 50 | V8_INLINE void MemCopy(void* dest, const void* src, size_t size) { |
| 51 | (*memcopy_uint8_function)(reinterpret_cast<uint8_t*>(dest), |
| 52 | reinterpret_cast<const uint8_t*>(src), size); |
| 53 | } |
| 54 | V8_EXPORT_PRIVATE V8_INLINE void MemMove(void* dest, const void* src, |
| 55 | size_t size) { |
| 56 | memmove(dest, src, size); |
| 57 | } |
| 58 | |
| 59 | // For values < 12, the assembler function is slower than the inlined C code. |
| 60 | const int kMinComplexConvertMemCopy = 12; |
| 61 | #elif defined(V8_HOST_ARCH_MIPS) |
| 62 | using MemCopyUint8Function = void (*)(uint8_t* dest, const uint8_t* src, |
| 63 | size_t size); |
| 64 | V8_EXPORT_PRIVATE extern MemCopyUint8Function memcopy_uint8_function; |
| 65 | V8_INLINE void MemCopyUint8Wrapper(uint8_t* dest, const uint8_t* src, |
| 66 | size_t chars) { |
Kaido Kert | 6f3fc44 | 2021-06-25 11:58:59 -0700 | [diff] [blame] | 67 | memcpy(dest, src, chars); |
Kaido Kert | f309f9a | 2021-04-30 12:09:15 -0700 | [diff] [blame] | 68 | } |
| 69 | // For values < 16, the assembler function is slower than the inlined C code. |
| 70 | const size_t kMinComplexMemCopy = 16; |
| 71 | V8_INLINE void MemCopy(void* dest, const void* src, size_t size) { |
| 72 | (*memcopy_uint8_function)(reinterpret_cast<uint8_t*>(dest), |
| 73 | reinterpret_cast<const uint8_t*>(src), size); |
| 74 | } |
| 75 | V8_EXPORT_PRIVATE V8_INLINE void MemMove(void* dest, const void* src, |
| 76 | size_t size) { |
| 77 | memmove(dest, src, size); |
| 78 | } |
| 79 | #else |
| 80 | // Copy memory area to disjoint memory area. |
| 81 | inline void MemCopy(void* dest, const void* src, size_t size) { |
| 82 | // Fast path for small sizes. The compiler will expand the {memcpy} for small |
| 83 | // fixed sizes to a sequence of move instructions. This avoids the overhead of |
| 84 | // the general {memcpy} function. |
| 85 | switch (size) { |
| 86 | #define CASE(N) \ |
| 87 | case N: \ |
Kaido Kert | 6f3fc44 | 2021-06-25 11:58:59 -0700 | [diff] [blame] | 88 | memcpy(dest, src, N); \ |
Kaido Kert | f309f9a | 2021-04-30 12:09:15 -0700 | [diff] [blame] | 89 | return; |
| 90 | CASE(1) |
| 91 | CASE(2) |
| 92 | CASE(3) |
| 93 | CASE(4) |
| 94 | CASE(5) |
| 95 | CASE(6) |
| 96 | CASE(7) |
| 97 | CASE(8) |
| 98 | CASE(9) |
| 99 | CASE(10) |
| 100 | CASE(11) |
| 101 | CASE(12) |
| 102 | CASE(13) |
| 103 | CASE(14) |
| 104 | CASE(15) |
| 105 | CASE(16) |
| 106 | #undef CASE |
| 107 | default: |
Kaido Kert | 6f3fc44 | 2021-06-25 11:58:59 -0700 | [diff] [blame] | 108 | memcpy(dest, src, size); |
Kaido Kert | f309f9a | 2021-04-30 12:09:15 -0700 | [diff] [blame] | 109 | return; |
| 110 | } |
| 111 | } |
| 112 | V8_EXPORT_PRIVATE inline void MemMove(void* dest, const void* src, |
| 113 | size_t size) { |
| 114 | // Fast path for small sizes. The compiler will expand the {memmove} for small |
| 115 | // fixed sizes to a sequence of move instructions. This avoids the overhead of |
| 116 | // the general {memmove} function. |
| 117 | switch (size) { |
| 118 | #define CASE(N) \ |
| 119 | case N: \ |
| 120 | memmove(dest, src, N); \ |
| 121 | return; |
| 122 | CASE(1) |
| 123 | CASE(2) |
| 124 | CASE(3) |
| 125 | CASE(4) |
| 126 | CASE(5) |
| 127 | CASE(6) |
| 128 | CASE(7) |
| 129 | CASE(8) |
| 130 | CASE(9) |
| 131 | CASE(10) |
| 132 | CASE(11) |
| 133 | CASE(12) |
| 134 | CASE(13) |
| 135 | CASE(14) |
| 136 | CASE(15) |
| 137 | CASE(16) |
| 138 | #undef CASE |
| 139 | default: |
| 140 | memmove(dest, src, size); |
| 141 | return; |
| 142 | } |
| 143 | } |
| 144 | const size_t kMinComplexMemCopy = 8; |
| 145 | #endif // V8_TARGET_ARCH_IA32 |
| 146 | |
| 147 | // Copies words from |src| to |dst|. The data spans must not overlap. |
| 148 | // |src| and |dst| must be TWord-size aligned. |
| 149 | template <size_t kBlockCopyLimit, typename T> |
| 150 | inline void CopyImpl(T* dst_ptr, const T* src_ptr, size_t count) { |
| 151 | constexpr int kTWordSize = sizeof(T); |
| 152 | #ifdef DEBUG |
| 153 | Address dst = reinterpret_cast<Address>(dst_ptr); |
| 154 | Address src = reinterpret_cast<Address>(src_ptr); |
| 155 | DCHECK(IsAligned(dst, kTWordSize)); |
| 156 | DCHECK(IsAligned(src, kTWordSize)); |
| 157 | DCHECK(((src <= dst) && ((src + count * kTWordSize) <= dst)) || |
| 158 | ((dst <= src) && ((dst + count * kTWordSize) <= src))); |
| 159 | #endif |
| 160 | if (count == 0) return; |
| 161 | |
| 162 | // Use block copying MemCopy if the segment we're copying is |
| 163 | // enough to justify the extra call/setup overhead. |
| 164 | if (count < kBlockCopyLimit) { |
| 165 | do { |
| 166 | count--; |
| 167 | *dst_ptr++ = *src_ptr++; |
| 168 | } while (count > 0); |
| 169 | } else { |
| 170 | MemCopy(dst_ptr, src_ptr, count * kTWordSize); |
| 171 | } |
| 172 | } |
| 173 | |
| 174 | // Copies kSystemPointerSize-sized words from |src| to |dst|. The data spans |
| 175 | // must not overlap. |src| and |dst| must be kSystemPointerSize-aligned. |
| 176 | inline void CopyWords(Address dst, const Address src, size_t num_words) { |
| 177 | static const size_t kBlockCopyLimit = 16; |
| 178 | CopyImpl<kBlockCopyLimit>(reinterpret_cast<Address*>(dst), |
| 179 | reinterpret_cast<const Address*>(src), num_words); |
| 180 | } |
| 181 | |
| 182 | // Copies data from |src| to |dst|. The data spans must not overlap. |
| 183 | template <typename T> |
| 184 | inline void CopyBytes(T* dst, const T* src, size_t num_bytes) { |
| 185 | STATIC_ASSERT(sizeof(T) == 1); |
| 186 | if (num_bytes == 0) return; |
| 187 | CopyImpl<kMinComplexMemCopy>(dst, src, num_bytes); |
| 188 | } |
| 189 | |
| 190 | inline void MemsetUint32(uint32_t* dest, uint32_t value, size_t counter) { |
| 191 | #if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64 |
| 192 | #define STOS "stosl" |
| 193 | #endif |
| 194 | |
| 195 | #if defined(MEMORY_SANITIZER) |
| 196 | // MemorySanitizer does not understand inline assembly. |
| 197 | #undef STOS |
| 198 | #endif |
| 199 | |
| 200 | #if defined(__GNUC__) && defined(STOS) |
| 201 | asm volatile( |
| 202 | "cld;" |
| 203 | "rep ; " STOS |
| 204 | : "+&c"(counter), "+&D"(dest) |
| 205 | : "a"(value) |
| 206 | : "memory", "cc"); |
| 207 | #else |
| 208 | for (size_t i = 0; i < counter; i++) { |
| 209 | dest[i] = value; |
| 210 | } |
| 211 | #endif |
| 212 | |
| 213 | #undef STOS |
| 214 | } |
| 215 | |
| 216 | inline void MemsetPointer(Address* dest, Address value, size_t counter) { |
| 217 | #if V8_HOST_ARCH_IA32 |
| 218 | #define STOS "stosl" |
| 219 | #elif V8_HOST_ARCH_X64 |
| 220 | #define STOS "stosq" |
| 221 | #endif |
| 222 | |
| 223 | #if defined(MEMORY_SANITIZER) |
| 224 | // MemorySanitizer does not understand inline assembly. |
| 225 | #undef STOS |
| 226 | #endif |
| 227 | |
| 228 | #if defined(__GNUC__) && defined(STOS) |
| 229 | asm volatile( |
| 230 | "cld;" |
| 231 | "rep ; " STOS |
| 232 | : "+&c"(counter), "+&D"(dest) |
| 233 | : "a"(value) |
| 234 | : "memory", "cc"); |
| 235 | #else |
| 236 | for (size_t i = 0; i < counter; i++) { |
| 237 | dest[i] = value; |
| 238 | } |
| 239 | #endif |
| 240 | |
| 241 | #undef STOS |
| 242 | } |
| 243 | |
| 244 | template <typename T, typename U> |
| 245 | inline void MemsetPointer(T** dest, U* value, size_t counter) { |
| 246 | #ifdef DEBUG |
| 247 | T* a = nullptr; |
| 248 | U* b = nullptr; |
| 249 | a = b; // Fake assignment to check assignability. |
| 250 | USE(a); |
| 251 | #endif // DEBUG |
| 252 | MemsetPointer(reinterpret_cast<Address*>(dest), |
| 253 | reinterpret_cast<Address>(value), counter); |
| 254 | } |
| 255 | |
| 256 | // Copy from 8bit/16bit chars to 8bit/16bit chars. Values are zero-extended if |
| 257 | // needed. Ranges are not allowed to overlap. |
| 258 | // The separate declaration is needed for the V8_NONNULL, which is not allowed |
| 259 | // on a definition. |
| 260 | template <typename SrcType, typename DstType> |
| 261 | void CopyChars(DstType* dst, const SrcType* src, size_t count) V8_NONNULL(1, 2); |
| 262 | |
| 263 | template <typename SrcType, typename DstType> |
| 264 | void CopyChars(DstType* dst, const SrcType* src, size_t count) { |
| 265 | STATIC_ASSERT(std::is_integral<SrcType>::value); |
| 266 | STATIC_ASSERT(std::is_integral<DstType>::value); |
| 267 | using SrcTypeUnsigned = typename std::make_unsigned<SrcType>::type; |
| 268 | using DstTypeUnsigned = typename std::make_unsigned<DstType>::type; |
| 269 | |
| 270 | #ifdef DEBUG |
| 271 | // Check for no overlap, otherwise {std::copy_n} cannot be used. |
| 272 | Address src_start = reinterpret_cast<Address>(src); |
| 273 | Address src_end = src_start + count * sizeof(SrcType); |
| 274 | Address dst_start = reinterpret_cast<Address>(dst); |
| 275 | Address dst_end = dst_start + count * sizeof(DstType); |
| 276 | DCHECK(src_end <= dst_start || dst_end <= src_start); |
| 277 | #endif |
| 278 | |
| 279 | auto* dst_u = reinterpret_cast<DstTypeUnsigned*>(dst); |
| 280 | auto* src_u = reinterpret_cast<const SrcTypeUnsigned*>(src); |
| 281 | |
| 282 | // Especially Atom CPUs profit from this explicit instantiation for small |
| 283 | // counts. This gives up to 20 percent improvement for microbenchmarks such as |
| 284 | // joining an array of small integers (2019-10-16). |
| 285 | switch (count) { |
| 286 | #define CASE(N) \ |
| 287 | case N: \ |
| 288 | std::copy_n(src_u, N, dst_u); \ |
| 289 | return; |
| 290 | CASE(1) |
| 291 | CASE(2) |
| 292 | CASE(3) |
| 293 | CASE(4) |
| 294 | CASE(5) |
| 295 | CASE(6) |
| 296 | CASE(7) |
| 297 | CASE(8) |
| 298 | CASE(9) |
| 299 | CASE(10) |
| 300 | CASE(11) |
| 301 | CASE(12) |
| 302 | CASE(13) |
| 303 | CASE(14) |
| 304 | CASE(15) |
| 305 | CASE(16) |
| 306 | #undef CASE |
| 307 | default: |
| 308 | std::copy_n(src_u, count, dst_u); |
| 309 | return; |
| 310 | } |
| 311 | } |
| 312 | |
| 313 | } // namespace internal |
| 314 | } // namespace v8 |
| 315 | |
| 316 | #endif // V8_UTILS_MEMCOPY_H_ |