blob: e800621013fe666195eb77803073713e71d3cf02 [file] [log] [blame]
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <map>
#include <memory>
#include <set>
#include <unordered_map>
#include <utility>
#include <vector>
#include "base/macros.h"
#include "base/memory/ref_counted.h"
#include "gn/err.h"
#include "gn/pattern.h"
#include "gn/source_dir.h"
#include "gn/source_file.h"
#include "gn/value.h"
class Item;
class ParseNode;
class Settings;
class Template;
// Scope for the script execution.
// Scopes are nested. Writing goes into the toplevel scope, reading checks
// values resursively down the stack until a match is found or there are no
// more containing scopes.
// A containing scope can be const or non-const. The const containing scope is
// used primarily to refer to the master build config which is shared across
// many invocations. A const containing scope, however, prevents us from
// marking variables "used" which prevents us from issuing errors on unused
// variables. So you should use a non-const containing scope whenever possible.
class Scope {
using KeyValueMap = std::map<std::string_view, Value>;
// Holds an owning list of Items.
using ItemVector = std::vector<std::unique_ptr<Item>>;
// A flag to indicate whether a function should recurse into nested scopes,
// or only operate on the current scope.
// Allows code to provide values for built-in variables. This class will
// automatically register itself on construction and deregister itself on
// destruction.
class ProgrammaticProvider {
explicit ProgrammaticProvider(Scope* scope) : scope_(scope) {
virtual ~ProgrammaticProvider();
// Returns a non-null value if the given value can be programmatically
// generated, or NULL if there is none.
virtual const Value* GetProgrammaticValue(
const std::string_view& ident) = 0;
Scope* scope_;
// Options for configuring scope merges.
struct MergeOptions {
// When set, all existing avlues in the destination scope will be
// overwritten.
// When false, it will be an error to merge a variable into another scope
// where a variable with the same name is already set. The exception is
// if both of the variables have the same value (which happens if you
// somehow multiply import the same file, for example). This case will be
// ignored since there is nothing getting lost.
bool clobber_existing;
// When true, private variables (names beginning with an underscore) will
// be copied to the destination scope. When false, private values will be
// skipped.
bool skip_private_vars;
// When set, values copied to the destination scope will be marked as used
// so won't trigger an unused variable warning. You want this when doing an
// import, for example, or files that don't need a variable from the .gni
// file will throw an error.
bool mark_dest_used;
// When set, those variables are not merged.
std::set<std::string> excluded_values;
// Creates an empty toplevel scope.
explicit Scope(const Settings* settings);
// Creates a dependent scope.
explicit Scope(Scope* parent);
explicit Scope(const Scope* parent);
const Settings* settings() const { return settings_; }
// See the const_/mutable_containing_ var declarations below. Yes, it's a
// bit weird that we can have a const pointer to the "mutable" one.
Scope* mutable_containing() { return mutable_containing_; }
const Scope* mutable_containing() const { return mutable_containing_; }
const Scope* const_containing() const { return const_containing_; }
const Scope* containing() const {
return mutable_containing_ ? mutable_containing_ : const_containing_;
// Clears any references to containing scopes. This scope will now be
// self-sufficient.
void DetachFromContaining();
// Returns true if the scope has any values set. This does not check other
// things that may be set like templates or defaults.
// Currently this does not search nested scopes and this will assert if you
// want to search nested scopes. The enum is passed so the callers are
// unambiguous about nested scope handling. This can be added if needed.
bool HasValues(SearchNested search_nested) const;
// Returns NULL if there's no such value.
// counts_as_used should be set if the variable is being read in a way that
// should count for unused variable checking.
// found_in_scope is set to the scope that contains the definition of the
// ident. If the value was provided programmatically (like host_cpu),
// found_in_scope will be set to null.
const Value* GetValue(const std::string_view& ident, bool counts_as_used);
const Value* GetValue(const std::string_view& ident) const;
const Value* GetValueWithScope(const std::string_view& ident,
const Scope** found_in_scope) const;
const Value* GetValueWithScope(const std::string_view& ident,
bool counts_as_used,
const Scope** found_in_scope);
// Returns the requested value as a mutable one if possible. If the value
// is not found in a mutable scope, then returns null. Note that the value
// could still exist in a const scope, so GetValue() could still return
// non-null in this case.
// Say you have a local scope that then refers to the const root scope from
// the master build config. You can't change the values from the master
// build config (it's read-only so it can be read from multiple threads
// without locking). Read-only operations would work on values from the root
// scope, but write operations would only work on values in the derived
// scope(s).
// Be careful when calling this. It's not normally correct to modify values,
// but you should instead do a new Set each time.
// Consider this code:
// a = 5
// {
// a = 6
// }
// The 6 should get set on the nested scope rather than modify the value
// in the outer one.
Value* GetMutableValue(const std::string_view& ident,
SearchNested search_mode,
bool counts_as_used);
// Returns the std::string_view used to identify the value. This string piece
// will have the same contents as "ident" passed in, but may point to a
// different underlying buffer. This is useful because this std::string_view
// is static and won't be deleted for the life of the program, so it can be
// used as keys in places that may outlive a temporary. It will return an
// empty string for programmatic and nonexistant values.
std::string_view GetStorageKey(const std::string_view& ident) const;
// The set_node indicates the statement that caused the set, for displaying
// errors later. Returns a pointer to the value in the current scope (a copy
// is made for storage).
Value* SetValue(const std::string_view& ident,
Value v,
const ParseNode* set_node);
// Removes the value with the given identifier if it exists on the current
// scope. This does not search recursive scopes. Does nothing if not found.
void RemoveIdentifier(const std::string_view& ident);
// Removes from this scope all identifiers and templates that are considered
// private.
void RemovePrivateIdentifiers();
// Templates associated with this scope. A template can only be set once, so
// AddTemplate will fail and return false if a rule with that name already
// exists. GetTemplate returns NULL if the rule doesn't exist, and it will
// check all containing scoped rescursively.
bool AddTemplate(const std::string& name, const Template* templ);
const Template* GetTemplate(const std::string& name) const;
// Marks the given identifier as (un)used in the current scope.
void MarkUsed(const std::string_view& ident);
void MarkAllUsed();
void MarkAllUsed(const std::set<std::string>& excluded_values);
void MarkUnused(const std::string_view& ident);
// Checks to see if the scope has a var set that hasn't been used. This is
// called before replacing the var with a different one. It does not check
// containing scopes.
// If the identifier is present but hasnn't been used, return true.
bool IsSetButUnused(const std::string_view& ident) const;
// Checks the scope to see if any values were set but not used, and fills in
// the error and returns false if they were.
bool CheckForUnusedVars(Err* err) const;
// Returns all values set in the current scope, without going to the parent
// scopes.
void GetCurrentScopeValues(KeyValueMap* output) const;
// Returns true if the values in the current scope are the same as all
// values in the given scope, without going to the parent scopes. Returns
// false if not.
bool CheckCurrentScopeValuesEqual(const Scope* other) const;
// Copies this scope's values into the destination. Values from the
// containing scope(s) (normally shadowed into the current one) will not be
// copied, neither will the reference to the containing scope (this is why
// it's "non-recursive").
// This is used in different contexts. When generating the error, the given
// parse node will be blamed, and the given desc will be used to describe
// the operation that doesn't support doing this. For example, desc_for_err
// would be "import" when doing an import, and the error string would say
// something like "The import contains...".
bool NonRecursiveMergeTo(Scope* dest,
const MergeOptions& options,
const ParseNode* node_for_err,
const char* desc_for_err,
Err* err) const;
// Constructs a scope that is a copy of the current one. Nested scopes will
// be collapsed until we reach a const containing scope. Private values will
// be included. The resulting closure will reference the const containing
// scope as its containing scope (since we assume the const scope won't
// change, we don't have to copy its values).
std::unique_ptr<Scope> MakeClosure() const;
// Makes an empty scope with the given name. Overwrites any existing one.
Scope* MakeTargetDefaults(const std::string& target_type);
// Gets the scope associated with the given target name, or null if it hasn't
// been set.
const Scope* GetTargetDefaults(const std::string& target_type) const;
// Filter to apply when the sources variable is assigned. May return NULL.
const PatternList* GetSourcesAssignmentFilter() const;
void set_sources_assignment_filter(std::unique_ptr<PatternList> f) {
sources_assignment_filter_ = std::move(f);
// Indicates if we're currently processing the build configuration file.
// This is true when processing the config file for any toolchain.
// To set or clear the flag, it must currently be in the opposite state in
// the current scope. Note that querying the state of the flag recursively
// checks all containing scopes until it reaches the top or finds the flag
// set.
void SetProcessingBuildConfig();
void ClearProcessingBuildConfig();
bool IsProcessingBuildConfig() const;
// Indicates if we're currently processing an import file.
// See SetProcessingBaseConfig for how flags work.
void SetProcessingImport();
void ClearProcessingImport();
bool IsProcessingImport() const;
// The source directory associated with this scope. This will check embedded
// scopes until it finds a nonempty source directory. This will default to
// an empty dir if no containing scope has a source dir set.
const SourceDir& GetSourceDir() const;
void set_source_dir(const SourceDir& d) { source_dir_ = d; }
// Set of files that may affect the execution of this scope. Note that this
// set is constructed conservatively, meanining that every file that can
// potentially affect this scope is included, but not necessarily every change
// to these files will affect this scope.
const SourceFileSet& build_dependency_files() const {
return build_dependency_files_;
void AddBuildDependencyFile(const SourceFile& build_dependency_file);
void AddBuildDependencyFiles(const SourceFileSet& build_dependency_files);
// The item collector is where Items (Targets, Configs, etc.) go that have
// been defined. If a scope can generate items, this non-owning pointer will
// point to the storage for such items. The creator of this scope will be
// responsible for setting up the collector and then dealing with the
// collected items once execution of the context is complete.
// The items in a scope are collected as we go and then dispatched at the end
// of execution of a scope so that we can query the previously-generated
// targets (like getting the outputs).
// This can be null if the current scope can not generate items (like for
// imports and such).
// When retrieving the collector, the non-const scopes are recursively
// queried. The collector is not copied for closures, etc.
void set_item_collector(ItemVector* collector) {
item_collector_ = collector;
ItemVector* GetItemCollector();
// Properties are opaque pointers that code can use to set state on a Scope
// that it can retrieve later.
// The key should be a pointer to some use-case-specific object (to avoid
// collisions, otherwise it doesn't matter). Memory management is up to the
// setter. Setting the value to NULL will delete the property.
// Getting a property recursively searches all scopes, and the optional
// |found_on_scope| variable will be filled with the actual scope containing
// the key (if the pointer is non-NULL).
void SetProperty(const void* key, void* value);
void* GetProperty(const void* key, const Scope** found_on_scope) const;
friend class ProgrammaticProvider;
struct Record {
Record() : used(false) {}
explicit Record(const Value& v) : used(false), value(v) {}
bool used; // Set to true when the variable is used.
Value value;
using RecordMap = std::unordered_map<std::string_view, Record>;
void AddProvider(ProgrammaticProvider* p);
void RemoveProvider(ProgrammaticProvider* p);
// Returns true if the two RecordMaps contain the same values (the origins
// of the values may be different).
static bool RecordMapValuesEqual(const RecordMap& a, const RecordMap& b);
// Scopes can have no containing scope (both null), a mutable containing
// scope, or a const containing scope. The reason is that when we're doing
// a new target, we want to refer to the base_config scope which will be read
// by multiple threads at the same time, so we REALLY want it to be const.
// When you just do a nested {}, however, we sometimes want to be able to
// change things (especially marking unused vars).
const Scope* const_containing_;
Scope* mutable_containing_;
const Settings* settings_;
// Bits set for different modes. See the flag definitions in the .cc file
// for more.
unsigned mode_flags_;
RecordMap values_;
// Note that this can't use string pieces since the names are constructed from
// Values which might be deallocated before this goes out of scope.
using NamedScopeMap = std::unordered_map<std::string, std::unique_ptr<Scope>>;
NamedScopeMap target_defaults_;
// Null indicates not set and that we should fallback to the containing
// scope's filter.
std::unique_ptr<PatternList> sources_assignment_filter_;
// Owning pointers, must be deleted.
using TemplateMap = std::map<std::string, scoped_refptr<const Template>>;
TemplateMap templates_;
ItemVector* item_collector_;
// Opaque pointers. See SetProperty() above.
using PropertyMap = std::map<const void*, void*>;
PropertyMap properties_;
using ProviderSet = std::set<ProgrammaticProvider*>;
ProviderSet programmatic_providers_;
SourceDir source_dir_;
SourceFileSet build_dependency_files_;
#endif // TOOLS_GN_SCOPE_H_