| /* |
| * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <assert.h> |
| #include <stdio.h> |
| #include <limits.h> |
| |
| #include "vpx/vpx_encoder.h" |
| #include "vpx_dsp/bitwriter_buffer.h" |
| #include "vpx_dsp/vpx_dsp_common.h" |
| #include "vpx_mem/vpx_mem.h" |
| #include "vpx_ports/mem_ops.h" |
| #include "vpx_ports/system_state.h" |
| |
| #include "vp9/common/vp9_entropy.h" |
| #include "vp9/common/vp9_entropymode.h" |
| #include "vp9/common/vp9_entropymv.h" |
| #include "vp9/common/vp9_mvref_common.h" |
| #include "vp9/common/vp9_pred_common.h" |
| #include "vp9/common/vp9_seg_common.h" |
| #include "vp9/common/vp9_tile_common.h" |
| |
| #include "vp9/encoder/vp9_cost.h" |
| #include "vp9/encoder/vp9_bitstream.h" |
| #include "vp9/encoder/vp9_encodemv.h" |
| #include "vp9/encoder/vp9_mcomp.h" |
| #include "vp9/encoder/vp9_segmentation.h" |
| #include "vp9/encoder/vp9_subexp.h" |
| #include "vp9/encoder/vp9_tokenize.h" |
| |
| static const struct vp9_token intra_mode_encodings[INTRA_MODES] = { |
| {0, 1}, {6, 3}, {28, 5}, {30, 5}, {58, 6}, {59, 6}, {126, 7}, {127, 7}, |
| {62, 6}, {2, 2}}; |
| static const struct vp9_token switchable_interp_encodings[SWITCHABLE_FILTERS] = |
| {{0, 1}, {2, 2}, {3, 2}}; |
| static const struct vp9_token partition_encodings[PARTITION_TYPES] = |
| {{0, 1}, {2, 2}, {6, 3}, {7, 3}}; |
| static const struct vp9_token inter_mode_encodings[INTER_MODES] = |
| {{2, 2}, {6, 3}, {0, 1}, {7, 3}}; |
| |
| static void write_intra_mode(vpx_writer *w, PREDICTION_MODE mode, |
| const vpx_prob *probs) { |
| vp9_write_token(w, vp9_intra_mode_tree, probs, &intra_mode_encodings[mode]); |
| } |
| |
| static void write_inter_mode(vpx_writer *w, PREDICTION_MODE mode, |
| const vpx_prob *probs) { |
| assert(is_inter_mode(mode)); |
| vp9_write_token(w, vp9_inter_mode_tree, probs, |
| &inter_mode_encodings[INTER_OFFSET(mode)]); |
| } |
| |
| static void encode_unsigned_max(struct vpx_write_bit_buffer *wb, |
| int data, int max) { |
| vpx_wb_write_literal(wb, data, get_unsigned_bits(max)); |
| } |
| |
| static void prob_diff_update(const vpx_tree_index *tree, |
| vpx_prob probs[/*n - 1*/], |
| const unsigned int counts[/*n - 1*/], |
| int n, vpx_writer *w) { |
| int i; |
| unsigned int branch_ct[32][2]; |
| |
| // Assuming max number of probabilities <= 32 |
| assert(n <= 32); |
| |
| vp9_tree_probs_from_distribution(tree, branch_ct, counts); |
| for (i = 0; i < n - 1; ++i) |
| vp9_cond_prob_diff_update(w, &probs[i], branch_ct[i]); |
| } |
| |
| static void write_selected_tx_size(const VP9_COMMON *cm, |
| const MACROBLOCKD *xd, vpx_writer *w) { |
| TX_SIZE tx_size = xd->mi[0]->tx_size; |
| BLOCK_SIZE bsize = xd->mi[0]->sb_type; |
| const TX_SIZE max_tx_size = max_txsize_lookup[bsize]; |
| const vpx_prob *const tx_probs = get_tx_probs2(max_tx_size, xd, |
| &cm->fc->tx_probs); |
| vpx_write(w, tx_size != TX_4X4, tx_probs[0]); |
| if (tx_size != TX_4X4 && max_tx_size >= TX_16X16) { |
| vpx_write(w, tx_size != TX_8X8, tx_probs[1]); |
| if (tx_size != TX_8X8 && max_tx_size >= TX_32X32) |
| vpx_write(w, tx_size != TX_16X16, tx_probs[2]); |
| } |
| } |
| |
| static int write_skip(const VP9_COMMON *cm, const MACROBLOCKD *xd, |
| int segment_id, const MODE_INFO *mi, vpx_writer *w) { |
| if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) { |
| return 1; |
| } else { |
| const int skip = mi->skip; |
| vpx_write(w, skip, vp9_get_skip_prob(cm, xd)); |
| return skip; |
| } |
| } |
| |
| static void update_skip_probs(VP9_COMMON *cm, vpx_writer *w, |
| FRAME_COUNTS *counts) { |
| int k; |
| |
| for (k = 0; k < SKIP_CONTEXTS; ++k) |
| vp9_cond_prob_diff_update(w, &cm->fc->skip_probs[k], counts->skip[k]); |
| } |
| |
| static void update_switchable_interp_probs(VP9_COMMON *cm, vpx_writer *w, |
| FRAME_COUNTS *counts) { |
| int j; |
| for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) |
| prob_diff_update(vp9_switchable_interp_tree, |
| cm->fc->switchable_interp_prob[j], |
| counts->switchable_interp[j], SWITCHABLE_FILTERS, w); |
| } |
| |
| static void pack_mb_tokens(vpx_writer *w, |
| TOKENEXTRA **tp, const TOKENEXTRA *const stop, |
| vpx_bit_depth_t bit_depth) { |
| const TOKENEXTRA *p; |
| const vp9_extra_bit *const extra_bits = |
| #if CONFIG_VP9_HIGHBITDEPTH |
| (bit_depth == VPX_BITS_12) ? vp9_extra_bits_high12 : |
| (bit_depth == VPX_BITS_10) ? vp9_extra_bits_high10 : |
| vp9_extra_bits; |
| #else |
| vp9_extra_bits; |
| (void) bit_depth; |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| for (p = *tp; p < stop && p->token != EOSB_TOKEN; ++p) { |
| if (p->token == EOB_TOKEN) { |
| vpx_write(w, 0, p->context_tree[0]); |
| continue; |
| } |
| vpx_write(w, 1, p->context_tree[0]); |
| while (p->token == ZERO_TOKEN) { |
| vpx_write(w, 0, p->context_tree[1]); |
| ++p; |
| if (p == stop || p->token == EOSB_TOKEN) { |
| *tp = (TOKENEXTRA*)(uintptr_t)p + (p->token == EOSB_TOKEN); |
| return; |
| } |
| } |
| |
| { |
| const int t = p->token; |
| const vpx_prob *const context_tree = p->context_tree; |
| assert(t != ZERO_TOKEN); |
| assert(t != EOB_TOKEN); |
| assert(t != EOSB_TOKEN); |
| vpx_write(w, 1, context_tree[1]); |
| if (t == ONE_TOKEN) { |
| vpx_write(w, 0, context_tree[2]); |
| vpx_write_bit(w, p->extra & 1); |
| } else { // t >= TWO_TOKEN && t < EOB_TOKEN |
| const struct vp9_token *const a = &vp9_coef_encodings[t]; |
| const int v = a->value; |
| const int n = a->len; |
| const int e = p->extra; |
| vpx_write(w, 1, context_tree[2]); |
| vp9_write_tree(w, vp9_coef_con_tree, |
| vp9_pareto8_full[context_tree[PIVOT_NODE] - 1], v, |
| n - UNCONSTRAINED_NODES, 0); |
| if (t >= CATEGORY1_TOKEN) { |
| const vp9_extra_bit *const b = &extra_bits[t]; |
| const unsigned char *pb = b->prob; |
| int v = e >> 1; |
| int n = b->len; // number of bits in v, assumed nonzero |
| do { |
| const int bb = (v >> --n) & 1; |
| vpx_write(w, bb, *pb++); |
| } while (n); |
| } |
| vpx_write_bit(w, e & 1); |
| } |
| } |
| } |
| *tp = (TOKENEXTRA*)(uintptr_t)p + (p->token == EOSB_TOKEN); |
| } |
| |
| static void write_segment_id(vpx_writer *w, const struct segmentation *seg, |
| int segment_id) { |
| if (seg->enabled && seg->update_map) |
| vp9_write_tree(w, vp9_segment_tree, seg->tree_probs, segment_id, 3, 0); |
| } |
| |
| // This function encodes the reference frame |
| static void write_ref_frames(const VP9_COMMON *cm, const MACROBLOCKD *xd, |
| vpx_writer *w) { |
| const MODE_INFO *const mi = xd->mi[0]; |
| const int is_compound = has_second_ref(mi); |
| const int segment_id = mi->segment_id; |
| |
| // If segment level coding of this signal is disabled... |
| // or the segment allows multiple reference frame options |
| if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) { |
| assert(!is_compound); |
| assert(mi->ref_frame[0] == |
| get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME)); |
| } else { |
| // does the feature use compound prediction or not |
| // (if not specified at the frame/segment level) |
| if (cm->reference_mode == REFERENCE_MODE_SELECT) { |
| vpx_write(w, is_compound, vp9_get_reference_mode_prob(cm, xd)); |
| } else { |
| assert(!is_compound == (cm->reference_mode == SINGLE_REFERENCE)); |
| } |
| |
| if (is_compound) { |
| vpx_write(w, mi->ref_frame[0] == GOLDEN_FRAME, |
| vp9_get_pred_prob_comp_ref_p(cm, xd)); |
| } else { |
| const int bit0 = mi->ref_frame[0] != LAST_FRAME; |
| vpx_write(w, bit0, vp9_get_pred_prob_single_ref_p1(cm, xd)); |
| if (bit0) { |
| const int bit1 = mi->ref_frame[0] != GOLDEN_FRAME; |
| vpx_write(w, bit1, vp9_get_pred_prob_single_ref_p2(cm, xd)); |
| } |
| } |
| } |
| } |
| |
| static void pack_inter_mode_mvs(VP9_COMP *cpi, const MODE_INFO *mi, |
| vpx_writer *w) { |
| VP9_COMMON *const cm = &cpi->common; |
| const nmv_context *nmvc = &cm->fc->nmvc; |
| const MACROBLOCK *const x = &cpi->td.mb; |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| const struct segmentation *const seg = &cm->seg; |
| const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; |
| const PREDICTION_MODE mode = mi->mode; |
| const int segment_id = mi->segment_id; |
| const BLOCK_SIZE bsize = mi->sb_type; |
| const int allow_hp = cm->allow_high_precision_mv; |
| const int is_inter = is_inter_block(mi); |
| const int is_compound = has_second_ref(mi); |
| int skip, ref; |
| |
| if (seg->update_map) { |
| if (seg->temporal_update) { |
| const int pred_flag = mi->seg_id_predicted; |
| vpx_prob pred_prob = vp9_get_pred_prob_seg_id(seg, xd); |
| vpx_write(w, pred_flag, pred_prob); |
| if (!pred_flag) |
| write_segment_id(w, seg, segment_id); |
| } else { |
| write_segment_id(w, seg, segment_id); |
| } |
| } |
| |
| skip = write_skip(cm, xd, segment_id, mi, w); |
| |
| if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) |
| vpx_write(w, is_inter, vp9_get_intra_inter_prob(cm, xd)); |
| |
| if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT && |
| !(is_inter && skip)) { |
| write_selected_tx_size(cm, xd, w); |
| } |
| |
| if (!is_inter) { |
| if (bsize >= BLOCK_8X8) { |
| write_intra_mode(w, mode, cm->fc->y_mode_prob[size_group_lookup[bsize]]); |
| } else { |
| int idx, idy; |
| const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; |
| const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; |
| for (idy = 0; idy < 2; idy += num_4x4_h) { |
| for (idx = 0; idx < 2; idx += num_4x4_w) { |
| const PREDICTION_MODE b_mode = mi->bmi[idy * 2 + idx].as_mode; |
| write_intra_mode(w, b_mode, cm->fc->y_mode_prob[0]); |
| } |
| } |
| } |
| write_intra_mode(w, mi->uv_mode, cm->fc->uv_mode_prob[mode]); |
| } else { |
| const int mode_ctx = mbmi_ext->mode_context[mi->ref_frame[0]]; |
| const vpx_prob *const inter_probs = cm->fc->inter_mode_probs[mode_ctx]; |
| write_ref_frames(cm, xd, w); |
| |
| // If segment skip is not enabled code the mode. |
| if (!segfeature_active(seg, segment_id, SEG_LVL_SKIP)) { |
| if (bsize >= BLOCK_8X8) { |
| write_inter_mode(w, mode, inter_probs); |
| } |
| } |
| |
| if (cm->interp_filter == SWITCHABLE) { |
| const int ctx = vp9_get_pred_context_switchable_interp(xd); |
| vp9_write_token(w, vp9_switchable_interp_tree, |
| cm->fc->switchable_interp_prob[ctx], |
| &switchable_interp_encodings[mi->interp_filter]); |
| ++cpi->interp_filter_selected[0][mi->interp_filter]; |
| } else { |
| assert(mi->interp_filter == cm->interp_filter); |
| } |
| |
| if (bsize < BLOCK_8X8) { |
| const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; |
| const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; |
| int idx, idy; |
| for (idy = 0; idy < 2; idy += num_4x4_h) { |
| for (idx = 0; idx < 2; idx += num_4x4_w) { |
| const int j = idy * 2 + idx; |
| const PREDICTION_MODE b_mode = mi->bmi[j].as_mode; |
| write_inter_mode(w, b_mode, inter_probs); |
| if (b_mode == NEWMV) { |
| for (ref = 0; ref < 1 + is_compound; ++ref) |
| vp9_encode_mv(cpi, w, &mi->bmi[j].as_mv[ref].as_mv, |
| &mbmi_ext->ref_mvs[mi->ref_frame[ref]][0].as_mv, |
| nmvc, allow_hp); |
| } |
| } |
| } |
| } else { |
| if (mode == NEWMV) { |
| for (ref = 0; ref < 1 + is_compound; ++ref) |
| vp9_encode_mv(cpi, w, &mi->mv[ref].as_mv, |
| &mbmi_ext->ref_mvs[mi->ref_frame[ref]][0].as_mv, nmvc, |
| allow_hp); |
| } |
| } |
| } |
| } |
| |
| static void write_mb_modes_kf(const VP9_COMMON *cm, const MACROBLOCKD *xd, |
| MODE_INFO **mi_8x8, vpx_writer *w) { |
| const struct segmentation *const seg = &cm->seg; |
| const MODE_INFO *const mi = mi_8x8[0]; |
| const MODE_INFO *const above_mi = xd->above_mi; |
| const MODE_INFO *const left_mi = xd->left_mi; |
| const BLOCK_SIZE bsize = mi->sb_type; |
| |
| if (seg->update_map) |
| write_segment_id(w, seg, mi->segment_id); |
| |
| write_skip(cm, xd, mi->segment_id, mi, w); |
| |
| if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT) |
| write_selected_tx_size(cm, xd, w); |
| |
| if (bsize >= BLOCK_8X8) { |
| write_intra_mode(w, mi->mode, get_y_mode_probs(mi, above_mi, left_mi, 0)); |
| } else { |
| const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; |
| const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; |
| int idx, idy; |
| |
| for (idy = 0; idy < 2; idy += num_4x4_h) { |
| for (idx = 0; idx < 2; idx += num_4x4_w) { |
| const int block = idy * 2 + idx; |
| write_intra_mode(w, mi->bmi[block].as_mode, |
| get_y_mode_probs(mi, above_mi, left_mi, block)); |
| } |
| } |
| } |
| |
| write_intra_mode(w, mi->uv_mode, vp9_kf_uv_mode_prob[mi->mode]); |
| } |
| |
| static void write_modes_b(VP9_COMP *cpi, const TileInfo *const tile, |
| vpx_writer *w, TOKENEXTRA **tok, |
| const TOKENEXTRA *const tok_end, |
| int mi_row, int mi_col) { |
| const VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; |
| MODE_INFO *m; |
| |
| xd->mi = cm->mi_grid_visible + (mi_row * cm->mi_stride + mi_col); |
| m = xd->mi[0]; |
| |
| cpi->td.mb.mbmi_ext = cpi->td.mb.mbmi_ext_base + |
| (mi_row * cm->mi_cols + mi_col); |
| |
| set_mi_row_col(xd, tile, |
| mi_row, num_8x8_blocks_high_lookup[m->sb_type], |
| mi_col, num_8x8_blocks_wide_lookup[m->sb_type], |
| cm->mi_rows, cm->mi_cols); |
| if (frame_is_intra_only(cm)) { |
| write_mb_modes_kf(cm, xd, xd->mi, w); |
| } else { |
| pack_inter_mode_mvs(cpi, m, w); |
| } |
| |
| assert(*tok < tok_end); |
| pack_mb_tokens(w, tok, tok_end, cm->bit_depth); |
| } |
| |
| static void write_partition(const VP9_COMMON *const cm, |
| const MACROBLOCKD *const xd, |
| int hbs, int mi_row, int mi_col, |
| PARTITION_TYPE p, BLOCK_SIZE bsize, vpx_writer *w) { |
| const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize); |
| const vpx_prob *const probs = xd->partition_probs[ctx]; |
| const int has_rows = (mi_row + hbs) < cm->mi_rows; |
| const int has_cols = (mi_col + hbs) < cm->mi_cols; |
| |
| if (has_rows && has_cols) { |
| vp9_write_token(w, vp9_partition_tree, probs, &partition_encodings[p]); |
| } else if (!has_rows && has_cols) { |
| assert(p == PARTITION_SPLIT || p == PARTITION_HORZ); |
| vpx_write(w, p == PARTITION_SPLIT, probs[1]); |
| } else if (has_rows && !has_cols) { |
| assert(p == PARTITION_SPLIT || p == PARTITION_VERT); |
| vpx_write(w, p == PARTITION_SPLIT, probs[2]); |
| } else { |
| assert(p == PARTITION_SPLIT); |
| } |
| } |
| |
| static void write_modes_sb(VP9_COMP *cpi, |
| const TileInfo *const tile, vpx_writer *w, |
| TOKENEXTRA **tok, const TOKENEXTRA *const tok_end, |
| int mi_row, int mi_col, BLOCK_SIZE bsize) { |
| const VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; |
| |
| const int bsl = b_width_log2_lookup[bsize]; |
| const int bs = (1 << bsl) / 4; |
| PARTITION_TYPE partition; |
| BLOCK_SIZE subsize; |
| const MODE_INFO *m = NULL; |
| |
| if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) |
| return; |
| |
| m = cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col]; |
| |
| partition = partition_lookup[bsl][m->sb_type]; |
| write_partition(cm, xd, bs, mi_row, mi_col, partition, bsize, w); |
| subsize = get_subsize(bsize, partition); |
| if (subsize < BLOCK_8X8) { |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); |
| } else { |
| switch (partition) { |
| case PARTITION_NONE: |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); |
| break; |
| case PARTITION_HORZ: |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); |
| if (mi_row + bs < cm->mi_rows) |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col); |
| break; |
| case PARTITION_VERT: |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); |
| if (mi_col + bs < cm->mi_cols) |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + bs); |
| break; |
| case PARTITION_SPLIT: |
| write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col, subsize); |
| write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col + bs, |
| subsize); |
| write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col, |
| subsize); |
| write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col + bs, |
| subsize); |
| break; |
| default: |
| assert(0); |
| } |
| } |
| |
| // update partition context |
| if (bsize >= BLOCK_8X8 && |
| (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT)) |
| update_partition_context(xd, mi_row, mi_col, subsize, bsize); |
| } |
| |
| static void write_modes(VP9_COMP *cpi, |
| const TileInfo *const tile, vpx_writer *w, |
| TOKENEXTRA **tok, const TOKENEXTRA *const tok_end) { |
| const VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; |
| int mi_row, mi_col; |
| |
| set_partition_probs(cm, xd); |
| |
| for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end; |
| mi_row += MI_BLOCK_SIZE) { |
| vp9_zero(xd->left_seg_context); |
| for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end; |
| mi_col += MI_BLOCK_SIZE) |
| write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col, |
| BLOCK_64X64); |
| } |
| } |
| |
| static void build_tree_distribution(VP9_COMP *cpi, TX_SIZE tx_size, |
| vp9_coeff_stats *coef_branch_ct, |
| vp9_coeff_probs_model *coef_probs) { |
| vp9_coeff_count *coef_counts = cpi->td.rd_counts.coef_counts[tx_size]; |
| unsigned int (*eob_branch_ct)[REF_TYPES][COEF_BANDS][COEFF_CONTEXTS] = |
| cpi->common.counts.eob_branch[tx_size]; |
| int i, j, k, l, m; |
| |
| for (i = 0; i < PLANE_TYPES; ++i) { |
| for (j = 0; j < REF_TYPES; ++j) { |
| for (k = 0; k < COEF_BANDS; ++k) { |
| for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) { |
| vp9_tree_probs_from_distribution(vp9_coef_tree, |
| coef_branch_ct[i][j][k][l], |
| coef_counts[i][j][k][l]); |
| coef_branch_ct[i][j][k][l][0][1] = eob_branch_ct[i][j][k][l] - |
| coef_branch_ct[i][j][k][l][0][0]; |
| for (m = 0; m < UNCONSTRAINED_NODES; ++m) |
| coef_probs[i][j][k][l][m] = get_binary_prob( |
| coef_branch_ct[i][j][k][l][m][0], |
| coef_branch_ct[i][j][k][l][m][1]); |
| } |
| } |
| } |
| } |
| } |
| |
| static void update_coef_probs_common(vpx_writer* const bc, VP9_COMP *cpi, |
| TX_SIZE tx_size, |
| vp9_coeff_stats *frame_branch_ct, |
| vp9_coeff_probs_model *new_coef_probs) { |
| vp9_coeff_probs_model *old_coef_probs = cpi->common.fc->coef_probs[tx_size]; |
| const vpx_prob upd = DIFF_UPDATE_PROB; |
| const int entropy_nodes_update = UNCONSTRAINED_NODES; |
| int i, j, k, l, t; |
| int stepsize = cpi->sf.coeff_prob_appx_step; |
| |
| switch (cpi->sf.use_fast_coef_updates) { |
| case TWO_LOOP: { |
| /* dry run to see if there is any update at all needed */ |
| int savings = 0; |
| int update[2] = {0, 0}; |
| for (i = 0; i < PLANE_TYPES; ++i) { |
| for (j = 0; j < REF_TYPES; ++j) { |
| for (k = 0; k < COEF_BANDS; ++k) { |
| for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) { |
| for (t = 0; t < entropy_nodes_update; ++t) { |
| vpx_prob newp = new_coef_probs[i][j][k][l][t]; |
| const vpx_prob oldp = old_coef_probs[i][j][k][l][t]; |
| int s; |
| int u = 0; |
| if (t == PIVOT_NODE) |
| s = vp9_prob_diff_update_savings_search_model( |
| frame_branch_ct[i][j][k][l][0], oldp, &newp, upd, |
| stepsize); |
| else |
| s = vp9_prob_diff_update_savings_search( |
| frame_branch_ct[i][j][k][l][t], oldp, &newp, upd); |
| if (s > 0 && newp != oldp) |
| u = 1; |
| if (u) |
| savings += s - (int)(vp9_cost_zero(upd)); |
| else |
| savings -= (int)(vp9_cost_zero(upd)); |
| update[u]++; |
| } |
| } |
| } |
| } |
| } |
| |
| // printf("Update %d %d, savings %d\n", update[0], update[1], savings); |
| /* Is coef updated at all */ |
| if (update[1] == 0 || savings < 0) { |
| vpx_write_bit(bc, 0); |
| return; |
| } |
| vpx_write_bit(bc, 1); |
| for (i = 0; i < PLANE_TYPES; ++i) { |
| for (j = 0; j < REF_TYPES; ++j) { |
| for (k = 0; k < COEF_BANDS; ++k) { |
| for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) { |
| // calc probs and branch cts for this frame only |
| for (t = 0; t < entropy_nodes_update; ++t) { |
| vpx_prob newp = new_coef_probs[i][j][k][l][t]; |
| vpx_prob *oldp = old_coef_probs[i][j][k][l] + t; |
| const vpx_prob upd = DIFF_UPDATE_PROB; |
| int s; |
| int u = 0; |
| if (t == PIVOT_NODE) |
| s = vp9_prob_diff_update_savings_search_model( |
| frame_branch_ct[i][j][k][l][0], |
| *oldp, &newp, upd, stepsize); |
| else |
| s = vp9_prob_diff_update_savings_search( |
| frame_branch_ct[i][j][k][l][t], |
| *oldp, &newp, upd); |
| if (s > 0 && newp != *oldp) |
| u = 1; |
| vpx_write(bc, u, upd); |
| if (u) { |
| /* send/use new probability */ |
| vp9_write_prob_diff_update(bc, newp, *oldp); |
| *oldp = newp; |
| } |
| } |
| } |
| } |
| } |
| } |
| return; |
| } |
| |
| case ONE_LOOP_REDUCED: { |
| int updates = 0; |
| int noupdates_before_first = 0; |
| for (i = 0; i < PLANE_TYPES; ++i) { |
| for (j = 0; j < REF_TYPES; ++j) { |
| for (k = 0; k < COEF_BANDS; ++k) { |
| for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) { |
| // calc probs and branch cts for this frame only |
| for (t = 0; t < entropy_nodes_update; ++t) { |
| vpx_prob newp = new_coef_probs[i][j][k][l][t]; |
| vpx_prob *oldp = old_coef_probs[i][j][k][l] + t; |
| int s; |
| int u = 0; |
| |
| if (t == PIVOT_NODE) { |
| s = vp9_prob_diff_update_savings_search_model( |
| frame_branch_ct[i][j][k][l][0], |
| *oldp, &newp, upd, stepsize); |
| } else { |
| s = vp9_prob_diff_update_savings_search( |
| frame_branch_ct[i][j][k][l][t], |
| *oldp, &newp, upd); |
| } |
| |
| if (s > 0 && newp != *oldp) |
| u = 1; |
| updates += u; |
| if (u == 0 && updates == 0) { |
| noupdates_before_first++; |
| continue; |
| } |
| if (u == 1 && updates == 1) { |
| int v; |
| // first update |
| vpx_write_bit(bc, 1); |
| for (v = 0; v < noupdates_before_first; ++v) |
| vpx_write(bc, 0, upd); |
| } |
| vpx_write(bc, u, upd); |
| if (u) { |
| /* send/use new probability */ |
| vp9_write_prob_diff_update(bc, newp, *oldp); |
| *oldp = newp; |
| } |
| } |
| } |
| } |
| } |
| } |
| if (updates == 0) { |
| vpx_write_bit(bc, 0); // no updates |
| } |
| return; |
| } |
| default: |
| assert(0); |
| } |
| } |
| |
| static void update_coef_probs(VP9_COMP *cpi, vpx_writer* w) { |
| const TX_MODE tx_mode = cpi->common.tx_mode; |
| const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode]; |
| TX_SIZE tx_size; |
| for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size) { |
| vp9_coeff_stats frame_branch_ct[PLANE_TYPES]; |
| vp9_coeff_probs_model frame_coef_probs[PLANE_TYPES]; |
| if (cpi->td.counts->tx.tx_totals[tx_size] <= 20 || |
| (tx_size >= TX_16X16 && cpi->sf.tx_size_search_method == USE_TX_8X8)) { |
| vpx_write_bit(w, 0); |
| } else { |
| build_tree_distribution(cpi, tx_size, frame_branch_ct, |
| frame_coef_probs); |
| update_coef_probs_common(w, cpi, tx_size, frame_branch_ct, |
| frame_coef_probs); |
| } |
| } |
| } |
| |
| static void encode_loopfilter(struct loopfilter *lf, |
| struct vpx_write_bit_buffer *wb) { |
| int i; |
| |
| // Encode the loop filter level and type |
| vpx_wb_write_literal(wb, lf->filter_level, 6); |
| vpx_wb_write_literal(wb, lf->sharpness_level, 3); |
| |
| // Write out loop filter deltas applied at the MB level based on mode or |
| // ref frame (if they are enabled). |
| vpx_wb_write_bit(wb, lf->mode_ref_delta_enabled); |
| |
| if (lf->mode_ref_delta_enabled) { |
| vpx_wb_write_bit(wb, lf->mode_ref_delta_update); |
| if (lf->mode_ref_delta_update) { |
| for (i = 0; i < MAX_REF_LF_DELTAS; i++) { |
| const int delta = lf->ref_deltas[i]; |
| const int changed = delta != lf->last_ref_deltas[i]; |
| vpx_wb_write_bit(wb, changed); |
| if (changed) { |
| lf->last_ref_deltas[i] = delta; |
| vpx_wb_write_literal(wb, abs(delta) & 0x3F, 6); |
| vpx_wb_write_bit(wb, delta < 0); |
| } |
| } |
| |
| for (i = 0; i < MAX_MODE_LF_DELTAS; i++) { |
| const int delta = lf->mode_deltas[i]; |
| const int changed = delta != lf->last_mode_deltas[i]; |
| vpx_wb_write_bit(wb, changed); |
| if (changed) { |
| lf->last_mode_deltas[i] = delta; |
| vpx_wb_write_literal(wb, abs(delta) & 0x3F, 6); |
| vpx_wb_write_bit(wb, delta < 0); |
| } |
| } |
| } |
| } |
| } |
| |
| static void write_delta_q(struct vpx_write_bit_buffer *wb, int delta_q) { |
| if (delta_q != 0) { |
| vpx_wb_write_bit(wb, 1); |
| vpx_wb_write_literal(wb, abs(delta_q), 4); |
| vpx_wb_write_bit(wb, delta_q < 0); |
| } else { |
| vpx_wb_write_bit(wb, 0); |
| } |
| } |
| |
| static void encode_quantization(const VP9_COMMON *const cm, |
| struct vpx_write_bit_buffer *wb) { |
| vpx_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS); |
| write_delta_q(wb, cm->y_dc_delta_q); |
| write_delta_q(wb, cm->uv_dc_delta_q); |
| write_delta_q(wb, cm->uv_ac_delta_q); |
| } |
| |
| static void encode_segmentation(VP9_COMMON *cm, MACROBLOCKD *xd, |
| struct vpx_write_bit_buffer *wb) { |
| int i, j; |
| |
| const struct segmentation *seg = &cm->seg; |
| |
| vpx_wb_write_bit(wb, seg->enabled); |
| if (!seg->enabled) |
| return; |
| |
| // Segmentation map |
| vpx_wb_write_bit(wb, seg->update_map); |
| if (seg->update_map) { |
| // Select the coding strategy (temporal or spatial) |
| vp9_choose_segmap_coding_method(cm, xd); |
| // Write out probabilities used to decode unpredicted macro-block segments |
| for (i = 0; i < SEG_TREE_PROBS; i++) { |
| const int prob = seg->tree_probs[i]; |
| const int update = prob != MAX_PROB; |
| vpx_wb_write_bit(wb, update); |
| if (update) |
| vpx_wb_write_literal(wb, prob, 8); |
| } |
| |
| // Write out the chosen coding method. |
| vpx_wb_write_bit(wb, seg->temporal_update); |
| if (seg->temporal_update) { |
| for (i = 0; i < PREDICTION_PROBS; i++) { |
| const int prob = seg->pred_probs[i]; |
| const int update = prob != MAX_PROB; |
| vpx_wb_write_bit(wb, update); |
| if (update) |
| vpx_wb_write_literal(wb, prob, 8); |
| } |
| } |
| } |
| |
| // Segmentation data |
| vpx_wb_write_bit(wb, seg->update_data); |
| if (seg->update_data) { |
| vpx_wb_write_bit(wb, seg->abs_delta); |
| |
| for (i = 0; i < MAX_SEGMENTS; i++) { |
| for (j = 0; j < SEG_LVL_MAX; j++) { |
| const int active = segfeature_active(seg, i, j); |
| vpx_wb_write_bit(wb, active); |
| if (active) { |
| const int data = get_segdata(seg, i, j); |
| const int data_max = vp9_seg_feature_data_max(j); |
| |
| if (vp9_is_segfeature_signed(j)) { |
| encode_unsigned_max(wb, abs(data), data_max); |
| vpx_wb_write_bit(wb, data < 0); |
| } else { |
| encode_unsigned_max(wb, data, data_max); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| static void encode_txfm_probs(VP9_COMMON *cm, vpx_writer *w, |
| FRAME_COUNTS *counts) { |
| // Mode |
| vpx_write_literal(w, VPXMIN(cm->tx_mode, ALLOW_32X32), 2); |
| if (cm->tx_mode >= ALLOW_32X32) |
| vpx_write_bit(w, cm->tx_mode == TX_MODE_SELECT); |
| |
| // Probabilities |
| if (cm->tx_mode == TX_MODE_SELECT) { |
| int i, j; |
| unsigned int ct_8x8p[TX_SIZES - 3][2]; |
| unsigned int ct_16x16p[TX_SIZES - 2][2]; |
| unsigned int ct_32x32p[TX_SIZES - 1][2]; |
| |
| |
| for (i = 0; i < TX_SIZE_CONTEXTS; i++) { |
| tx_counts_to_branch_counts_8x8(counts->tx.p8x8[i], ct_8x8p); |
| for (j = 0; j < TX_SIZES - 3; j++) |
| vp9_cond_prob_diff_update(w, &cm->fc->tx_probs.p8x8[i][j], ct_8x8p[j]); |
| } |
| |
| for (i = 0; i < TX_SIZE_CONTEXTS; i++) { |
| tx_counts_to_branch_counts_16x16(counts->tx.p16x16[i], ct_16x16p); |
| for (j = 0; j < TX_SIZES - 2; j++) |
| vp9_cond_prob_diff_update(w, &cm->fc->tx_probs.p16x16[i][j], |
| ct_16x16p[j]); |
| } |
| |
| for (i = 0; i < TX_SIZE_CONTEXTS; i++) { |
| tx_counts_to_branch_counts_32x32(counts->tx.p32x32[i], ct_32x32p); |
| for (j = 0; j < TX_SIZES - 1; j++) |
| vp9_cond_prob_diff_update(w, &cm->fc->tx_probs.p32x32[i][j], |
| ct_32x32p[j]); |
| } |
| } |
| } |
| |
| static void write_interp_filter(INTERP_FILTER filter, |
| struct vpx_write_bit_buffer *wb) { |
| const int filter_to_literal[] = { 1, 0, 2, 3 }; |
| |
| vpx_wb_write_bit(wb, filter == SWITCHABLE); |
| if (filter != SWITCHABLE) |
| vpx_wb_write_literal(wb, filter_to_literal[filter], 2); |
| } |
| |
| static void fix_interp_filter(VP9_COMMON *cm, FRAME_COUNTS *counts) { |
| if (cm->interp_filter == SWITCHABLE) { |
| // Check to see if only one of the filters is actually used |
| int count[SWITCHABLE_FILTERS]; |
| int i, j, c = 0; |
| for (i = 0; i < SWITCHABLE_FILTERS; ++i) { |
| count[i] = 0; |
| for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) |
| count[i] += counts->switchable_interp[j][i]; |
| c += (count[i] > 0); |
| } |
| if (c == 1) { |
| // Only one filter is used. So set the filter at frame level |
| for (i = 0; i < SWITCHABLE_FILTERS; ++i) { |
| if (count[i]) { |
| cm->interp_filter = i; |
| break; |
| } |
| } |
| } |
| } |
| } |
| |
| static void write_tile_info(const VP9_COMMON *const cm, |
| struct vpx_write_bit_buffer *wb) { |
| int min_log2_tile_cols, max_log2_tile_cols, ones; |
| vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols); |
| |
| // columns |
| ones = cm->log2_tile_cols - min_log2_tile_cols; |
| while (ones--) |
| vpx_wb_write_bit(wb, 1); |
| |
| if (cm->log2_tile_cols < max_log2_tile_cols) |
| vpx_wb_write_bit(wb, 0); |
| |
| // rows |
| vpx_wb_write_bit(wb, cm->log2_tile_rows != 0); |
| if (cm->log2_tile_rows != 0) |
| vpx_wb_write_bit(wb, cm->log2_tile_rows != 1); |
| } |
| |
| int vp9_get_refresh_mask(VP9_COMP *cpi) { |
| if (vp9_preserve_existing_gf(cpi)) { |
| // We have decided to preserve the previously existing golden frame as our |
| // new ARF frame. However, in the short term we leave it in the GF slot and, |
| // if we're updating the GF with the current decoded frame, we save it |
| // instead to the ARF slot. |
| // Later, in the function vp9_encoder.c:vp9_update_reference_frames() we |
| // will swap gld_fb_idx and alt_fb_idx to achieve our objective. We do it |
| // there so that it can be done outside of the recode loop. |
| // Note: This is highly specific to the use of ARF as a forward reference, |
| // and this needs to be generalized as other uses are implemented |
| // (like RTC/temporal scalability). |
| return (cpi->refresh_last_frame << cpi->lst_fb_idx) | |
| (cpi->refresh_golden_frame << cpi->alt_fb_idx); |
| } else { |
| int arf_idx = cpi->alt_fb_idx; |
| if ((cpi->oxcf.pass == 2) && cpi->multi_arf_allowed) { |
| const GF_GROUP *const gf_group = &cpi->twopass.gf_group; |
| arf_idx = gf_group->arf_update_idx[gf_group->index]; |
| } |
| return (cpi->refresh_last_frame << cpi->lst_fb_idx) | |
| (cpi->refresh_golden_frame << cpi->gld_fb_idx) | |
| (cpi->refresh_alt_ref_frame << arf_idx); |
| } |
| } |
| |
| static size_t encode_tiles(VP9_COMP *cpi, uint8_t *data_ptr) { |
| VP9_COMMON *const cm = &cpi->common; |
| vpx_writer residual_bc; |
| int tile_row, tile_col; |
| TOKENEXTRA *tok_end; |
| size_t total_size = 0; |
| const int tile_cols = 1 << cm->log2_tile_cols; |
| const int tile_rows = 1 << cm->log2_tile_rows; |
| |
| memset(cm->above_seg_context, 0, |
| sizeof(*cm->above_seg_context) * mi_cols_aligned_to_sb(cm->mi_cols)); |
| |
| for (tile_row = 0; tile_row < tile_rows; tile_row++) { |
| for (tile_col = 0; tile_col < tile_cols; tile_col++) { |
| int tile_idx = tile_row * tile_cols + tile_col; |
| TOKENEXTRA *tok = cpi->tile_tok[tile_row][tile_col]; |
| |
| tok_end = cpi->tile_tok[tile_row][tile_col] + |
| cpi->tok_count[tile_row][tile_col]; |
| |
| if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1) |
| vpx_start_encode(&residual_bc, data_ptr + total_size + 4); |
| else |
| vpx_start_encode(&residual_bc, data_ptr + total_size); |
| |
| write_modes(cpi, &cpi->tile_data[tile_idx].tile_info, |
| &residual_bc, &tok, tok_end); |
| assert(tok == tok_end); |
| vpx_stop_encode(&residual_bc); |
| if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1) { |
| // size of this tile |
| mem_put_be32(data_ptr + total_size, residual_bc.pos); |
| total_size += 4; |
| } |
| |
| total_size += residual_bc.pos; |
| } |
| } |
| |
| return total_size; |
| } |
| |
| static void write_render_size(const VP9_COMMON *cm, |
| struct vpx_write_bit_buffer *wb) { |
| const int scaling_active = cm->width != cm->render_width || |
| cm->height != cm->render_height; |
| vpx_wb_write_bit(wb, scaling_active); |
| if (scaling_active) { |
| vpx_wb_write_literal(wb, cm->render_width - 1, 16); |
| vpx_wb_write_literal(wb, cm->render_height - 1, 16); |
| } |
| } |
| |
| static void write_frame_size(const VP9_COMMON *cm, |
| struct vpx_write_bit_buffer *wb) { |
| vpx_wb_write_literal(wb, cm->width - 1, 16); |
| vpx_wb_write_literal(wb, cm->height - 1, 16); |
| |
| write_render_size(cm, wb); |
| } |
| |
| static void write_frame_size_with_refs(VP9_COMP *cpi, |
| struct vpx_write_bit_buffer *wb) { |
| VP9_COMMON *const cm = &cpi->common; |
| int found = 0; |
| |
| MV_REFERENCE_FRAME ref_frame; |
| for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { |
| YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, ref_frame); |
| |
| // Set "found" to 0 for temporal svc and for spatial svc key frame |
| if (cpi->use_svc && |
| ((cpi->svc.number_temporal_layers > 1 && |
| cpi->oxcf.rc_mode == VPX_CBR) || |
| (cpi->svc.number_spatial_layers > 1 && |
| cpi->svc.layer_context[cpi->svc.spatial_layer_id].is_key_frame) || |
| (is_two_pass_svc(cpi) && |
| cpi->svc.encode_empty_frame_state == ENCODING && |
| cpi->svc.layer_context[0].frames_from_key_frame < |
| cpi->svc.number_temporal_layers + 1))) { |
| found = 0; |
| } else if (cfg != NULL) { |
| found = cm->width == cfg->y_crop_width && |
| cm->height == cfg->y_crop_height; |
| } |
| vpx_wb_write_bit(wb, found); |
| if (found) { |
| break; |
| } |
| } |
| |
| if (!found) { |
| vpx_wb_write_literal(wb, cm->width - 1, 16); |
| vpx_wb_write_literal(wb, cm->height - 1, 16); |
| } |
| |
| write_render_size(cm, wb); |
| } |
| |
| static void write_sync_code(struct vpx_write_bit_buffer *wb) { |
| vpx_wb_write_literal(wb, VP9_SYNC_CODE_0, 8); |
| vpx_wb_write_literal(wb, VP9_SYNC_CODE_1, 8); |
| vpx_wb_write_literal(wb, VP9_SYNC_CODE_2, 8); |
| } |
| |
| static void write_profile(BITSTREAM_PROFILE profile, |
| struct vpx_write_bit_buffer *wb) { |
| switch (profile) { |
| case PROFILE_0: |
| vpx_wb_write_literal(wb, 0, 2); |
| break; |
| case PROFILE_1: |
| vpx_wb_write_literal(wb, 2, 2); |
| break; |
| case PROFILE_2: |
| vpx_wb_write_literal(wb, 1, 2); |
| break; |
| case PROFILE_3: |
| vpx_wb_write_literal(wb, 6, 3); |
| break; |
| default: |
| assert(0); |
| } |
| } |
| |
| static void write_bitdepth_colorspace_sampling( |
| VP9_COMMON *const cm, struct vpx_write_bit_buffer *wb) { |
| if (cm->profile >= PROFILE_2) { |
| assert(cm->bit_depth > VPX_BITS_8); |
| vpx_wb_write_bit(wb, cm->bit_depth == VPX_BITS_10 ? 0 : 1); |
| } |
| vpx_wb_write_literal(wb, cm->color_space, 3); |
| if (cm->color_space != VPX_CS_SRGB) { |
| // 0: [16, 235] (i.e. xvYCC), 1: [0, 255] |
| vpx_wb_write_bit(wb, cm->color_range); |
| if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) { |
| assert(cm->subsampling_x != 1 || cm->subsampling_y != 1); |
| vpx_wb_write_bit(wb, cm->subsampling_x); |
| vpx_wb_write_bit(wb, cm->subsampling_y); |
| vpx_wb_write_bit(wb, 0); // unused |
| } else { |
| assert(cm->subsampling_x == 1 && cm->subsampling_y == 1); |
| } |
| } else { |
| assert(cm->profile == PROFILE_1 || cm->profile == PROFILE_3); |
| vpx_wb_write_bit(wb, 0); // unused |
| } |
| } |
| |
| static void write_uncompressed_header(VP9_COMP *cpi, |
| struct vpx_write_bit_buffer *wb) { |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; |
| |
| vpx_wb_write_literal(wb, VP9_FRAME_MARKER, 2); |
| |
| write_profile(cm->profile, wb); |
| |
| vpx_wb_write_bit(wb, 0); // show_existing_frame |
| vpx_wb_write_bit(wb, cm->frame_type); |
| vpx_wb_write_bit(wb, cm->show_frame); |
| vpx_wb_write_bit(wb, cm->error_resilient_mode); |
| |
| if (cm->frame_type == KEY_FRAME) { |
| write_sync_code(wb); |
| write_bitdepth_colorspace_sampling(cm, wb); |
| write_frame_size(cm, wb); |
| } else { |
| // In spatial svc if it's not error_resilient_mode then we need to code all |
| // visible frames as invisible. But we need to keep the show_frame flag so |
| // that the publisher could know whether it is supposed to be visible. |
| // So we will code the show_frame flag as it is. Then code the intra_only |
| // bit here. This will make the bitstream incompatible. In the player we |
| // will change to show_frame flag to 0, then add an one byte frame with |
| // show_existing_frame flag which tells the decoder which frame we want to |
| // show. |
| if (!cm->show_frame) |
| vpx_wb_write_bit(wb, cm->intra_only); |
| |
| if (!cm->error_resilient_mode) |
| vpx_wb_write_literal(wb, cm->reset_frame_context, 2); |
| |
| if (cm->intra_only) { |
| write_sync_code(wb); |
| |
| // Note for profile 0, 420 8bpp is assumed. |
| if (cm->profile > PROFILE_0) { |
| write_bitdepth_colorspace_sampling(cm, wb); |
| } |
| |
| vpx_wb_write_literal(wb, vp9_get_refresh_mask(cpi), REF_FRAMES); |
| write_frame_size(cm, wb); |
| } else { |
| MV_REFERENCE_FRAME ref_frame; |
| vpx_wb_write_literal(wb, vp9_get_refresh_mask(cpi), REF_FRAMES); |
| for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { |
| assert(get_ref_frame_map_idx(cpi, ref_frame) != INVALID_IDX); |
| vpx_wb_write_literal(wb, get_ref_frame_map_idx(cpi, ref_frame), |
| REF_FRAMES_LOG2); |
| vpx_wb_write_bit(wb, cm->ref_frame_sign_bias[ref_frame]); |
| } |
| |
| write_frame_size_with_refs(cpi, wb); |
| |
| vpx_wb_write_bit(wb, cm->allow_high_precision_mv); |
| |
| fix_interp_filter(cm, cpi->td.counts); |
| write_interp_filter(cm->interp_filter, wb); |
| } |
| } |
| |
| if (!cm->error_resilient_mode) { |
| vpx_wb_write_bit(wb, cm->refresh_frame_context); |
| vpx_wb_write_bit(wb, cm->frame_parallel_decoding_mode); |
| } |
| |
| vpx_wb_write_literal(wb, cm->frame_context_idx, FRAME_CONTEXTS_LOG2); |
| |
| encode_loopfilter(&cm->lf, wb); |
| encode_quantization(cm, wb); |
| encode_segmentation(cm, xd, wb); |
| |
| write_tile_info(cm, wb); |
| } |
| |
| static size_t write_compressed_header(VP9_COMP *cpi, uint8_t *data) { |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; |
| FRAME_CONTEXT *const fc = cm->fc; |
| FRAME_COUNTS *counts = cpi->td.counts; |
| vpx_writer header_bc; |
| |
| vpx_start_encode(&header_bc, data); |
| |
| if (xd->lossless) |
| cm->tx_mode = ONLY_4X4; |
| else |
| encode_txfm_probs(cm, &header_bc, counts); |
| |
| update_coef_probs(cpi, &header_bc); |
| update_skip_probs(cm, &header_bc, counts); |
| |
| if (!frame_is_intra_only(cm)) { |
| int i; |
| |
| for (i = 0; i < INTER_MODE_CONTEXTS; ++i) |
| prob_diff_update(vp9_inter_mode_tree, cm->fc->inter_mode_probs[i], |
| counts->inter_mode[i], INTER_MODES, &header_bc); |
| |
| if (cm->interp_filter == SWITCHABLE) |
| update_switchable_interp_probs(cm, &header_bc, counts); |
| |
| for (i = 0; i < INTRA_INTER_CONTEXTS; i++) |
| vp9_cond_prob_diff_update(&header_bc, &fc->intra_inter_prob[i], |
| counts->intra_inter[i]); |
| |
| if (cpi->allow_comp_inter_inter) { |
| const int use_compound_pred = cm->reference_mode != SINGLE_REFERENCE; |
| const int use_hybrid_pred = cm->reference_mode == REFERENCE_MODE_SELECT; |
| |
| vpx_write_bit(&header_bc, use_compound_pred); |
| if (use_compound_pred) { |
| vpx_write_bit(&header_bc, use_hybrid_pred); |
| if (use_hybrid_pred) |
| for (i = 0; i < COMP_INTER_CONTEXTS; i++) |
| vp9_cond_prob_diff_update(&header_bc, &fc->comp_inter_prob[i], |
| counts->comp_inter[i]); |
| } |
| } |
| |
| if (cm->reference_mode != COMPOUND_REFERENCE) { |
| for (i = 0; i < REF_CONTEXTS; i++) { |
| vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][0], |
| counts->single_ref[i][0]); |
| vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][1], |
| counts->single_ref[i][1]); |
| } |
| } |
| |
| if (cm->reference_mode != SINGLE_REFERENCE) |
| for (i = 0; i < REF_CONTEXTS; i++) |
| vp9_cond_prob_diff_update(&header_bc, &fc->comp_ref_prob[i], |
| counts->comp_ref[i]); |
| |
| for (i = 0; i < BLOCK_SIZE_GROUPS; ++i) |
| prob_diff_update(vp9_intra_mode_tree, cm->fc->y_mode_prob[i], |
| counts->y_mode[i], INTRA_MODES, &header_bc); |
| |
| for (i = 0; i < PARTITION_CONTEXTS; ++i) |
| prob_diff_update(vp9_partition_tree, fc->partition_prob[i], |
| counts->partition[i], PARTITION_TYPES, &header_bc); |
| |
| vp9_write_nmv_probs(cm, cm->allow_high_precision_mv, &header_bc, |
| &counts->mv); |
| } |
| |
| vpx_stop_encode(&header_bc); |
| assert(header_bc.pos <= 0xffff); |
| |
| return header_bc.pos; |
| } |
| |
| void vp9_pack_bitstream(VP9_COMP *cpi, uint8_t *dest, size_t *size) { |
| uint8_t *data = dest; |
| size_t first_part_size, uncompressed_hdr_size; |
| struct vpx_write_bit_buffer wb = {data, 0}; |
| struct vpx_write_bit_buffer saved_wb; |
| |
| write_uncompressed_header(cpi, &wb); |
| saved_wb = wb; |
| vpx_wb_write_literal(&wb, 0, 16); // don't know in advance first part. size |
| |
| uncompressed_hdr_size = vpx_wb_bytes_written(&wb); |
| data += uncompressed_hdr_size; |
| |
| vpx_clear_system_state(); |
| |
| first_part_size = write_compressed_header(cpi, data); |
| data += first_part_size; |
| // TODO(jbb): Figure out what to do if first_part_size > 16 bits. |
| vpx_wb_write_literal(&saved_wb, (int)first_part_size, 16); |
| |
| data += encode_tiles(cpi, data); |
| |
| *size = data - dest; |
| } |