| /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- |
| * vim: set ts=8 sts=4 et sw=4 tw=99: |
| * This Source Code Form is subject to the terms of the Mozilla Public |
| * License, v. 2.0. If a copy of the MPL was not distributed with this |
| * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
| |
| #ifndef js_UbiNode_h |
| #define js_UbiNode_h |
| |
| #include "mozilla/Alignment.h" |
| #include "mozilla/Assertions.h" |
| #include "mozilla/Attributes.h" |
| #include "mozilla/Maybe.h" |
| #include "mozilla/MemoryReporting.h" |
| #include "mozilla/Move.h" |
| #include "mozilla/RangedPtr.h" |
| #include "mozilla/TypeTraits.h" |
| #include "mozilla/UniquePtr.h" |
| #include "mozilla/Variant.h" |
| |
| #include "jspubtd.h" |
| |
| #include "js/GCAPI.h" |
| #include "js/HashTable.h" |
| #include "js/RootingAPI.h" |
| #include "js/TracingAPI.h" |
| #include "js/TypeDecls.h" |
| #include "js/Value.h" |
| #include "js/Vector.h" |
| |
| // JS::ubi::Node |
| // |
| // JS::ubi::Node is a pointer-like type designed for internal use by heap |
| // analysis tools. A ubi::Node can refer to: |
| // |
| // - a JS value, like a string, object, or symbol; |
| // - an internal SpiderMonkey structure, like a shape or a scope chain object |
| // - an instance of some embedding-provided type: in Firefox, an XPCOM |
| // object, or an internal DOM node class instance |
| // |
| // A ubi::Node instance provides metadata about its referent, and can |
| // enumerate its referent's outgoing edges, so you can implement heap analysis |
| // algorithms that walk the graph - finding paths between objects, or |
| // computing heap dominator trees, say - using ubi::Node, while remaining |
| // ignorant of the details of the types you're operating on. |
| // |
| // Of course, when it comes to presenting the results in a developer-facing |
| // tool, you'll need to stop being ignorant of those details, because you have |
| // to discuss the ubi::Nodes' referents with the developer. Here, ubi::Node |
| // can hand you dynamically checked, properly typed pointers to the original |
| // objects via the as<T> method, or generate descriptions of the referent |
| // itself. |
| // |
| // ubi::Node instances are lightweight (two-word) value types. Instances: |
| // - compare equal if and only if they refer to the same object; |
| // - have hash values that respect their equality relation; and |
| // - have serializations that are only equal if the ubi::Nodes are equal. |
| // |
| // A ubi::Node is only valid for as long as its referent is alive; if its |
| // referent goes away, the ubi::Node becomes a dangling pointer. A ubi::Node |
| // that refers to a GC-managed object is not automatically a GC root; if the |
| // GC frees or relocates its referent, the ubi::Node becomes invalid. A |
| // ubi::Node that refers to a reference-counted object does not bump the |
| // reference count. |
| // |
| // ubi::Node values require no supporting data structures, making them |
| // feasible for use in memory-constrained devices --- ideally, the memory |
| // requirements of the algorithm which uses them will be the limiting factor, |
| // not the demands of ubi::Node itself. |
| // |
| // One can construct a ubi::Node value given a pointer to a type that ubi::Node |
| // supports. In the other direction, one can convert a ubi::Node back to a |
| // pointer; these downcasts are checked dynamically. In particular, one can |
| // convert a 'JSRuntime*' to a ubi::Node, yielding a node with an outgoing edge |
| // for every root registered with the runtime; starting from this, one can walk |
| // the entire heap. (Of course, one could also start traversal at any other kind |
| // of type to which one has a pointer.) |
| // |
| // |
| // Extending ubi::Node To Handle Your Embedding's Types |
| // |
| // To add support for a new ubi::Node referent type R, you must define a |
| // specialization of the ubi::Concrete template, ubi::Concrete<R>, which |
| // inherits from ubi::Base. ubi::Node itself uses the specialization for |
| // compile-time information (i.e. the checked conversions between R * and |
| // ubi::Node), and the inheritance for run-time dispatching. |
| // |
| // |
| // ubi::Node Exposes Implementation Details |
| // |
| // In many cases, a JavaScript developer's view of their data differs |
| // substantially from its actual implementation. For example, while the |
| // ECMAScript specification describes objects as maps from property names to |
| // sets of attributes (like ECMAScript's [[Value]]), in practice many objects |
| // have only a pointer to a shape, shared with other similar objects, and |
| // indexed slots that contain the [[Value]] attributes. As another example, a |
| // string produced by concatenating two other strings may sometimes be |
| // represented by a "rope", a structure that points to the two original |
| // strings. |
| // |
| // We intend to use ubi::Node to write tools that report memory usage, so it's |
| // important that ubi::Node accurately portray how much memory nodes consume. |
| // Thus, for example, when data that apparently belongs to multiple nodes is |
| // in fact shared in a common structure, ubi::Node's graph uses a separate |
| // node for that shared structure, and presents edges to it from the data's |
| // apparent owners. For example, ubi::Node exposes SpiderMonkey objects' |
| // shapes and base shapes, and exposes rope string and substring structure, |
| // because these optimizations become visible when a tool reports how much |
| // memory a structure consumes. |
| // |
| // However, fine granularity is not a goal. When a particular object is the |
| // exclusive owner of a separate block of memory, ubi::Node may present the |
| // object and its block as a single node, and add their sizes together when |
| // reporting the node's size, as there is no meaningful loss of data in this |
| // case. Thus, for example, a ubi::Node referring to a JavaScript object, when |
| // asked for the object's size in bytes, includes the object's slot and |
| // element arrays' sizes in the total. There is no separate ubi::Node value |
| // representing the slot and element arrays, since they are owned exclusively |
| // by the object. |
| // |
| // |
| // Presenting Analysis Results To JavaScript Developers |
| // |
| // If an analysis provides its results in terms of ubi::Node values, a user |
| // interface presenting those results will generally need to clean them up |
| // before they can be understood by JavaScript developers. For example, |
| // JavaScript developers should not need to understand shapes, only JavaScript |
| // objects. Similarly, they should not need to understand the distinction |
| // between DOM nodes and the JavaScript shadow objects that represent them. |
| // |
| // |
| // Rooting Restrictions |
| // |
| // At present there is no way to root ubi::Node instances, so instances can't be |
| // live across any operation that might GC. Analyses using ubi::Node must either |
| // run to completion and convert their results to some other rootable type, or |
| // save their intermediate state in some rooted structure if they must GC before |
| // they complete. (For algorithms like path-finding and dominator tree |
| // computation, we implement the algorithm avoiding any operation that could |
| // cause a GC --- and use AutoCheckCannotGC to verify this.) |
| // |
| // If this restriction prevents us from implementing interesting tools, we may |
| // teach the GC how to root ubi::Nodes, fix up hash tables that use them as |
| // keys, etc. |
| // |
| // |
| // Hostile Graph Structure |
| // |
| // Analyses consuming ubi::Node graphs must be robust when presented with graphs |
| // that are deliberately constructed to exploit their weaknesses. When operating |
| // on live graphs, web content has control over the object graph, and less |
| // direct control over shape and string structure, and analyses should be |
| // prepared to handle extreme cases gracefully. For example, if an analysis were |
| // to use the C++ stack in a depth-first traversal, carefully constructed |
| // content could cause the analysis to overflow the stack. |
| // |
| // When ubi::Nodes refer to nodes deserialized from a heap snapshot, analyses |
| // must be even more careful: since snapshots often come from potentially |
| // compromised e10s content processes, even properties normally guaranteed by |
| // the platform (the proper linking of DOM nodes, for example) might be |
| // corrupted. While it is the deserializer's responsibility to check the basic |
| // structure of the snapshot file, the analyses should be prepared for ubi::Node |
| // graphs constructed from snapshots to be even more bizarre. |
| |
| class JSAtom; |
| |
| namespace JS { |
| namespace ubi { |
| |
| class Edge; |
| class EdgeRange; |
| class StackFrame; |
| |
| } // namespace ubi |
| } // namespace JS |
| |
| namespace mozilla { |
| |
| template<> |
| class DefaultDelete<JS::ubi::EdgeRange> : public JS::DeletePolicy<JS::ubi::EdgeRange> { }; |
| |
| template<> |
| class DefaultDelete<JS::ubi::StackFrame> : public JS::DeletePolicy<JS::ubi::StackFrame> { }; |
| |
| } // namespace mozilla |
| |
| namespace JS { |
| namespace ubi { |
| |
| using mozilla::Forward; |
| using mozilla::Maybe; |
| using mozilla::Move; |
| using mozilla::RangedPtr; |
| using mozilla::UniquePtr; |
| using mozilla::Variant; |
| |
| /*** ubi::StackFrame ******************************************************************************/ |
| |
| // Concrete JS::ubi::StackFrame instances backed by a live SavedFrame object |
| // store their strings as JSAtom*, while deserialized stack frames from offline |
| // heap snapshots store their strings as const char16_t*. In order to provide |
| // zero-cost accessors to these strings in a single interface that works with |
| // both cases, we use this variant type. |
| class AtomOrTwoByteChars : public Variant<JSAtom*, const char16_t*> { |
| using Base = Variant<JSAtom*, const char16_t*>; |
| |
| public: |
| template<typename T> |
| MOZ_IMPLICIT AtomOrTwoByteChars(T&& rhs) : Base(Forward<T>(rhs)) { } |
| |
| template<typename T> |
| AtomOrTwoByteChars& operator=(T&& rhs) { |
| MOZ_ASSERT(this != &rhs, "self-move disallowed"); |
| this->~AtomOrTwoByteChars(); |
| new (this) AtomOrTwoByteChars(Forward<T>(rhs)); |
| return *this; |
| } |
| |
| // Return the length of the given AtomOrTwoByteChars string. |
| size_t length(); |
| |
| // Copy the given AtomOrTwoByteChars string into the destination buffer, |
| // inflating if necessary. Does NOT null terminate. Returns the number of |
| // characters written to destination. |
| size_t copyToBuffer(RangedPtr<char16_t> destination, size_t length); |
| }; |
| |
| // The base class implemented by each ConcreteStackFrame<T> type. Subclasses |
| // must not add data members to this class. |
| class BaseStackFrame { |
| friend class StackFrame; |
| |
| BaseStackFrame(const StackFrame&) = delete; |
| BaseStackFrame& operator=(const StackFrame&) = delete; |
| |
| protected: |
| void* ptr; |
| explicit BaseStackFrame(void* ptr) : ptr(ptr) { } |
| |
| public: |
| // This is a value type that should not have a virtual destructor. Don't add |
| // destructors in subclasses! |
| |
| // Get a unique identifier for this StackFrame. The identifier is not valid |
| // across garbage collections. |
| virtual uint64_t identifier() const { return uint64_t(uintptr_t(ptr)); } |
| |
| // Get this frame's parent frame. |
| virtual StackFrame parent() const = 0; |
| |
| // Get this frame's line number. |
| virtual uint32_t line() const = 0; |
| |
| // Get this frame's column number. |
| virtual uint32_t column() const = 0; |
| |
| // Get this frame's source name. Never null. |
| virtual AtomOrTwoByteChars source() const = 0; |
| |
| // Return this frame's function name if named, otherwise the inferred |
| // display name. Can be null. |
| virtual AtomOrTwoByteChars functionDisplayName() const = 0; |
| |
| // Returns true if this frame's function is system JavaScript running with |
| // trusted principals, false otherwise. |
| virtual bool isSystem() const = 0; |
| |
| // Return true if this frame's function is a self-hosted JavaScript builtin, |
| // false otherwise. |
| virtual bool isSelfHosted() const = 0; |
| |
| // Construct a SavedFrame stack for the stack starting with this frame and |
| // containing all of its parents. The SavedFrame objects will be placed into |
| // cx's current compartment. |
| // |
| // Note that the process of |
| // |
| // SavedFrame |
| // | |
| // V |
| // JS::ubi::StackFrame |
| // | |
| // V |
| // offline heap snapshot |
| // | |
| // V |
| // JS::ubi::StackFrame |
| // | |
| // V |
| // SavedFrame |
| // |
| // is lossy because we cannot serialize and deserialize the SavedFrame's |
| // principals in the offline heap snapshot, so JS::ubi::StackFrame |
| // simplifies the principals check into the boolean isSystem() state. This |
| // is fine because we only expose JS::ubi::Stack to devtools and chrome |
| // code, and not to the web platform. |
| virtual bool constructSavedFrameStack(JSContext* cx, |
| MutableHandleObject outSavedFrameStack) const = 0; |
| |
| // Trace the concrete implementation of JS::ubi::StackFrame. |
| virtual void trace(JSTracer* trc) = 0; |
| }; |
| |
| // A traits template with a specialization for each backing type that implements |
| // the ubi::BaseStackFrame interface. Each specialization must be the a subclass |
| // of ubi::BaseStackFrame. |
| template<typename T> class ConcreteStackFrame; |
| |
| // A JS::ubi::StackFrame represents a frame in a recorded stack. It can be |
| // backed either by a live SavedFrame object or by a structure deserialized from |
| // an offline heap snapshot. |
| // |
| // It is a value type that may be memcpy'd hither and thither without worrying |
| // about constructors or destructors, similar to POD types. |
| // |
| // Its lifetime is the same as the lifetime of the graph that is being analyzed |
| // by the JS::ubi::Node that the JS::ubi::StackFrame came from. That is, if the |
| // graph being analyzed is the live heap graph, the JS::ubi::StackFrame is only |
| // valid within the scope of an AutoCheckCannotGC; if the graph being analyzed |
| // is an offline heap snapshot, the JS::ubi::StackFrame is valid as long as the |
| // offline heap snapshot is alive. |
| class StackFrame : public JS::Traceable { |
| // Storage in which we allocate BaseStackFrame subclasses. |
| mozilla::AlignedStorage2<BaseStackFrame> storage; |
| |
| BaseStackFrame* base() { return storage.addr(); } |
| const BaseStackFrame* base() const { return storage.addr(); } |
| |
| template<typename T> |
| void construct(T* ptr) { |
| static_assert(mozilla::IsBaseOf<BaseStackFrame, ConcreteStackFrame<T>>::value, |
| "ConcreteStackFrame<T> must inherit from BaseStackFrame"); |
| static_assert(sizeof(ConcreteStackFrame<T>) == sizeof(*base()), |
| "ubi::ConcreteStackFrame<T> specializations must be the same size as " |
| "ubi::BaseStackFrame"); |
| ConcreteStackFrame<T>::construct(base(), ptr); |
| } |
| struct ConstructFunctor; |
| |
| public: |
| StackFrame() { construct<void>(nullptr); } |
| |
| template<typename T> |
| MOZ_IMPLICIT StackFrame(T* ptr) { |
| construct(ptr); |
| } |
| |
| template<typename T> |
| StackFrame& operator=(T* ptr) { |
| construct(ptr); |
| return *this; |
| } |
| |
| // Constructors accepting SpiderMonkey's generic-pointer-ish types. |
| |
| template<typename T> |
| explicit StackFrame(const JS::Handle<T*>& handle) { |
| construct(handle.get()); |
| } |
| |
| template<typename T> |
| StackFrame& operator=(const JS::Handle<T*>& handle) { |
| construct(handle.get()); |
| return *this; |
| } |
| |
| template<typename T> |
| explicit StackFrame(const JS::Rooted<T*>& root) { |
| construct(root.get()); |
| } |
| |
| template<typename T> |
| StackFrame& operator=(const JS::Rooted<T*>& root) { |
| construct(root.get()); |
| return *this; |
| } |
| |
| // Because StackFrame is just a vtable pointer and an instance pointer, we |
| // can memcpy everything around instead of making concrete classes define |
| // virtual constructors. See the comment above Node's copy constructor for |
| // more details; that comment applies here as well. |
| StackFrame(const StackFrame& rhs) { |
| memcpy(storage.u.mBytes, rhs.storage.u.mBytes, sizeof(storage.u)); |
| } |
| |
| StackFrame& operator=(const StackFrame& rhs) { |
| memcpy(storage.u.mBytes, rhs.storage.u.mBytes, sizeof(storage.u)); |
| return *this; |
| } |
| |
| bool operator==(const StackFrame& rhs) const { return base()->ptr == rhs.base()->ptr; } |
| bool operator!=(const StackFrame& rhs) const { return !(*this == rhs); } |
| |
| explicit operator bool() const { |
| return base()->ptr != nullptr; |
| } |
| |
| // Copy this StackFrame's source name into the given |destination| |
| // buffer. Copy no more than |length| characters. The result is *not* null |
| // terminated. Returns how many characters were written into the buffer. |
| size_t source(RangedPtr<char16_t> destination, size_t length) const; |
| |
| // Copy this StackFrame's function display name into the given |destination| |
| // buffer. Copy no more than |length| characters. The result is *not* null |
| // terminated. Returns how many characters were written into the buffer. |
| size_t functionDisplayName(RangedPtr<char16_t> destination, size_t length) const; |
| |
| // Get the size of the respective strings. 0 is returned for null strings. |
| size_t sourceLength(); |
| size_t functionDisplayNameLength(); |
| |
| // JS::Traceable implementation just forwards to our virtual trace method. |
| static void trace(StackFrame* frame, JSTracer* trc) { |
| if (frame) |
| frame->trace(trc); |
| } |
| |
| // Methods that forward to virtual calls through BaseStackFrame. |
| |
| void trace(JSTracer* trc) { base()->trace(trc); } |
| uint64_t identifier() const { |
| auto id = base()->identifier(); |
| MOZ_ASSERT(JS::Value::isNumberRepresentable(id)); |
| return id; |
| } |
| uint32_t line() const { return base()->line(); } |
| uint32_t column() const { return base()->column(); } |
| AtomOrTwoByteChars source() const { return base()->source(); } |
| AtomOrTwoByteChars functionDisplayName() const { return base()->functionDisplayName(); } |
| StackFrame parent() const { return base()->parent(); } |
| bool isSystem() const { return base()->isSystem(); } |
| bool isSelfHosted() const { return base()->isSelfHosted(); } |
| bool constructSavedFrameStack(JSContext* cx, |
| MutableHandleObject outSavedFrameStack) const { |
| return base()->constructSavedFrameStack(cx, outSavedFrameStack); |
| } |
| |
| struct HashPolicy { |
| using Lookup = JS::ubi::StackFrame; |
| |
| static js::HashNumber hash(const Lookup& lookup) { |
| return lookup.identifier(); |
| } |
| |
| static bool match(const StackFrame& key, const Lookup& lookup) { |
| return key == lookup; |
| } |
| |
| static void rekey(StackFrame& k, const StackFrame& newKey) { |
| k = newKey; |
| } |
| }; |
| }; |
| |
| // The ubi::StackFrame null pointer. Any attempt to operate on a null |
| // ubi::StackFrame crashes. |
| template<> |
| class ConcreteStackFrame<void> : public BaseStackFrame { |
| explicit ConcreteStackFrame(void* ptr) : BaseStackFrame(ptr) { } |
| |
| public: |
| static void construct(void* storage, void*) { new (storage) ConcreteStackFrame(nullptr); } |
| |
| uint64_t identifier() const override { return 0; } |
| void trace(JSTracer* trc) override { } |
| bool constructSavedFrameStack(JSContext* cx, MutableHandleObject out) const override { |
| out.set(nullptr); |
| return true; |
| } |
| |
| uint32_t line() const override { MOZ_CRASH("null JS::ubi::StackFrame"); } |
| uint32_t column() const override { MOZ_CRASH("null JS::ubi::StackFrame"); } |
| AtomOrTwoByteChars source() const override { MOZ_CRASH("null JS::ubi::StackFrame"); } |
| AtomOrTwoByteChars functionDisplayName() const override { MOZ_CRASH("null JS::ubi::StackFrame"); } |
| StackFrame parent() const override { MOZ_CRASH("null JS::ubi::StackFrame"); } |
| bool isSystem() const override { MOZ_CRASH("null JS::ubi::StackFrame"); } |
| bool isSelfHosted() const override { MOZ_CRASH("null JS::ubi::StackFrame"); } |
| }; |
| |
| bool ConstructSavedFrameStackSlow(JSContext* cx, JS::ubi::StackFrame& frame, |
| MutableHandleObject outSavedFrameStack); |
| |
| |
| /*** ubi::Node ************************************************************************************/ |
| |
| // A concrete node specialization can claim its referent is a member of a |
| // particular "coarse type" which is less specific than the actual |
| // implementation type but generally more palatable for web developers. For |
| // example, JitCode can be considered to have a coarse type of "Script". This is |
| // used by some analyses for putting nodes into different buckets. The default, |
| // if a concrete specialization does not provide its own mapping to a CoarseType |
| // variant, is "Other". |
| // |
| // NB: the values associated with a particular enum variant must not change or |
| // be reused for new variants. Doing so will cause inspecting ubi::Nodes backed |
| // by an offline heap snapshot from an older SpiderMonkey/Firefox version to |
| // break. Consider this enum append only. |
| enum class CoarseType: uint32_t { |
| Other = 0, |
| Object = 1, |
| Script = 2, |
| String = 3, |
| |
| FIRST = Other, |
| LAST = String |
| }; |
| |
| inline uint32_t |
| CoarseTypeToUint32(CoarseType type) |
| { |
| return static_cast<uint32_t>(type); |
| } |
| |
| inline bool |
| Uint32IsValidCoarseType(uint32_t n) |
| { |
| auto first = static_cast<uint32_t>(CoarseType::FIRST); |
| auto last = static_cast<uint32_t>(CoarseType::LAST); |
| MOZ_ASSERT(first < last); |
| return first <= n && n <= last; |
| } |
| |
| inline CoarseType |
| Uint32ToCoarseType(uint32_t n) |
| { |
| MOZ_ASSERT(Uint32IsValidCoarseType(n)); |
| return static_cast<CoarseType>(n); |
| } |
| |
| // The base class implemented by each ubi::Node referent type. Subclasses must |
| // not add data members to this class. |
| class Base { |
| friend class Node; |
| |
| // For performance's sake, we'd prefer to avoid a virtual destructor; and |
| // an empty constructor seems consistent with the 'lightweight value type' |
| // visible behavior we're trying to achieve. But if the destructor isn't |
| // virtual, and a subclass overrides it, the subclass's destructor will be |
| // ignored. Is there a way to make the compiler catch that error? |
| |
| protected: |
| // Space for the actual pointer. Concrete subclasses should define a |
| // properly typed 'get' member function to access this. |
| void* ptr; |
| |
| explicit Base(void* ptr) : ptr(ptr) { } |
| |
| public: |
| bool operator==(const Base& rhs) const { |
| // Some compilers will indeed place objects of different types at |
| // the same address, so technically, we should include the vtable |
| // in this comparison. But it seems unlikely to cause problems in |
| // practice. |
| return ptr == rhs.ptr; |
| } |
| bool operator!=(const Base& rhs) const { return !(*this == rhs); } |
| |
| // An identifier for this node, guaranteed to be stable and unique for as |
| // long as this ubi::Node's referent is alive and at the same address. |
| // |
| // This is probably suitable for use in serializations, as it is an integral |
| // type. It may also help save memory when constructing HashSets of |
| // ubi::Nodes: since a uint64_t will always be smaller-or-equal-to the size |
| // of a ubi::Node, a HashSet<ubi::Node::Id> may use less space per element |
| // than a HashSet<ubi::Node>. |
| // |
| // (Note that 'unique' only means 'up to equality on ubi::Node'; see the |
| // caveats about multiple objects allocated at the same address for |
| // 'ubi::Node::operator=='.) |
| using Id = uint64_t; |
| virtual Id identifier() const { return Id(uintptr_t(ptr)); } |
| |
| // Returns true if this node is pointing to something on the live heap, as |
| // opposed to something from a deserialized core dump. Returns false, |
| // otherwise. |
| virtual bool isLive() const { return true; }; |
| |
| // Return the coarse-grained type-of-thing that this node represents. |
| virtual CoarseType coarseType() const { return CoarseType::Other; } |
| |
| // Return a human-readable name for the referent's type. The result should |
| // be statically allocated. (You can use MOZ_UTF16("strings") for this.) |
| // |
| // This must always return Concrete<T>::concreteTypeName; we use that |
| // pointer as a tag for this particular referent type. |
| virtual const char16_t* typeName() const = 0; |
| |
| // Return the size of this node, in bytes. Include any structures that this |
| // node owns exclusively that are not exposed as their own ubi::Nodes. |
| // |mallocSizeOf| should be a malloc block sizing function; see |
| // |mfbt/MemoryReporting.h|. |
| using Size = uint64_t; |
| virtual Size size(mozilla::MallocSizeOf mallocSizeof) const { return 1; } |
| |
| // Return an EdgeRange that initially contains all the referent's outgoing |
| // edges. The caller takes ownership of the EdgeRange. |
| // |
| // If wantNames is true, compute names for edges. Doing so can be expensive |
| // in time and memory. |
| virtual UniquePtr<EdgeRange> edges(JSRuntime* rt, bool wantNames) const = 0; |
| |
| // Return the Zone to which this node's referent belongs, or nullptr if the |
| // referent is not of a type allocated in SpiderMonkey Zones. |
| virtual JS::Zone* zone() const { return nullptr; } |
| |
| // Return the compartment for this node. Some ubi::Node referents are not |
| // associated with JSCompartments, such as JSStrings (which are associated |
| // with Zones). When the referent is not associated with a compartment, |
| // nullptr is returned. |
| virtual JSCompartment* compartment() const { return nullptr; } |
| |
| // Return whether this node's referent's allocation stack was captured. |
| virtual bool hasAllocationStack() const { return false; } |
| |
| // Get the stack recorded at the time this node's referent was |
| // allocated. This must only be called when hasAllocationStack() is true. |
| virtual StackFrame allocationStack() const { |
| MOZ_CRASH("Concrete classes that have an allocation stack must override both " |
| "hasAllocationStack and allocationStack."); |
| } |
| |
| // Methods for JSObject Referents |
| // |
| // These methods are only semantically valid if the referent is either a |
| // JSObject in the live heap, or represents a previously existing JSObject |
| // from some deserialized heap snapshot. |
| |
| // Return the object's [[Class]]'s name. |
| virtual const char* jsObjectClassName() const { return nullptr; } |
| |
| // If this object was constructed with `new` and we have the data available, |
| // place the contructor function's display name in the out parameter. |
| // Otherwise, place nullptr in the out parameter. Caller maintains ownership |
| // of the out parameter. True is returned on success, false is returned on |
| // OOM. |
| virtual bool jsObjectConstructorName(JSContext* cx, |
| UniquePtr<char16_t[], JS::FreePolicy>& outName) const { |
| outName.reset(nullptr); |
| return true; |
| } |
| |
| // Methods for CoarseType::Script referents |
| |
| // Return the script's source's filename if available. If unavailable, |
| // return nullptr. |
| virtual const char* scriptFilename() const { return nullptr; } |
| |
| private: |
| Base(const Base& rhs) = delete; |
| Base& operator=(const Base& rhs) = delete; |
| }; |
| |
| // A traits template with a specialization for each referent type that |
| // ubi::Node supports. The specialization must be the concrete subclass of |
| // Base that represents a pointer to the referent type. It must also |
| // include the members described here. |
| template<typename Referent> |
| struct Concrete { |
| // The specific char16_t array returned by Concrete<T>::typeName. |
| static const char16_t concreteTypeName[]; |
| |
| // Construct an instance of this concrete class in |storage| referring |
| // to |referent|. Implementations typically use a placement 'new'. |
| // |
| // In some cases, |referent| will contain dynamic type information that |
| // identifies it a some more specific subclass of |Referent|. For example, |
| // when |Referent| is |JSObject|, then |referent->getClass()| could tell us |
| // that it's actually a JSFunction. Similarly, if |Referent| is |
| // |nsISupports|, we would like a ubi::Node that knows its final |
| // implementation type. |
| // |
| // So, we delegate the actual construction to this specialization, which |
| // knows Referent's details. |
| static void construct(void* storage, Referent* referent); |
| }; |
| |
| // A container for a Base instance; all members simply forward to the contained |
| // instance. This container allows us to pass ubi::Node instances by value. |
| class Node { |
| // Storage in which we allocate Base subclasses. |
| mozilla::AlignedStorage2<Base> storage; |
| Base* base() { return storage.addr(); } |
| const Base* base() const { return storage.addr(); } |
| |
| template<typename T> |
| void construct(T* ptr) { |
| static_assert(sizeof(Concrete<T>) == sizeof(*base()), |
| "ubi::Base specializations must be the same size as ubi::Base"); |
| Concrete<T>::construct(base(), ptr); |
| } |
| struct ConstructFunctor; |
| |
| public: |
| Node() { construct<void>(nullptr); } |
| |
| template<typename T> |
| MOZ_IMPLICIT Node(T* ptr) { |
| construct(ptr); |
| } |
| template<typename T> |
| Node& operator=(T* ptr) { |
| construct(ptr); |
| return *this; |
| } |
| |
| // We can construct and assign from rooted forms of pointers. |
| template<typename T> |
| MOZ_IMPLICIT Node(const Rooted<T*>& root) { |
| construct(root.get()); |
| } |
| template<typename T> |
| Node& operator=(const Rooted<T*>& root) { |
| construct(root.get()); |
| return *this; |
| } |
| |
| // Constructors accepting SpiderMonkey's other generic-pointer-ish types. |
| // Note that we *do* want an implicit constructor here: JS::Value and |
| // JS::ubi::Node are both essentially tagged references to other sorts of |
| // objects, so letting conversions happen automatically is appropriate. |
| MOZ_IMPLICIT Node(JS::HandleValue value); |
| explicit Node(const JS::GCCellPtr& thing); |
| |
| // copy construction and copy assignment just use memcpy, since we know |
| // instances contain nothing but a vtable pointer and a data pointer. |
| // |
| // To be completely correct, concrete classes could provide a virtual |
| // 'construct' member function, which we could invoke on rhs to construct an |
| // instance in our storage. But this is good enough; there's no need to jump |
| // through vtables for copying and assignment that are just going to move |
| // two words around. The compiler knows how to optimize memcpy. |
| Node(const Node& rhs) { |
| memcpy(storage.u.mBytes, rhs.storage.u.mBytes, sizeof(storage.u)); |
| } |
| |
| Node& operator=(const Node& rhs) { |
| memcpy(storage.u.mBytes, rhs.storage.u.mBytes, sizeof(storage.u)); |
| return *this; |
| } |
| |
| bool operator==(const Node& rhs) const { return *base() == *rhs.base(); } |
| bool operator!=(const Node& rhs) const { return *base() != *rhs.base(); } |
| |
| explicit operator bool() const { |
| return base()->ptr != nullptr; |
| } |
| |
| bool isLive() const { return base()->isLive(); } |
| |
| // Get the canonical type name for the given type T. |
| template<typename T> |
| static const char16_t* canonicalTypeName() { return Concrete<T>::concreteTypeName; } |
| |
| template<typename T> |
| bool is() const { |
| return base()->typeName() == canonicalTypeName<T>(); |
| } |
| |
| template<typename T> |
| T* as() const { |
| MOZ_ASSERT(isLive()); |
| MOZ_ASSERT(is<T>()); |
| return static_cast<T*>(base()->ptr); |
| } |
| |
| template<typename T> |
| T* asOrNull() const { |
| MOZ_ASSERT(isLive()); |
| return is<T>() ? static_cast<T*>(base()->ptr) : nullptr; |
| } |
| |
| // If this node refers to something that can be represented as a JavaScript |
| // value that is safe to expose to JavaScript code, return that value. |
| // Otherwise return UndefinedValue(). JSStrings, JS::Symbols, and some (but |
| // not all!) JSObjects can be exposed. |
| JS::Value exposeToJS() const; |
| |
| CoarseType coarseType() const { return base()->coarseType(); } |
| const char16_t* typeName() const { return base()->typeName(); } |
| JS::Zone* zone() const { return base()->zone(); } |
| JSCompartment* compartment() const { return base()->compartment(); } |
| const char* jsObjectClassName() const { return base()->jsObjectClassName(); } |
| bool jsObjectConstructorName(JSContext* cx, |
| UniquePtr<char16_t[], JS::FreePolicy>& outName) const { |
| return base()->jsObjectConstructorName(cx, outName); |
| } |
| |
| const char* scriptFilename() const { return base()->scriptFilename(); } |
| |
| using Size = Base::Size; |
| Size size(mozilla::MallocSizeOf mallocSizeof) const { |
| auto size = base()->size(mallocSizeof); |
| MOZ_ASSERT(size > 0, |
| "C++ does not have zero-sized types! Choose 1 if you just need a " |
| "conservative default."); |
| return size; |
| } |
| |
| UniquePtr<EdgeRange> edges(JSRuntime* rt, bool wantNames = true) const { |
| return base()->edges(rt, wantNames); |
| } |
| |
| bool hasAllocationStack() const { return base()->hasAllocationStack(); } |
| StackFrame allocationStack() const { |
| return base()->allocationStack(); |
| } |
| |
| using Id = Base::Id; |
| Id identifier() const { |
| auto id = base()->identifier(); |
| MOZ_ASSERT(JS::Value::isNumberRepresentable(id)); |
| return id; |
| } |
| |
| // A hash policy for ubi::Nodes. |
| // This simply uses the stock PointerHasher on the ubi::Node's pointer. |
| // We specialize DefaultHasher below to make this the default. |
| class HashPolicy { |
| typedef js::PointerHasher<void*, mozilla::tl::FloorLog2<sizeof(void*)>::value> PtrHash; |
| |
| public: |
| typedef Node Lookup; |
| |
| static js::HashNumber hash(const Lookup& l) { return PtrHash::hash(l.base()->ptr); } |
| static bool match(const Node& k, const Lookup& l) { return k == l; } |
| static void rekey(Node& k, const Node& newKey) { k = newKey; } |
| }; |
| }; |
| |
| |
| /*** Edge and EdgeRange ***************************************************************************/ |
| |
| using EdgeName = UniquePtr<const char16_t[], JS::FreePolicy>; |
| |
| // An outgoing edge to a referent node. |
| class Edge { |
| public: |
| Edge() : name(nullptr), referent() { } |
| |
| // Construct an initialized Edge, taking ownership of |name|. |
| Edge(char16_t* name, const Node& referent) |
| : name(name) |
| , referent(referent) |
| { } |
| |
| // Move construction and assignment. |
| Edge(Edge&& rhs) |
| : name(mozilla::Move(rhs.name)) |
| , referent(rhs.referent) |
| { } |
| |
| Edge& operator=(Edge&& rhs) { |
| MOZ_ASSERT(&rhs != this); |
| this->~Edge(); |
| new (this) Edge(mozilla::Move(rhs)); |
| return *this; |
| } |
| |
| Edge(const Edge&) = delete; |
| Edge& operator=(const Edge&) = delete; |
| |
| // This edge's name. This may be nullptr, if Node::edges was called with |
| // false as the wantNames parameter. |
| // |
| // The storage is owned by this Edge, and will be freed when this Edge is |
| // destructed. |
| // |
| // (In real life we'll want a better representation for names, to avoid |
| // creating tons of strings when the names follow a pattern; and we'll need |
| // to think about lifetimes carefully to ensure traversal stays cheap.) |
| EdgeName name; |
| |
| // This edge's referent. |
| Node referent; |
| }; |
| |
| // EdgeRange is an abstract base class for iterating over a node's outgoing |
| // edges. (This is modeled after js::HashTable<K,V>::Range.) |
| // |
| // Concrete instances of this class need not be as lightweight as Node itself, |
| // since they're usually only instantiated while iterating over a particular |
| // object's edges. For example, a dumb implementation for JS Cells might use |
| // JS::TraceChildren to to get the outgoing edges, and then store them in an |
| // array internal to the EdgeRange. |
| class EdgeRange { |
| protected: |
| // The current front edge of this range, or nullptr if this range is empty. |
| Edge* front_; |
| |
| EdgeRange() : front_(nullptr) { } |
| |
| public: |
| virtual ~EdgeRange() { } |
| |
| // True if there are no more edges in this range. |
| bool empty() const { return !front_; } |
| |
| // The front edge of this range. This is owned by the EdgeRange, and is |
| // only guaranteed to live until the next call to popFront, or until |
| // the EdgeRange is destructed. |
| const Edge& front() const { return *front_; } |
| Edge& front() { return *front_; } |
| |
| // Remove the front edge from this range. This should only be called if |
| // !empty(). |
| virtual void popFront() = 0; |
| |
| private: |
| EdgeRange(const EdgeRange&) = delete; |
| EdgeRange& operator=(const EdgeRange&) = delete; |
| }; |
| |
| |
| typedef mozilla::Vector<Edge, 8, js::SystemAllocPolicy> EdgeVector; |
| |
| // An EdgeRange concrete class that holds a pre-existing vector of |
| // Edges. A PreComputedEdgeRange does not take ownership of its |
| // EdgeVector; it is up to the PreComputedEdgeRange's consumer to manage |
| // that lifetime. |
| class PreComputedEdgeRange : public EdgeRange { |
| EdgeVector& edges; |
| size_t i; |
| |
| void settle() { |
| front_ = i < edges.length() ? &edges[i] : nullptr; |
| } |
| |
| public: |
| explicit PreComputedEdgeRange(EdgeVector& edges) |
| : edges(edges), |
| i(0) |
| { |
| settle(); |
| } |
| |
| void popFront() override { |
| MOZ_ASSERT(!empty()); |
| i++; |
| settle(); |
| } |
| }; |
| |
| /*** RootList *************************************************************************************/ |
| |
| // RootList is a class that can be pointed to by a |ubi::Node|, creating a |
| // fictional root-of-roots which has edges to every GC root in the JS |
| // runtime. Having a single root |ubi::Node| is useful for algorithms written |
| // with the assumption that there aren't multiple roots (such as computing |
| // dominator trees) and you want a single point of entry. It also ensures that |
| // the roots themselves get visited by |ubi::BreadthFirst| (they would otherwise |
| // only be used as starting points). |
| // |
| // RootList::init itself causes a minor collection, but once the list of roots |
| // has been created, GC must not occur, as the referent ubi::Nodes are not |
| // stable across GC. The init calls emplace on |noGC|'s AutoCheckCannotGC, whose |
| // lifetime must extend at least as long as the RootList itself. |
| // |
| // Example usage: |
| // |
| // { |
| // mozilla::Maybe<JS::AutoCheckCannotGC> maybeNoGC; |
| // JS::ubi::RootList rootList(rt, maybeNoGC); |
| // if (!rootList.init()) |
| // return false; |
| // |
| // // The AutoCheckCannotGC is guaranteed to exist if init returned true. |
| // MOZ_ASSERT(maybeNoGC.isSome()); |
| // |
| // JS::ubi::Node root(&rootList); |
| // |
| // ... |
| // } |
| class MOZ_STACK_CLASS RootList { |
| Maybe<AutoCheckCannotGC>& noGC; |
| |
| public: |
| JSRuntime* rt; |
| EdgeVector edges; |
| bool wantNames; |
| |
| RootList(JSRuntime* rt, Maybe<AutoCheckCannotGC>& noGC, bool wantNames = false); |
| |
| // Find all GC roots. |
| bool init(); |
| // Find only GC roots in the provided set of |Zone|s. |
| bool init(ZoneSet& debuggees); |
| // Find only GC roots in the given Debugger object's set of debuggee zones. |
| bool init(HandleObject debuggees); |
| |
| // Returns true if the RootList has been initialized successfully, false |
| // otherwise. |
| bool initialized() { return noGC.isSome(); } |
| |
| // Explicitly add the given Node as a root in this RootList. If wantNames is |
| // true, you must pass an edgeName. The RootList does not take ownership of |
| // edgeName. |
| bool addRoot(Node node, const char16_t* edgeName = nullptr); |
| }; |
| |
| |
| /*** Concrete classes for ubi::Node referent types ************************************************/ |
| |
| template<> |
| struct Concrete<RootList> : public Base { |
| UniquePtr<EdgeRange> edges(JSRuntime* rt, bool wantNames) const override; |
| const char16_t* typeName() const override { return concreteTypeName; } |
| |
| protected: |
| explicit Concrete(RootList* ptr) : Base(ptr) { } |
| RootList& get() const { return *static_cast<RootList*>(ptr); } |
| |
| public: |
| static const char16_t concreteTypeName[]; |
| static void construct(void* storage, RootList* ptr) { new (storage) Concrete(ptr); } |
| }; |
| |
| // A reusable ubi::Concrete specialization base class for types supported by |
| // JS::TraceChildren. |
| template<typename Referent> |
| class TracerConcrete : public Base { |
| const char16_t* typeName() const override { return concreteTypeName; } |
| UniquePtr<EdgeRange> edges(JSRuntime* rt, bool wantNames) const override; |
| JS::Zone* zone() const override; |
| |
| protected: |
| explicit TracerConcrete(Referent* ptr) : Base(ptr) { } |
| Referent& get() const { return *static_cast<Referent*>(ptr); } |
| |
| public: |
| static const char16_t concreteTypeName[]; |
| static void construct(void* storage, Referent* ptr) { new (storage) TracerConcrete(ptr); } |
| }; |
| |
| // For JS::TraceChildren-based types that have a 'compartment' method. |
| template<typename Referent> |
| class TracerConcreteWithCompartment : public TracerConcrete<Referent> { |
| typedef TracerConcrete<Referent> TracerBase; |
| JSCompartment* compartment() const override; |
| |
| protected: |
| explicit TracerConcreteWithCompartment(Referent* ptr) : TracerBase(ptr) { } |
| |
| public: |
| static void construct(void* storage, Referent* ptr) { |
| new (storage) TracerConcreteWithCompartment(ptr); |
| } |
| }; |
| |
| // Define specializations for some commonly-used public JSAPI types. |
| // These can use the generic templates above. |
| template<> |
| struct Concrete<JS::Symbol> : TracerConcrete<JS::Symbol> { |
| Size size(mozilla::MallocSizeOf mallocSizeOf) const override; |
| |
| protected: |
| explicit Concrete(JS::Symbol* ptr) : TracerConcrete(ptr) { } |
| |
| public: |
| static void construct(void* storage, JS::Symbol* ptr) { |
| new (storage) Concrete(ptr); |
| } |
| }; |
| |
| template<> struct Concrete<JSScript> : TracerConcreteWithCompartment<JSScript> { |
| CoarseType coarseType() const final { return CoarseType::Script; } |
| Size size(mozilla::MallocSizeOf mallocSizeOf) const override; |
| const char* scriptFilename() const final; |
| |
| protected: |
| explicit Concrete(JSScript *ptr) : TracerConcreteWithCompartment<JSScript>(ptr) { } |
| |
| public: |
| static void construct(void *storage, JSScript *ptr) { new (storage) Concrete(ptr); } |
| }; |
| |
| // The JSObject specialization. |
| template<> |
| class Concrete<JSObject> : public TracerConcreteWithCompartment<JSObject> { |
| const char* jsObjectClassName() const override; |
| bool jsObjectConstructorName(JSContext* cx, |
| UniquePtr<char16_t[], JS::FreePolicy>& outName) const override; |
| Size size(mozilla::MallocSizeOf mallocSizeOf) const override; |
| |
| bool hasAllocationStack() const override; |
| StackFrame allocationStack() const override; |
| |
| CoarseType coarseType() const final { return CoarseType::Object; } |
| |
| protected: |
| explicit Concrete(JSObject* ptr) : TracerConcreteWithCompartment(ptr) { } |
| |
| public: |
| static void construct(void* storage, JSObject* ptr) { |
| new (storage) Concrete(ptr); |
| } |
| }; |
| |
| // For JSString, we extend the generic template with a 'size' implementation. |
| template<> struct Concrete<JSString> : TracerConcrete<JSString> { |
| Size size(mozilla::MallocSizeOf mallocSizeOf) const override; |
| |
| CoarseType coarseType() const final { return CoarseType::String; } |
| |
| protected: |
| explicit Concrete(JSString *ptr) : TracerConcrete<JSString>(ptr) { } |
| |
| public: |
| static void construct(void *storage, JSString *ptr) { new (storage) Concrete(ptr); } |
| }; |
| |
| // The ubi::Node null pointer. Any attempt to operate on a null ubi::Node asserts. |
| template<> |
| class Concrete<void> : public Base { |
| const char16_t* typeName() const override; |
| Size size(mozilla::MallocSizeOf mallocSizeOf) const override; |
| UniquePtr<EdgeRange> edges(JSRuntime* rt, bool wantNames) const override; |
| JS::Zone* zone() const override; |
| JSCompartment* compartment() const override; |
| CoarseType coarseType() const final; |
| |
| explicit Concrete(void* ptr) : Base(ptr) { } |
| |
| public: |
| static void construct(void* storage, void* ptr) { new (storage) Concrete(ptr); } |
| static const char16_t concreteTypeName[]; |
| }; |
| |
| |
| } // namespace ubi |
| } // namespace JS |
| |
| namespace js { |
| |
| // Make ubi::Node::HashPolicy the default hash policy for ubi::Node. |
| template<> struct DefaultHasher<JS::ubi::Node> : JS::ubi::Node::HashPolicy { }; |
| template<> struct DefaultHasher<JS::ubi::StackFrame> : JS::ubi::StackFrame::HashPolicy { }; |
| |
| } // namespace js |
| |
| #endif // js_UbiNode_h |