| /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ |
| /* vim: set ts=8 sts=2 et sw=2 tw=80: */ |
| /* This Source Code Form is subject to the terms of the Mozilla Public |
| * License, v. 2.0. If a copy of the MPL was not distributed with this |
| * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
| |
| /* Utilities for hashing. */ |
| |
| /* |
| * This file exports functions for hashing data down to a 32-bit value, |
| * including: |
| * |
| * - HashString Hash a char* or uint16_t/wchar_t* of known or unknown |
| * length. |
| * |
| * - HashBytes Hash a byte array of known length. |
| * |
| * - HashGeneric Hash one or more values. Currently, we support uint32_t, |
| * types which can be implicitly cast to uint32_t, data |
| * pointers, and function pointers. |
| * |
| * - AddToHash Add one or more values to the given hash. This supports the |
| * same list of types as HashGeneric. |
| * |
| * |
| * You can chain these functions together to hash complex objects. For example: |
| * |
| * class ComplexObject |
| * { |
| * char* mStr; |
| * uint32_t mUint1, mUint2; |
| * void (*mCallbackFn)(); |
| * |
| * public: |
| * uint32_t hash() |
| * { |
| * uint32_t hash = HashString(mStr); |
| * hash = AddToHash(hash, mUint1, mUint2); |
| * return AddToHash(hash, mCallbackFn); |
| * } |
| * }; |
| * |
| * If you want to hash an nsAString or nsACString, use the HashString functions |
| * in nsHashKeys.h. |
| */ |
| |
| #ifndef mozilla_HashFunctions_h |
| #define mozilla_HashFunctions_h |
| |
| #include "mozilla/Assertions.h" |
| #include "mozilla/Attributes.h" |
| #include "mozilla/Char16.h" |
| #include "mozilla/Types.h" |
| |
| #include <stdint.h> |
| |
| #ifdef __cplusplus |
| namespace mozilla { |
| |
| /** |
| * The golden ratio as a 32-bit fixed-point value. |
| */ |
| static const uint32_t kGoldenRatioU32 = 0x9E3779B9U; |
| |
| inline uint32_t |
| RotateBitsLeft32(uint32_t aValue, uint8_t aBits) |
| { |
| MOZ_ASSERT(aBits < 32); |
| return (aValue << aBits) | (aValue >> (32 - aBits)); |
| } |
| |
| namespace detail { |
| |
| inline uint32_t |
| AddU32ToHash(uint32_t aHash, uint32_t aValue) |
| { |
| /* |
| * This is the meat of all our hash routines. This hash function is not |
| * particularly sophisticated, but it seems to work well for our mostly |
| * plain-text inputs. Implementation notes follow. |
| * |
| * Our use of the golden ratio here is arbitrary; we could pick almost any |
| * number which: |
| * |
| * * is odd (because otherwise, all our hash values will be even) |
| * |
| * * has a reasonably-even mix of 1's and 0's (consider the extreme case |
| * where we multiply by 0x3 or 0xeffffff -- this will not produce good |
| * mixing across all bits of the hash). |
| * |
| * The rotation length of 5 is also arbitrary, although an odd number is again |
| * preferable so our hash explores the whole universe of possible rotations. |
| * |
| * Finally, we multiply by the golden ratio *after* xor'ing, not before. |
| * Otherwise, if |aHash| is 0 (as it often is for the beginning of a |
| * message), the expression |
| * |
| * (kGoldenRatioU32 * RotateBitsLeft(aHash, 5)) |xor| aValue |
| * |
| * evaluates to |aValue|. |
| * |
| * (Number-theoretic aside: Because any odd number |m| is relatively prime to |
| * our modulus (2^32), the list |
| * |
| * [x * m (mod 2^32) for 0 <= x < 2^32] |
| * |
| * has no duplicate elements. This means that multiplying by |m| does not |
| * cause us to skip any possible hash values. |
| * |
| * It's also nice if |m| has large-ish order mod 2^32 -- that is, if the |
| * smallest k such that m^k == 1 (mod 2^32) is large -- so we can safely |
| * multiply our hash value by |m| a few times without negating the |
| * multiplicative effect. Our golden ratio constant has order 2^29, which is |
| * more than enough for our purposes.) |
| */ |
| return kGoldenRatioU32 * (RotateBitsLeft32(aHash, 5) ^ aValue); |
| } |
| |
| /** |
| * AddUintptrToHash takes sizeof(uintptr_t) as a template parameter. |
| */ |
| template<size_t PtrSize> |
| inline uint32_t |
| AddUintptrToHash(uint32_t aHash, uintptr_t aValue); |
| |
| template<> |
| inline uint32_t |
| AddUintptrToHash<4>(uint32_t aHash, uintptr_t aValue) |
| { |
| return AddU32ToHash(aHash, static_cast<uint32_t>(aValue)); |
| } |
| |
| template<> |
| inline uint32_t |
| AddUintptrToHash<8>(uint32_t aHash, uintptr_t aValue) |
| { |
| /* |
| * The static cast to uint64_t below is necessary because this function |
| * sometimes gets compiled on 32-bit platforms (yes, even though it's a |
| * template and we never call this particular override in a 32-bit build). If |
| * we do aValue >> 32 on a 32-bit machine, we're shifting a 32-bit uintptr_t |
| * right 32 bits, and the compiler throws an error. |
| */ |
| uint32_t v1 = static_cast<uint32_t>(aValue); |
| uint32_t v2 = static_cast<uint32_t>(static_cast<uint64_t>(aValue) >> 32); |
| return AddU32ToHash(AddU32ToHash(aHash, v1), v2); |
| } |
| |
| } /* namespace detail */ |
| |
| /** |
| * AddToHash takes a hash and some values and returns a new hash based on the |
| * inputs. |
| * |
| * Currently, we support hashing uint32_t's, values which we can implicitly |
| * convert to uint32_t, data pointers, and function pointers. |
| */ |
| template<typename A> |
| MOZ_WARN_UNUSED_RESULT inline uint32_t |
| AddToHash(uint32_t aHash, A aA) |
| { |
| /* |
| * Try to convert |A| to uint32_t implicitly. If this works, great. If not, |
| * we'll error out. |
| */ |
| return detail::AddU32ToHash(aHash, aA); |
| } |
| |
| template<typename A> |
| MOZ_WARN_UNUSED_RESULT inline uint32_t |
| AddToHash(uint32_t aHash, A* aA) |
| { |
| /* |
| * You might think this function should just take a void*. But then we'd only |
| * catch data pointers and couldn't handle function pointers. |
| */ |
| |
| static_assert(sizeof(aA) == sizeof(uintptr_t), "Strange pointer!"); |
| |
| return detail::AddUintptrToHash<sizeof(uintptr_t)>(aHash, uintptr_t(aA)); |
| } |
| |
| template<> |
| MOZ_WARN_UNUSED_RESULT inline uint32_t |
| AddToHash(uint32_t aHash, uintptr_t aA) |
| { |
| return detail::AddUintptrToHash<sizeof(uintptr_t)>(aHash, aA); |
| } |
| |
| template<typename A, typename... Args> |
| MOZ_WARN_UNUSED_RESULT uint32_t |
| AddToHash(uint32_t aHash, A aArg, Args... aArgs) |
| { |
| return AddToHash(AddToHash(aHash, aArg), aArgs...); |
| } |
| |
| /** |
| * The HashGeneric class of functions let you hash one or more values. |
| * |
| * If you want to hash together two values x and y, calling HashGeneric(x, y) is |
| * much better than calling AddToHash(x, y), because AddToHash(x, y) assumes |
| * that x has already been hashed. |
| */ |
| template<typename... Args> |
| MOZ_WARN_UNUSED_RESULT inline uint32_t |
| HashGeneric(Args... aArgs) |
| { |
| return AddToHash(0, aArgs...); |
| } |
| |
| namespace detail { |
| |
| template<typename T> |
| uint32_t |
| HashUntilZero(const T* aStr) |
| { |
| uint32_t hash = 0; |
| for (T c; (c = *aStr); aStr++) { |
| hash = AddToHash(hash, c); |
| } |
| return hash; |
| } |
| |
| template<typename T> |
| uint32_t |
| HashKnownLength(const T* aStr, size_t aLength) |
| { |
| uint32_t hash = 0; |
| for (size_t i = 0; i < aLength; i++) { |
| hash = AddToHash(hash, aStr[i]); |
| } |
| return hash; |
| } |
| |
| } /* namespace detail */ |
| |
| /** |
| * The HashString overloads below do just what you'd expect. |
| * |
| * If you have the string's length, you might as well call the overload which |
| * includes the length. It may be marginally faster. |
| */ |
| MOZ_WARN_UNUSED_RESULT inline uint32_t |
| HashString(const char* aStr) |
| { |
| return detail::HashUntilZero(reinterpret_cast<const unsigned char*>(aStr)); |
| } |
| |
| MOZ_WARN_UNUSED_RESULT inline uint32_t |
| HashString(const char* aStr, size_t aLength) |
| { |
| return detail::HashKnownLength(reinterpret_cast<const unsigned char*>(aStr), aLength); |
| } |
| |
| MOZ_WARN_UNUSED_RESULT |
| inline uint32_t |
| HashString(const unsigned char* aStr, size_t aLength) |
| { |
| return detail::HashKnownLength(aStr, aLength); |
| } |
| |
| MOZ_WARN_UNUSED_RESULT inline uint32_t |
| HashString(const uint16_t* aStr) |
| { |
| return detail::HashUntilZero(aStr); |
| } |
| |
| MOZ_WARN_UNUSED_RESULT inline uint32_t |
| HashString(const uint16_t* aStr, size_t aLength) |
| { |
| return detail::HashKnownLength(aStr, aLength); |
| } |
| |
| #ifdef MOZ_CHAR16_IS_NOT_WCHAR |
| MOZ_WARN_UNUSED_RESULT inline uint32_t |
| HashString(const char16_t* aStr) |
| { |
| return detail::HashUntilZero(aStr); |
| } |
| |
| MOZ_WARN_UNUSED_RESULT inline uint32_t |
| HashString(const char16_t* aStr, size_t aLength) |
| { |
| return detail::HashKnownLength(aStr, aLength); |
| } |
| #endif |
| |
| /* |
| * On Windows, wchar_t (char16_t) is not the same as uint16_t, even though it's |
| * the same width! |
| */ |
| #ifdef WIN32 |
| MOZ_WARN_UNUSED_RESULT inline uint32_t |
| HashString(const wchar_t* aStr) |
| { |
| return detail::HashUntilZero(aStr); |
| } |
| |
| MOZ_WARN_UNUSED_RESULT inline uint32_t |
| HashString(const wchar_t* aStr, size_t aLength) |
| { |
| return detail::HashKnownLength(aStr, aLength); |
| } |
| #endif |
| |
| /** |
| * Hash some number of bytes. |
| * |
| * This hash walks word-by-word, rather than byte-by-byte, so you won't get the |
| * same result out of HashBytes as you would out of HashString. |
| */ |
| MOZ_WARN_UNUSED_RESULT extern MFBT_API uint32_t |
| HashBytes(const void* bytes, size_t aLength); |
| |
| } /* namespace mozilla */ |
| #endif /* __cplusplus */ |
| |
| #endif /* mozilla_HashFunctions_h */ |