blob: d9ff4b2cdd2ee65760c12b52233f57b4a37f011c [file] [log] [blame]
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "tools/gn/header_checker.h"
#include <algorithm>
#include "base/containers/queue.h"
#include "base/files/file_util.h"
#include "base/strings/string_util.h"
#include "tools/gn/build_settings.h"
#include "tools/gn/builder.h"
#include "tools/gn/c_include_iterator.h"
#include "tools/gn/config.h"
#include "tools/gn/config_values_extractors.h"
#include "tools/gn/err.h"
#include "tools/gn/filesystem_utils.h"
#include "tools/gn/scheduler.h"
#include "tools/gn/target.h"
#include "tools/gn/trace.h"
#include "util/worker_pool.h"
namespace {
struct PublicGeneratedPair {
PublicGeneratedPair() : is_public(false), is_generated(false) {}
bool is_public;
bool is_generated;
};
// This class makes InputFiles on the stack as it reads files to check. When
// we throw an error, the Err indicates a locatin which has a pointer to
// an InputFile that must persist as long as the Err does.
//
// To make this work, this function creates a clone of the InputFile managed
// by the InputFileManager so the error can refer to something that
// persists. This means that the current file contents will live as long as
// the program, but this is OK since we're erroring out anyway.
LocationRange CreatePersistentRange(const InputFile& input_file,
const LocationRange& range) {
InputFile* clone_input_file;
std::vector<Token>* tokens; // Don't care about this.
std::unique_ptr<ParseNode>* parse_root; // Don't care about this.
g_scheduler->input_file_manager()->AddDynamicInput(
input_file.name(), &clone_input_file, &tokens, &parse_root);
clone_input_file->SetContents(input_file.contents());
return LocationRange(
Location(clone_input_file, range.begin().line_number(),
range.begin().column_number(), -1 /* TODO(scottmg) */),
Location(clone_input_file, range.end().line_number(),
range.end().column_number(), -1 /* TODO(scottmg) */));
}
// Given a reverse dependency chain where the target chain[0]'s includes are
// being used by chain[end] and not all deps are public, returns the string
// describing the error.
std::string GetDependencyChainPublicError(const HeaderChecker::Chain& chain) {
std::string ret =
"The target:\n " +
chain[chain.size() - 1].target->label().GetUserVisibleName(false) +
"\nis including a file from the target:\n " +
chain[0].target->label().GetUserVisibleName(false) + "\n";
// Invalid chains should always be 0 (no chain) or more than two
// (intermediate private dependencies). 1 and 2 are impossible because a
// target can always include headers from itself and its direct dependents.
DCHECK(chain.size() != 1 && chain.size() != 2);
if (chain.empty()) {
ret += "There is no dependency chain between these targets.";
} else {
// Indirect dependency chain, print the chain.
ret +=
"\nIt's usually best to depend directly on the destination target.\n"
"In some cases, the destination target is considered a subcomponent\n"
"of an intermediate target. In this case, the intermediate target\n"
"should depend publicly on the destination to forward the ability\n"
"to include headers.\n"
"\n"
"Dependency chain (there may also be others):\n";
for (int i = static_cast<int>(chain.size()) - 1; i >= 0; i--) {
ret.append(" " + chain[i].target->label().GetUserVisibleName(false));
if (i != 0) {
// Identify private dependencies so the user can see where in the
// dependency chain things went bad. Don't list this for the first link
// in the chain since direct dependencies are OK, and listing that as
// "private" may make people feel like they need to fix it.
if (i == static_cast<int>(chain.size()) - 1 || chain[i - 1].is_public)
ret.append(" -->");
else
ret.append(" --[private]-->");
}
ret.append("\n");
}
}
return ret;
}
// Returns true if the two targets have the same label not counting the
// toolchain.
bool TargetLabelsMatchExceptToolchain(const Target* a, const Target* b) {
return a->label().dir() == b->label().dir() &&
a->label().name() == b->label().name();
}
// Returns true if the target |annotation_on| includes a friend annotation
// that allows |is_marked_friend| as a friend.
bool FriendMatches(const Target* annotation_on,
const Target* is_marked_friend) {
return LabelPattern::VectorMatches(annotation_on->friends(),
is_marked_friend->label());
}
} // namespace
HeaderChecker::HeaderChecker(const BuildSettings* build_settings,
const std::vector<const Target*>& targets,
bool check_generated)
: build_settings_(build_settings),
check_generated_(check_generated),
lock_(),
task_count_cv_() {
for (auto* target : targets)
AddTargetToFileMap(target, &file_map_);
}
HeaderChecker::~HeaderChecker() = default;
bool HeaderChecker::Run(const std::vector<const Target*>& to_check,
bool force_check,
std::vector<Err>* errors) {
FileMap files_to_check;
for (auto* check : to_check) {
// This function will get called with all target types, but check only
// applies to binary targets.
if (check->IsBinary())
AddTargetToFileMap(check, &files_to_check);
}
RunCheckOverFiles(files_to_check, force_check);
if (errors_.empty())
return true;
*errors = errors_;
return false;
}
void HeaderChecker::RunCheckOverFiles(const FileMap& files, bool force_check) {
WorkerPool pool;
for (const auto& file : files) {
// Only check C-like source files (RC files also have includes).
SourceFile::Type type = file.first.type();
if (type != SourceFile::SOURCE_CPP && type != SourceFile::SOURCE_H &&
type != SourceFile::SOURCE_C && type != SourceFile::SOURCE_M &&
type != SourceFile::SOURCE_MM && type != SourceFile::SOURCE_RC)
continue;
if (!check_generated_) {
// If any target marks it as generated, don't check it. We have to check
// file_map_, which includes all known files; files only includes those
// being checked.
bool is_generated = false;
for (const auto& vect_i : file_map_[file.first])
is_generated |= vect_i.is_generated;
if (is_generated)
continue;
}
for (const auto& vect_i : file.second) {
if (vect_i.target->check_includes()) {
task_count_.Increment();
pool.PostTask([this, target = vect_i.target, file = file.first]() {
DoWork(target, file);
});
}
}
}
// Wait for all tasks posted by this method to complete.
std::unique_lock<std::mutex> auto_lock(lock_);
while (!task_count_.IsZero())
task_count_cv_.wait(auto_lock);
}
void HeaderChecker::DoWork(const Target* target, const SourceFile& file) {
std::vector<Err> errors;
if (!CheckFile(target, file, &errors)) {
std::lock_guard<std::mutex> lock(lock_);
errors_.insert(errors_.end(), errors.begin(), errors.end());
}
if (!task_count_.Decrement()) {
// Signal |task_count_cv_| when |task_count_| becomes zero.
std::unique_lock<std::mutex> auto_lock(lock_);
task_count_cv_.notify_one();
}
}
// static
void HeaderChecker::AddTargetToFileMap(const Target* target, FileMap* dest) {
// Files in the sources have this public bit by default.
bool default_public = target->all_headers_public();
std::map<SourceFile, PublicGeneratedPair> files_to_public;
// First collect the normal files, they get the default visibility. If you
// depend on the compiled target, it should be enough to be able to include
// the header.
for (const auto& source : target->sources()) {
files_to_public[source].is_public = default_public;
}
// Add in the public files, forcing them to public. This may overwrite some
// entries, and it may add new ones.
if (default_public) // List only used when default is not public.
DCHECK(target->public_headers().empty());
for (const auto& source : target->public_headers()) {
files_to_public[source].is_public = true;
}
// Add in outputs from actions. These are treated as public (since if other
// targets can't use them, then there wouldn't be any point in outputting).
std::vector<SourceFile> outputs;
target->action_values().GetOutputsAsSourceFiles(target, &outputs);
for (const auto& output : outputs) {
PublicGeneratedPair* pair = &files_to_public[output];
pair->is_public = true;
pair->is_generated = true;
}
// Add the merged list to the master list of all files.
for (const auto& cur : files_to_public) {
(*dest)[cur.first].push_back(
TargetInfo(target, cur.second.is_public, cur.second.is_generated));
}
}
bool HeaderChecker::IsFileInOuputDir(const SourceFile& file) const {
const std::string& build_dir = build_settings_->build_dir().value();
return file.value().compare(0, build_dir.size(), build_dir) == 0;
}
SourceFile HeaderChecker::SourceFileForInclude(
const std::string_view& relative_file_path,
const std::vector<SourceDir>& include_dirs,
const InputFile& source_file,
const LocationRange& range,
Err* err) const {
using base::FilePath;
Value relative_file_value(nullptr, std::string(relative_file_path));
auto it = std::find_if(
include_dirs.begin(), include_dirs.end(),
[relative_file_value, err, this](const SourceDir& dir) -> bool {
SourceFile include_file =
dir.ResolveRelativeFile(relative_file_value, err);
return file_map_.find(include_file) != file_map_.end();
});
if (it != include_dirs.end())
return it->ResolveRelativeFile(relative_file_value, err);
return SourceFile();
}
bool HeaderChecker::CheckFile(const Target* from_target,
const SourceFile& file,
std::vector<Err>* errors) const {
ScopedTrace trace(TraceItem::TRACE_CHECK_HEADER, file.value());
// Sometimes you have generated source files included as sources in another
// target. These won't exist at checking time. Since we require all generated
// files to be somewhere in the output tree, we can just check the name to
// see if they should be skipped.
if (!check_generated_ && IsFileInOuputDir(file))
return true;
base::FilePath path = build_settings_->GetFullPath(file);
std::string contents;
if (!base::ReadFileToString(path, &contents)) {
// A missing (not yet) generated file is an acceptable problem
// considering this code does not understand conditional includes.
if (IsFileInOuputDir(file))
return true;
errors->emplace_back(from_target->defined_from(), "Source file not found.",
"The target:\n " +
from_target->label().GetUserVisibleName(false) +
"\nhas a source file:\n " + file.value() +
"\nwhich was not found.");
return false;
}
InputFile input_file(file);
input_file.SetContents(contents);
std::vector<SourceDir> include_dirs;
include_dirs.push_back(file.GetDir());
for (ConfigValuesIterator iter(from_target); !iter.done(); iter.Next()) {
const std::vector<SourceDir>& target_include_dirs =
iter.cur().include_dirs();
include_dirs.insert(include_dirs.end(), target_include_dirs.begin(),
target_include_dirs.end());
}
size_t error_count_before = errors->size();
CIncludeIterator iter(&input_file);
std::string_view current_include;
LocationRange range;
std::set<std::pair<const Target*, const Target*>> no_dependency_cache;
while (iter.GetNextIncludeString(&current_include, &range)) {
Err err;
SourceFile include = SourceFileForInclude(current_include, include_dirs,
input_file, range, &err);
if (!include.is_null())
CheckInclude(from_target, input_file, include, range,
&no_dependency_cache, errors);
}
return errors->size() == error_count_before;
}
// If the file exists:
// - The header must be in the public section of a target, or it must
// be in the sources with no public list (everything is implicitly public).
// - The dependency path to the included target must follow only public_deps.
// - If there are multiple targets with the header in it, only one need be
// valid for the check to pass.
void HeaderChecker::CheckInclude(
const Target* from_target,
const InputFile& source_file,
const SourceFile& include_file,
const LocationRange& range,
std::set<std::pair<const Target*, const Target*>>* no_dependency_cache,
std::vector<Err>* errors) const {
// Assume if the file isn't declared in our sources that we don't need to
// check it. It would be nice if we could give an error if this happens, but
// our include finder is too primitive and returns all includes, even if
// they're in a #if not executed in the current build. In that case, it's
// not unusual for the buildfiles to not specify that header at all.
FileMap::const_iterator found = file_map_.find(include_file);
if (found == file_map_.end())
return;
const TargetVector& targets = found->second;
Chain chain; // Prevent reallocating in the loop.
// If the file is unknown in the current toolchain (rather than being private
// or in a target not visible to the current target), ignore it. This is a
// bit of a hack to account for the fact that the include finder doesn't
// understand the preprocessor.
//
// When not cross-compiling, if a platform specific header is conditionally
// included in the build, and preprocessor conditions around #includes of
// that match the build conditions, everything will be OK because the file
// won't be known to GN even though the #include finder identified the file.
//
// Cross-compiling breaks this. When compiling Android on Linux, for example,
// we might see both Linux and Android definitions of a target and know
// about the union of all headers in the build. Since the #include finder
// ignores preprocessor, we will find the Linux headers in the Android
// build and note that a dependency from the Android target to the Linux
// one is missing (these might even be the same target in different
// toolchains!).
bool present_in_current_toolchain = false;
for (const auto& target : targets) {
if (from_target->label().ToolchainsEqual(target.target->label())) {
present_in_current_toolchain = true;
break;
}
}
if (!present_in_current_toolchain)
return;
// For all targets containing this file, we require that at least one be
// a direct or public dependency of the current target, and either (1) the
// header is public within the target, or (2) there is a friend definition
// whitelisting the includor.
//
// If there is more than one target containing this header, we may encounter
// some error cases before finding a good one. This error stores the previous
// one encountered, which we may or may not throw away.
Err last_error;
bool found_dependency = false;
for (const auto& target : targets) {
// We always allow source files in a target to include headers also in that
// target.
const Target* to_target = target.target;
if (to_target == from_target)
return;
bool is_permitted_chain = false;
bool cached_no_dependency =
no_dependency_cache->find(std::make_pair(to_target, from_target)) !=
no_dependency_cache->end();
bool add_to_cache = !cached_no_dependency;
if (!cached_no_dependency &&
IsDependencyOf(to_target, from_target, &chain, &is_permitted_chain)) {
add_to_cache = false;
DCHECK(chain.size() >= 2);
DCHECK(chain[0].target == to_target);
DCHECK(chain[chain.size() - 1].target == from_target);
found_dependency = true;
bool effectively_public =
target.is_public || FriendMatches(to_target, from_target);
if (effectively_public && is_permitted_chain) {
// This one is OK, we're done.
last_error = Err();
break;
}
// Diagnose the error.
if (!effectively_public) {
// Danger: must call CreatePersistentRange to put in Err.
last_error = Err(CreatePersistentRange(source_file, range),
"Including a private header.",
"This file is private to the target " +
target.target->label().GetUserVisibleName(false));
} else if (!is_permitted_chain) {
last_error = Err(CreatePersistentRange(source_file, range),
"Can't include this header from here.",
GetDependencyChainPublicError(chain));
} else {
NOTREACHED();
}
} else if (to_target->allow_circular_includes_from().find(
from_target->label()) !=
to_target->allow_circular_includes_from().end()) {
// Not a dependency, but this include is whitelisted from the destination.
found_dependency = true;
last_error = Err();
break;
}
if (add_to_cache) {
no_dependency_cache->emplace(to_target, from_target);
}
}
if (!found_dependency || last_error.has_error()) {
if (!found_dependency) {
DCHECK(!last_error.has_error());
Err err = MakeUnreachableError(source_file, range, from_target, targets);
errors->push_back(std::move(err));
} else {
// Found at least one dependency chain above, but it had an error.
errors->push_back(std::move(last_error));
}
return;
}
// One thing we didn't check for is targets that expose their dependents
// headers in their own public headers.
//
// Say we have A -> B -> C. If C has public_configs, everybody getting headers
// from C should get the configs also or things could be out-of-sync. Above,
// we check for A including C's headers directly, but A could also include a
// header from B that in turn includes a header from C.
//
// There are two ways to solve this:
// - If a public header in B includes C, force B to publicly depend on C.
// This is possible to check, but might be super annoying because most
// targets (especially large leaf-node targets) don't declare
// public/private headers and you'll get lots of false positives.
//
// - Save the includes found in each file and actually compute the graph of
// includes to detect when A implicitly includes C's header. This will not
// have the annoying false positive problem, but is complex to write.
}
bool HeaderChecker::IsDependencyOf(const Target* search_for,
const Target* search_from,
Chain* chain,
bool* is_permitted) const {
if (search_for == search_from) {
// A target is always visible from itself.
*is_permitted = true;
return false;
}
// Find the shortest public dependency chain.
if (IsDependencyOf(search_for, search_from, true, chain)) {
*is_permitted = true;
return true;
}
// If not, try to find any dependency chain at all.
if (IsDependencyOf(search_for, search_from, false, chain)) {
*is_permitted = false;
return true;
}
*is_permitted = false;
return false;
}
bool HeaderChecker::IsDependencyOf(const Target* search_for,
const Target* search_from,
bool require_permitted,
Chain* chain) const {
// This method conducts a breadth-first search through the dependency graph
// to find a shortest chain from search_from to search_for.
//
// work_queue maintains a queue of targets which need to be considered as
// part of this chain, in the order they were first traversed.
//
// Each time a new transitive dependency of search_from is discovered for
// the first time, it is added to work_queue and a "breadcrumb" is added,
// indicating which target it was reached from when first discovered.
//
// Once this search finds search_for, the breadcrumbs are used to reconstruct
// a shortest dependency chain (in reverse order) from search_from to
// search_for.
std::map<const Target*, ChainLink> breadcrumbs;
base::queue<ChainLink> work_queue;
work_queue.push(ChainLink(search_from, true));
bool first_time = true;
while (!work_queue.empty()) {
ChainLink cur_link = work_queue.front();
const Target* target = cur_link.target;
work_queue.pop();
if (target == search_for) {
// Found it! Reconstruct the chain.
chain->clear();
while (target != search_from) {
chain->push_back(cur_link);
cur_link = breadcrumbs[target];
target = cur_link.target;
}
chain->push_back(ChainLink(search_from, true));
return true;
}
// Always consider public dependencies as possibilities.
for (const auto& dep : target->public_deps()) {
if (breadcrumbs.insert(std::make_pair(dep.ptr, cur_link)).second)
work_queue.push(ChainLink(dep.ptr, true));
}
if (first_time || !require_permitted) {
// Consider all dependencies since all target paths are allowed, so add
// in private ones. Also do this the first time through the loop, since
// a target can include headers from its direct deps regardless of
// public/private-ness.
first_time = false;
for (const auto& dep : target->private_deps()) {
if (breadcrumbs.insert(std::make_pair(dep.ptr, cur_link)).second)
work_queue.push(ChainLink(dep.ptr, false));
}
}
}
return false;
}
Err HeaderChecker::MakeUnreachableError(const InputFile& source_file,
const LocationRange& range,
const Target* from_target,
const TargetVector& targets) {
// Normally the toolchains will all match, but when cross-compiling, we can
// get targets with more than one toolchain in the list of possibilities.
std::vector<const Target*> targets_with_matching_toolchains;
std::vector<const Target*> targets_with_other_toolchains;
for (const TargetInfo& candidate : targets) {
if (candidate.target->toolchain() == from_target->toolchain())
targets_with_matching_toolchains.push_back(candidate.target);
else
targets_with_other_toolchains.push_back(candidate.target);
}
// It's common when cross-compiling to have a target with the same file in
// more than one toolchain. We could output all of them, but this is
// generally confusing to people (most end-users won't understand toolchains
// well).
//
// So delete any candidates in other toolchains that also appear in the same
// toolchain as the from_target.
for (int other_index = 0;
other_index < static_cast<int>(targets_with_other_toolchains.size());
other_index++) {
for (const Target* cur_matching : targets_with_matching_toolchains) {
if (TargetLabelsMatchExceptToolchain(
cur_matching, targets_with_other_toolchains[other_index])) {
// Found a duplicate, erase it.
targets_with_other_toolchains.erase(
targets_with_other_toolchains.begin() + other_index);
other_index--;
break;
}
}
}
// Only display toolchains on labels if they don't all match.
bool include_toolchain = !targets_with_other_toolchains.empty();
std::string msg = "It is not in any dependency of\n " +
from_target->label().GetUserVisibleName(include_toolchain);
msg += "\nThe include file is in the target(s):\n";
for (auto* target : targets_with_matching_toolchains)
msg += " " + target->label().GetUserVisibleName(include_toolchain) + "\n";
for (auto* target : targets_with_other_toolchains)
msg += " " + target->label().GetUserVisibleName(include_toolchain) + "\n";
if (targets_with_other_toolchains.size() +
targets_with_matching_toolchains.size() >
1)
msg += "at least one of ";
msg += "which should somehow be reachable.";
// Danger: must call CreatePersistentRange to put in Err.
return Err(CreatePersistentRange(source_file, range), "Include not allowed.",
msg);
}